高中数学必修四-三角函数突破点(六)三角函数的定义域和值域
- 格式:docx
- 大小:14.79 KB
- 文档页数:1
三角函数定义域和值域sinx,cosx的定义域为R,值域为〔-1,1〕;tanx的定义域为x不等于π/2+kπ,值域为R;cotx的定义域为x不等于kπ,值域为R;y=a·sinx+b·cosx+c的值域为[c-√a²+b²,c+√a²+b²)]。
三角函数(也叫做“圆函数”)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。
三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。
更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。
sinx,cosx的定义域为R,值域为〔-1,1〕tanx的定义域为x不等于π/2+kπ,值域为Rcotx的定义域为x不等于kπ,值域为Ry=a·sinx+b·cosx+c的值域为[c-√a²+b²,c+√a²+b²)]三角函数是函数,象限符号坐标注。
函数图像单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。
正六边形顶点处,从上到下弦切割;中心记上数字一,连结顶点三角形。
向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。
诱导公式就是好,负化正后大化小,变成锐角好查表,化简证明少不了。
二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。
两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。
和差化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。
逆反原则作指导,升幂降次和差积。
条件等式的证明,方程思想指路明。
万能公式不一般,化为有理式居先。
公式顺用和逆用,变形运用加巧用;一加余弦想余弦,一减余弦想正弦,幂升一次角减半,升幂降次它为范;三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集。
三角函数的定义域和值域三角函数是数学中的一类重要函数,包括正弦函数、余弦函数、正切函数等。
在进行三角函数的研究和应用时,了解其定义域和值域是非常重要的。
一、正弦函数的定义域和值域正弦函数是以角度(或弧度)为自变量,输出对应的正弦值。
其定义域是实数集。
根据正弦函数的特点,我们知道正弦值的范围在-1到1之间,即其值域为[-1, 1]。
二、余弦函数的定义域和值域余弦函数也是以角度(或弧度)为自变量,输出对应的余弦值。
与正弦函数类似,余弦函数的定义域也是实数集,而其值域同样为[-1, 1]。
三、正切函数的定义域和值域正切函数是以角度(或弧度)为自变量,输出对应的正切值。
正切函数的定义域为除去其奇数倍的π的实数集,即R - {(2n + 1)π/2 |n∈Z}。
值域为全体实数,即整个实数集R。
四、其它三角函数的定义域和值域除了正弦函数、余弦函数、正切函数之外,还有诸如余切函数、正割函数、余割函数等三角函数。
这些函数的定义域和值域如下:1. 余切函数(cotx)的定义域为除去其奇数倍的π的实数集,即R - {nπ | n∈Z}。
值域也为全体实数。
2. 正割函数(secx)的定义域为除去π/2 + nπ的实数集,即R - {(2n + 1)π/2 | n∈Z}。
值域为正数和负数的并集,即R - {0}。
3. 余割函数(cscx)的定义域为除去nπ的实数集,即R - {nπ |n∈Z}。
值域同样为正数和负数的并集,即R - {0}。
五、总结三角函数的定义域和值域是根据函数的特点和性质决定的。
正弦函数和余弦函数的定义域为实数集,值域都是[-1, 1];正切函数的定义域为除去其奇数倍的π的实数集,值域为全体实数;余切函数、正割函数、余割函数的定义域分别为R - {nπ | n∈Z},值域为正数和负数的并集。
在实际应用中,对三角函数的定义域和值域的了解有助于我们分析和计算相关问题,并且在解决实际问题时能够更加准确地进行数值的转换和计算。
三角函数定义域和值域公式大全三角函数是一类重要的数学函数,它们一般以三角形周长与其边长中间的比例作为函数变量。
在这个意义上,它们本质上是对三角形的一种抽象。
三角函数的定义域和值域是数学学习的重要课题,它们是三角函数的基础概念。
由于三角函数定义域和值域一般不能用一般形式来描述,所以有必要通过一些具体的公式将其定义出来并相互表达。
首先,要解释三角函数定义域,我们必须先了解它们的定义。
它们都是由一个给定角度的三角形周长和角度边长之间的比例来定义的。
比如,正弦函数sine(θ)可以表示为三角形的角度θ和其相应的角度边长之间的比,即sinθ=y/1。
既然已经知道了三角函数的定义,那么它们的定义域也就可以明确了。
三角函数的定义域就是它们被定义的范围。
比如,正弦函数的定义域就是-π/2到π/2,这个范围内的所有角度都可以用正弦函数的定义进行计算。
此外,三角函数还有另一个重要的概念就是值域。
值域是指三角函数计算出来的结果所在的范围。
比如,正弦函数的值域就是-1到1,所有角度在定义域内的正弦函数计算结果都在-1到1这个范围内。
接下来,我们就要给出具体的表达式来表示三角函数定义域和值域的公式。
首先,正弦函数的定义域和值域可以分别表示为:定义域:-π/2/2值域:-1 sinθ 1其次,余弦函数的定义域和值域也可以表示为:定义域:-π值域:-1 cosθ 1此外,正切函数也有其特定的定义域和值域,它们可以表示为:定义域:-π/2/2值域:-∞ tanθ最后,反正弦函数也具有定义域和值域,它们可以表示为:定义域:-1 x1值域:-π/2 arcsinx/2以上就是三角函数定义域和值域的公式大全,它们可以根据不同的函数类型进行更加精确的表述。
以上的公式都是通用的,但在实际应用中也会有少量的不同,所以在使用时应该注意比较。
在进行三角函数计算时,了解三角函数定义域和值域的公式是非常重要的,它们可以作为计算的基础,使得计算更加准确可靠。
高中数学必修四三角函数知识点高中数学必修四三角函数知识点详解角是我们在几何学中经常接触到的重要概念,而三角函数则是与角密切相关的一类函数。
在高中数学必修四中,三角函数是一个重要的知识点,对于数学学习的深入和数学建模的实践具有重要的意义。
本文将结合具体例子,详细介绍高中数学必修四三角函数的相关知识。
一、正弦函数和余弦函数正弦函数和余弦函数是最基本、最常用的两个三角函数。
我们首先从几何解释的角度来理解它们。
对于一个角A,我们可以根据角A所在的单位圆上的点(x,y)的坐标值,得到角A的正弦值sinA和余弦值cosA。
而正弦函数sinx和余弦函数cosx则是将角x所对应的正弦值和余弦值关系式表示的函数。
举个例子来说明,假设有一角x=30°,那么根据单位圆上的坐标特点,点(x,y)的坐标值为(√3/2,1/2)。
因此,角x的正弦值sinx=1/2,余弦值cosx=√3/2。
我们可以用这样的方法,通过观察和计算,来确定正弦函数和余弦函数的函数图像和性质。
二、正切函数和余切函数正切函数和余切函数是另外两个重要的三角函数。
正切函数tanx和余切函数cotx则是将角x所对应的正切值和余切值关系式表示的函数。
我们以正切函数为例,来解释一下它的定义和性质。
对于一个角A,我们可以根据角A所在的单位圆上的点(x,y)的坐标值,得到角A的正切值tanA。
正切函数tanx就是将角x所对应的正切值关系式表示的函数。
正切函数tanx的一个重要特点是周期性。
考虑tanx的函数图像,我们可以观察到在每个周期内,tanx呈现出规律的周期性变化。
而周期为π的函数图像在整个定义域上都是无穷区间波动的。
三、其他三角函数除了上述介绍的正弦函数、余弦函数、正切函数和余切函数之外,还有其他一些与三角函数密切相关的函数,如割函数secx和余割函数cscx等。
割函数和余割函数定义如下:割函数secx是角x对应的余弦倒数的函数,余割函数cscx是角x对应的正弦倒数的函数。
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载必修 4 第一章三角函数知识点详解地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容必修4 第一章三角函数任意角和弧度制一: 角的概念的推广:平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。
按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。
射线的起始位置称为始边,终止位置称为终边。
角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.正角:按逆时针方向旋转所形成的角.负角:按顺时针方向旋转所形成的角.零角:如果一条射线没有做任何旋转,我们称它形成了一个零角.角的概念是通过角的终边的运动来推广的,既有旋转方向,又有旋转大小,同时没有旋转也是一个角,从而得到正角、负角和零角的定义.二: 象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。
如果角的终边在坐标轴上,就认为这个角不属于任何象限。
三: 终边相同的角的表示:= 1 \* GB3 ①与(0°≤<360°)终边相同的角的集合(角与角的终边重合):= 2 \* GB3 ②终边在x轴上的角的集合:= 3 \* GB3 ③终边在y轴上的角的集合:= 4 \* GB3 ④终边在坐标轴上的角的集合:= 5 \* GB3 ⑤终边在y=x轴上的角的集合:= 6 \* GB3 ⑥终边在轴上的角的集合:= 7 \* GB3 ⑦若角与角的终边关于x轴对称,则角与角的关系:= 8 \* GB3 ⑧若角与角的终边关于y轴对称,则角与角的关系:= 9 \* GB3 ⑨若角与角的终边在一条直线上,则角与角的关系:= 10 \* GB3 ⑩角与角的终边互相垂直,则角与角的关系:注意: (1) 终边相同的前提是:原点,始边均相同;(2) 终边相同的角不一定相等,但相等的角终边一定相同;(3) 终边相同的角有无数多个,它们相差的360°整数倍.四: 角度与弧度的互换关系:360°=2 180°= 1°=0.01745, 1=57.30°=57°18′注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.、弧度与角度互换公式: 1rad=°≈57.30°=57°18ˊ.1°=≈0.01745(rad)五: 弧长公式:,扇形面积公式:,1弧度(1rad).任意角的三角函数一: 任意角的三角函数的定义:设是任意一个角,P是的终边上的任意一点(异于原点),它与原点的距离是,那么,,,,。
高中数学必修四三角函数
高中数学必修四中的三角函数主要包括正弦函数、余弦函数、正切函数及其逆函数。
下面是这些函数的定义和性质:
1. 正弦函数(sin):对于任意实数θ,定义其正弦值为
y=sinθ,其中y满足-1≤y≤1。
正弦函数是一个周期为2π
的周期函数,其图像呈现波浪形状。
2. 余弦函数(cos):对于任意实数θ,定义其余弦值为
y=cosθ,其中y满足-1≤y≤1。
余弦函数也是一个周期为
2π的周期函数,其图像呈现山峰和谷底的形状。
3. 正切函数(tan):对于任意实数θ,定义其正切值为
y=tanθ,其中y为实数。
正切函数在一些特定值上无定义,例如tan(π/2)和tan(3π/2)等。
正切函数的图像呈现周期性,并且在某些点上会趋近于无穷大。
4. 逆正弦函数(arcsin):对于任意实数y,定义其反正弦值为θ=arcsin(y),其中θ满足-π/2≤θ≤π/2。
逆正弦函数的定义域是[-1, 1],值域是[-π/2, π/2]。
5. 逆余弦函数(arccos):对于任意实数y,定义其反余弦值为θ=arccos(y),其中θ满足0≤θ≤π。
逆余弦函数的定义域是[-1, 1],值域是[0, π]。
6. 逆正切函数(arctan):对于任意实数y,定义其反正切值为θ=arctan(y),其中θ满足-π/2<θ<π/2。
逆正切函数的定义域是实数集R,值域是(-π/2, π/2)。
三角函数及其逆函数在数学中具有广泛的应用。
在数学的计算中,可以通过这些函数相互转化,借助其性质求解各种数学问题。
三角函数拓展知识点总结一、三角函数的定义与性质1. 三角函数的定义在直角三角形中,我们可以定义三角函数为一个角的对边、邻边和斜边之比。
具体来说,正弦函数(sine)、余弦函数(cosine)、正切函数(tangent)等,它们的定义分别如下: - 正弦函数:sinθ = 对边/斜边- 余弦函数:cosθ = 邻边/斜边- 正切函数:tanθ = 对边/邻边2. 三角函数的性质* 周期性:对于任意角θ,三角函数都是周期函数,具有周期2π。
* 奇偶性:正弦函数是奇函数,余弦函数是偶函数,正切函数则是奇函数。
* 定义域和值域:正弦函数和余弦函数的定义域是实数集,值域是[-1, 1];而正切函数的定义域是全体实数,值域是实数集。
二、三角函数的图像与性质1. 正弦函数的图像与性质正弦函数的图像是一条连续的波浪线,它在每个周期内有一个最大值1和一个最小值-1,而且它的图像是周期性的。
正弦函数的性质还包括:- 对称性:正弦函数关于原点对称。
- 单调性:一个周期内,正弦函数在(0, π)上是增函数,在(π, 2π)上是减函数。
- 零点:正弦函数有无穷多个零点,即sin(kπ)=0,其中k为整数。
2. 余弦函数的图像与性质余弦函数的图像是一条连续的波浪线,它在每个周期内有一个最大值1和一个最小值-1,而且它的图像也是周期性的。
余弦函数的性质还包括:- 对称性:余弦函数关于y轴对称。
- 单调性:一个周期内,余弦函数在(0, π)上是减函数,在(π, 2π)上是增函数。
- 零点:余弦函数的零点为cos((2k+1)π/2)=0,其中k为整数。
3. 正切函数的图像与性质正切函数的图像是一条连续的周期性函数,其图像在每个周期中有许多奇点,其性质包括: - 奇点:正切函数在每个周期内有许多奇点,即在θ=(2k+1)π/2处,tanθ的值无定义。
- 增减性:正切函数在每个周期内有无穷多个极大值和极小值,并且在每个周期内均为增函数或减函数。
三角函数的定义域、值域和最值一知识点精讲:1 三角函数的定义域(1)sinα=yryxxr定义域为R. (2)cosα=⎧⎩定义域为R.(3)tanα=定义域为⎨α|α≠πx⎫定义域为+kπ,k∈Z⎬. (4)cotα=2y⎭{α|α≠kπ,k∈Z}.2 三角函数的值域① y=asinx+b,(a≠0) 型当a>0时,y∈[-a+b,a+b] ;当a<0时 y∈[a+b,-a+b] ② y=asin2x+bsinx+c型此类型的三角函数可以转化成关于sinx的二次函数形式。
通过配方,结合sinx的取值范围,得到函数的值域。
sinx换为cosx也可以。
③ y=asinx+bcosx型利用公式asinx+bcosx=的情形。
④y=a(sinx+cosx)+bsinxcosx型利用换元法,设t=sinx+cosx, t∈[-2,2],则sinxcosx=t-122a+bsin(x+φ),tanφ=22ba,可以转化为一个三角函数22,转化为关于t 的二次函数y=at+b22=b2t+at-2b2.⑤y=asinx+bcosx+csinxcosx型这是关于sinx,cosx的二次齐次式,通过正余弦的降幂公式以及正弦的倍角公式,sin2x=1-cos2x2,cos2x=1+cos2x2,sinxcosx=sin2x2,可转化为y=msin2x+ncos2x+p的形式。
⑥ y=⑦y=asinx+bcsinx+dsinx+a型可以分离常数,利用正弦函数的有界性。
cosx+b型可以利用反解的思想方法,把分母乘过去,整理得,sinx-ycosx=by-a,sin(x-φ)=by-a+y,by-a+y≤1, 通过解此不等式可得到y的取值范围。
或者转化成两点连线的斜率。
以上七种类型是从表达的形式上进行分类的,如果x有具体的角度范围,则再进行限制。
二典例解析:例1.求下列函数的定义域(1)y=3-3sinx-2cos2x;(2)y例2.求下列函数的值域(1) y=-2sinx+3 (2)y=2cos2x+5sinx-4;(3)y=5sin2x-4sinxcosx+2cos2x; (4)y=sinx+cosx+sinxcosx (5)yπ6=3sinx+13sinx+2=logsinx(cosx+12). (3) y=25-x+lgcosx;;(6)y=sinx+2cosx+21-tan()cosx.π4-x)(7)y=sin(x-(8)y=1+tan(π4-x)(9)求函数y=sin2x1-sinx-cosx+sin2x的值域.三课堂练习:1.若cosα⋅cscαsec2α-1=-1,则α所在的象限是A.第二象限限2.不解等式:(1)sinx<-3.已知f(x)的定义域为(-4.求下列函数的定义域(1)y=1tanx-112 () B.第四象限 C.第二象限或第四象限 D.第一或第三象(2)cosx>12 12,32),则f(cosx)的定义域为____________. (2)y=sinx+125-x2.5.求下列函数的值域(1)y=2cosx-1(3)y=1+sinx+cosx+(5)y=12+sinx12sin2xx∈[-π,π]. (4)y=-cos3 (2)y=2sinxcos1+sinx2x. xsinx. (6)y=tan2x+4cot+1 26.有一块扇形铁板,半径为R,圆心角为60°,从这个扇形中切割下一个内接矩形,即矩形的各个顶点都半径或弧在扇形的上,求这个内接矩形的最大面积.。
三角函数的定义域值域与单调性三角函数是数学中重要的概念之一,它在几何学、物理学以及其他许多领域中都有着广泛的应用。
三角函数包括正弦函数、余弦函数和正切函数,它们的定义域、值域以及单调性是我们研究它们的重要方面。
本文将以一种合适的格式来论述三角函数的定义域、值域和单调性。
1. 正弦函数的定义域、值域与单调性三角函数正弦函数的定义域是实数集R,因为它可以接受任何实数作为自变量。
正弦函数的值域是闭区间[-1, 1],也就是说,对于任意的x,-1 ≤ sin(x) ≤ 1。
正弦函数在区间[0, π]上是单调递增的,在区间[π, 2π]上是单调递减的。
2. 余弦函数的定义域、值域与单调性余弦函数的定义域也是实数集R。
与正弦函数不同的是,余弦函数的值域也是闭区间[-1, 1],也就是说,-1 ≤ cos(x) ≤ 1。
余弦函数在区间[0, π/2]上是单调递减的,在区间[π/2, π]上是单调递增的,在区间[π,3π/2]上是单调递减的,在区间[3π/2, 2π]上是单调递增的。
3. 正切函数的定义域、值域与单调性正切函数的定义域是实数集R,除了π/2的倍数除外,即x ≠ (2n + 1)π/2,其中n为整数。
正切函数的值域是全体实数,也就是对于任意的y,都存在一个实数x使得tan(x) = y。
正切函数在区间(-π/2, π/2)上是单调递增的,而在其他区间上是周期性的。
总结:正弦函数的定义域是实数集R,值域是闭区间[-1, 1]。
其在区间[0, π]上是单调递增的,而在区间[π, 2π]上是单调递减的。
余弦函数的定义域也是实数集R,值域同样是闭区间[-1, 1]。
其在区间[0, π/2]上是单调递减的,而在区间[π/2, π]上是单调递增的,以此类推。
正切函数的定义域是实数集R,除了π/2的倍数除外。
值域是全体实数。
正切函数在区间(-π/2, π/2)上是单调递增的,其余区间上是周期性的。
通过研究三角函数的定义域、值域以及单调性,我们能够更好地理解三角函数的性质与特点,在解决数学和实际问题中起到重要的作用。
三角函数和反三角函数的定义域和值域三角函数是数学中常见的函数,可以用来描述角度和其对边、邻边、斜边之间的关系。
常见的三角函数包括正弦函数、余弦函数和正切函数,而对应的反函数即为反正弦函数、反余弦函数和反正切函数。
正弦函数(sin):正弦函数定义域为所有实数。
其值域为闭区间[-1, 1],即取值范围在-1到1之间。
正弦函数的图像在整个定义域上是周期性的,周期为2π。
余弦函数(cos):余弦函数定义域为所有实数。
其值域也为闭区间[-1, 1],即取值范围在-1到1之间。
余弦函数的图像也是周期性的,周期为2π。
正切函数(tan):正切函数定义域为所有实数,除了使分母为零的点。
其值域为整个实数集。
正切函数的图像也是周期性的,周期为π。
反正弦函数(arcsin):反正弦函数定义域是闭区间[-1, 1],值域是闭区间[-π/2, π/2]。
也就是说,它的参数的取值范围在-1到1之间,而结果的取值范围在-π/2到π/2之间。
反正弦函数是将角度转换为对应的正弦值的逆运算。
反余弦函数(arccos):反余弦函数定义域也是闭区间[-1, 1],值域是闭区间[0, π]。
它的参数的取值范围在-1到1之间,而结果的取值范围在0到π之间。
反余弦函数是将角度转换为对应的余弦值的逆运算。
反正切函数(arctan):反正切函数定义域是整个实数集,值域是闭区间[-π/2, π/2]。
其结果的范围在-π/2到π/2之间。
反正切函数是将角度转换为对应的正切值的逆运算。
需要注意的是,三角函数和反三角函数在不同象限的取值范围有所不同。
例如,在角度值为0到π时,sin函数的值为0到1,而在π到2π之间的范围,sin函数的值为-1到0。
此外,三角函数和反三角函数在工程学、物理学和计算机图形学等领域有着广泛的应用。
它们可以用来描述波动的行为、计算向量的方向和角度,以及进行几何变换等。
熟练掌握三角函数和反三角函数的定义域和值域,对数学和应用科学相关学科的学习都具有重要意义。
三角函数和反三角函数的定义域和值域文章标题:深入理解三角函数和反三角函数的定义域和值域一、引言三角函数和反三角函数是数学中重要的概念,它们在数学和物理等领域有着广泛的应用。
理解三角函数和反三角函数的定义域和值域对于深入理解它们的性质和应用至关重要。
本文将从简单到复杂,由浅入深地探讨三角函数和反三角函数的定义域和值域,帮助读者更深入地理解这一主题。
二、三角函数的定义域和值域1. 正弦函数和余弦函数正弦函数和余弦函数是最基本的三角函数之一,它们的定义域是整个实数集,即(-∞, +∞),而值域是闭区间[-1, 1]。
这意味着正弦函数和余弦函数的取值范围在-1到1之间。
2. 正切函数正切函数的定义域是所有实数,但它的值域是整个实数集,即(-∞, +∞)。
正切函数的取值范围是整个实数集。
3. 反正弦、反余弦和反正切函数反三角函数是三角函数的反函数,它们的定义域和值域与相应的三角函数相反。
反正弦函数的定义域是闭区间[-1, 1],而值域是闭区间[-π/2, π/2]。
这意味着反正弦函数的取值范围在-π/2到π/2之间。
三、深入理解三角函数和反三角函数的定义域和值域1. 定义域和值域的意义三角函数的定义域和值域决定了函数的取值范围和性质,它们对于解决三角函数的问题和应用具有重要的指导意义。
在求解三角方程和证明三角不等式时,对三角函数的定义域和值域有清晰的认识能够帮助我们更好地理解和处理问题。
2. 图形和性质三角函数的定义域和值域也反映在其图形和性质上。
通过分析三角函数的图形,我们可以直观地感受到其定义域和值域对函数图像的影响,从而更深入地理解三角函数的性质和特点。
四、总结与展望通过本文的探讨,我们对三角函数和反三角函数的定义域和值域有了更深入的理解。
理解三角函数和反三角函数的定义域和值域不仅有助于掌握它们的性质和特点,还能对解决实际问题和应用提供有力的支持。
未来,我们可以进一步探讨三角函数和反三角函数的性质以及它们在不同领域的具体应用,以丰富我们对这一主题的理解。
数学三角函数的定义域与值域知识点说起数学里的三角函数,那可真是让不少同学头疼不已,但其实只要咱细细琢磨,也能发现其中的趣味。
就拿正弦函数 y = sin x 来说吧,它的定义域那可是整个实数集 R ,简单说就是从负无穷到正无穷,啥数都能往里放。
那它的值域呢,是闭区间-1, 1。
这意味着啥?不管 x 咋变,sin x 最大也就是 1 ,最小也就是-1 。
我记得当时学这个的时候,老师在黑板上画着波浪线,嘴里不停地念叨着“周期,周期”。
我当时就在想,这玩意儿咋就这么神奇,能像波浪一样有规律地起伏。
有一次做作业,就碰到了一道关于正弦函数定义域和值域的题目。
题目是这样的:已知函数 y = 2sin(3x +π/4) ,求其定义域和值域。
我当时一看,心里“咯噔”一下,这可咋整?但还是硬着头皮开始琢磨。
我先想着正弦函数本身的定义域是R ,那这里不管3x +π/4 咋变,整体也应该是 R 没错。
至于值域,因为系数 2 ,那正弦函数的值域就得跟着变,原来是-1, 1,现在就得变成-2, 2。
我就在草稿纸上不停地写写画画,一会儿列出式子,一会儿又擦掉重新思考。
那过程,就像是在迷宫里找出口,有时候觉得自己走对了,结果发现是个死胡同;有时候又觉得没希望了,突然又柳暗花明。
算着算着,我突然发现自己把 3x +π/4 这个整体给搞混了,结果整个思路都错了。
哎呀,那叫一个懊恼啊!我狠狠地拍了一下自己的脑袋,自言自语道:“咋就这么笨呢!”重新调整思路后,我终于算出了正确答案。
那一刻,心里别提多有成就感了,就好像打了一场胜仗似的。
再来说说余弦函数 y = cos x ,它的定义域也是 R ,值域同样是-1, 1。
有一回上课,老师讲了个例子,说是一个钟摆的摆动角度可以用余弦函数来描述。
我就在脑子里想象那个钟摆晃来晃去的样子,想着余弦函数是怎么和它对应起来的。
正切函数 y = tan x 就有点不一样了,它的定义域是x ≠ kπ +π/2 ,k ∈Z 。
专题6 三角函数的定义域和值域三角函数的定义域和值域★★★○○○○三角函数 正弦函数y =sin x余弦函数y =cos x正切函数y =tan x图象定义域 R R xx ∈R ,且x错误! 值域[-1,1][-1,1]R最值当且仅当x =π2+2k π(k∈Z)时,取得最大值1;当且仅当x =-π2+2k π(k∈Z)时,取得最小值-1当且仅当x =2k π(k ∈Z)时,取得最大值1;当且仅当x =π+2k π(k ∈Z)时,取得最小值-1三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解. [提醒] 解三角不等式时要注意周期,且k ∈Z 不可以忽略.[例1] 函数y =lg(2sin x -1)+1-2cos x 的定义域是________.1. 函数y =2sin ⎝⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为( )A .2- 3B .0C .-1D .-1- 3[解析] ∵0≤x ≤9,∴-π3≤π6x -π3≤7π6, ∴sin ⎝ ⎛⎭⎪⎫π6x -π3∈⎣⎢⎡⎦⎥⎤-32,1.∴y ∈[-3,2],∴y max +y min =2- 3.(2)函数y =3-sin x -2cos 2x ,x ∈⎣⎢⎡⎦⎥⎤π6,76π的值域为________. [解析]∵x ∈⎣⎢⎡⎦⎥⎤π6,7π6,∴sin x ∈⎣⎢⎡⎦⎥⎤-12,1.又y =3-sin x -2cos 2x =3-sin x -2(1-sin 2x )=2⎝ ⎛⎭⎪⎫sin x -142+78,∴当sin x =14时,y min =78;当sin x =-12或sin x =1时,y max =2.故该函数的值域为⎣⎢⎡⎦⎥⎤78,2.1.函数y =cos x -32的定义域为( ) A.⎣⎢⎡⎦⎥⎤-π6,π6 B.⎣⎢⎡⎦⎥⎤k π-π6,k π+π6(k ∈Z) C.⎣⎢⎡⎦⎥⎤2k π-π6,2k π+π6(k ∈Z) D .R解析:选C 要使函数有意义,则cos x -32≥0,即cos x ≥32,解得2k π-π6≤x ≤2k π+π6,k ∈Z. 2.函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为( )A .-1B .-22 C .0 D.22解析:选B 因为0≤x ≤π2,所以-π4≤2x -π4≤3π4,由正弦函数的图象知,-22≤sin ⎝ ⎛⎭⎪⎫2x -π4≤1,所以函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为-22.3.函数y =1tan x -1的定义域为________.4.函数y =lg(sin 2x )+9-x 2的定义域为________.解析:由⎩⎪⎨⎪⎧sin 2x >0,9-x 2≥0,得⎩⎪⎨⎪⎧k π<x <k π+π2,k ∈Z ,-3≤x ≤3.∴-3≤x <-π2或0<x <π2.∴函数y =lg(sin 2x )+9-x 2的定义域为⎣⎢⎡⎭⎪⎫-3,-π2∪⎝ ⎛⎭⎪⎫0,π2.答案:⎣⎢⎡⎭⎪⎫-3,-π2∪⎝ ⎛⎭⎪⎫0,π25.求函数y =cos 2x +sin x ⎝⎛⎭⎪⎫|x |≤π4的最大值与最小值.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________。
必修4数学函数值域知识点必修四三角函数知识点函数的值域函数的重要性质之一,也是高二数学学习的难点之一,下面是小编给大家带来的必修4数学函数值域知识点,希望对你有帮助。
高二数学函数值域知识点名称定义函数中,应变量的取值范围叫做这个函数的值域函数的值域,在数学中是函数在定义域中应变量所有值的集合常用的求值域的方法(1)化归法;(2)图象法(数形结合),(3)函数单调性法,(4)配方法,(5)换元法,(6)反函数法(逆求法),(7)判别式法,(8)复合函数法,(9)三角代换法,(10)基本不等式法等关于函数值域误区定义域、对应法则、值域是函数构造的三个基本“元件”。
平时数学中,实行“定义域优先”的原则,无可置疑。
然而事物均具有二重性,在强化定义域问题的同时,往往就削弱或谈化了,对值域问题的探究,造成了一手“硬”一手“软”,使学生对函数的掌握时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄皮,何况它们二者随时处于互相转化之中(典型的例子是互为反函数定义域与值域的相互转化)。
如果函数的值域是无限集的话,那么求函数值域不总是容易的,反靠不等式的运算性质有时并不能奏效,还必须联系函数的奇偶性、单调性、有界性、周期性来考虑函数的取值情况。
才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难,实践证明,如果加强了对值域求法的研究和讨论,有利于对定义域内函的理解,从而深化对函数本质的认识。
“范围”与“值域”相同吗?“范围”与“值域”是我们在学习中经常遇到的两个概念,许多同学常常将它们混为一谈,实际上这是两个不同的概念。
“值域”是所有函数值的集合(即集合中每一个元素都是这个函数的取值),而“范围”则只是满足某个条件的一些值所在的集合(即集合中的元素不一定都满足这个条件)。
也就是说:“值域”是一个“范围”,而“范围”却不一定是“值域”。
高二数学学习方法预习如果你想把数学学好,单纯地做学校发的资料是远远不够的。
三角函数定义域三角函数是数学中一类重要的函数,通常用来描述角的性质和关系。
常见的三角函数包括正弦函数、余弦函数、正切函数等,它们的定义域和值域各不相同。
本文将详细介绍三角函数的定义域。
1. 正弦函数(sine function)的定义域是整个实数集,即(-∞, +∞)。
正弦函数的定义域没有限制,可以取任意实数作为自变量。
2. 余弦函数(cosine function)的定义域也是整个实数集,即(-∞,+∞)。
与正弦函数一样,余弦函数的自变量可以取任意实数。
3. 正切函数(tangent function)的定义域是所有不属于∞+kπ (k∈Z)这个集合的实数。
也就是说,正切函数的自变量不能等于∞+kπ。
4. 反正弦函数(arcsin function)的定义域是[-1,1],即取值位于闭区间[-1,1]的实数。
这是因为正弦函数的取值范围在[-1,1]之间。
5. 反余弦函数(arccos function)的定义域也是[-1,1],同样取值位于闭区间[-1,1]的实数。
6. 反正切函数(arctan function)的定义域是整个实数集,即(-∞,+∞)。
反正切函数可以取任意实数作为自变量。
需要注意的是,虽然三角函数的定义域有一定的规定,但在实际应用中,我们也可以对定义域进行适当的限制。
例如,当考虑角度时,我们通常将定义域限制在一定的范围内,如[0, 2π]或[-π, π]。
为了更好地理解三角函数的定义域,我们可以通过图像来观察。
在坐标系中绘制出各个三角函数的图像,可以清晰地看到它们的定义域和值域。
除了基本的三角函数之外,还存在其他一些与三角函数密切相关的函数,如双曲正弦函数、双曲余弦函数等。
这些函数的定义域和值域也有一定的规定,但在此不做详细介绍。
总结起来,三角函数的定义域取决于函数的性质和定义,不同的三角函数有不同的定义域。
了解三角函数的定义域对于解决与角度和三角关系相关的问题非常重要,希望本文能够对读者对此提供一些帮助。
高中数学必修四-三角函数突破点(六)三角函数的定义域和值
域
基础回顾
考点链接
考点一:三角函数的定义域
方法技巧
三角函数定义域的求法
求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解.
[提醒] 解三角不等式时要注意周期,且k∈Z不可以忽略.
实战演练
考点二:三角函数的值域(最值)
方法技巧
三角函数值域或最值的三种求法
(1)直接法:直接利用sin x,cos x的值域求出.
(2)化一法:化为y=Asin(ωx+φ)+k的形式,确定ωx+φ的范围,根据正弦函数单调性写出函数的值域(最值).
(3)换元法:把sin x或cos x看作一个整体,转化为二次函数,求在给定区间上的值域(最值)问题.
实战演练。