材料科学基础 第十章
- 格式:doc
- 大小:42.00 KB
- 文档页数:6
第一章:结晶学基础一、晶体的基本概念晶体:晶体是内部质点在三维空间按周期性重复排列的固体。
晶胞:是指晶体结构中的平行六面体单位,其形状大小与对应的空间格子中的平行六面体一致。
晶体的基本性质:晶体均一性、各向异性、自限性、对称性、最想内能性。
等同点:晶体结构中物质环境和几何环境完全相同的点。
空间格子:联结分布在三维空间内的结点就构成了空间格子。
单位平行六面体:在空间格子中,所选取的平行六面体的对称性符合整个空间点阵的对称性;棱与棱之间的直角应力求最多;在遵循上两个条件的前提下,所选取的平行六面体的体积应最小。
考虑到对称性不能为直角时,选结点间距最小的行列做平行六面体的棱,棱间交角接近直角。
按照上述选择原则选取的平行六面体称为单位平行六面体。
点群(对称型):结晶多面体中全部对称要素的组合,称为该结晶多面体的对称型。
由于在结晶多面体中,全部对称要素相交于一点(晶体几何中心),在进行对称操作时该点不移动,所以对称型也称为点群。
平移群:晶体结构中所有平移轴的结合。
空间群:在一个晶体结构中所存在的一切对称要素的集合。
二、晶体的对称要素对称中心(符号C):假想的几何点,相应的对称变换是对于这个点的倒反。
对称面(符号P):假想的平面,相应的对称变换是对此平面的反映。
对称轴(符号L n):假想的直线,相应的对称变换是绕此直线的旋转。
倒转轴(符号L i n):一种复合对称要素,由一根假想的直线和此直线上的一个定点构成。
相应的对称变换是绕此直线旋转一定角度以及对此定点的倒反。
映转轴(符号L s n):一种复合对称要素,由一根假想的直线和垂直此直线的一个平面构成。
相应的对称变换是绕此直线旋转一定角度以及对此平面的反映。
三、晶体的对称分类七个晶系包括:三斜晶系、单斜晶系、正交(斜方)、三方晶系、四方(正方)晶系、六方晶系和等轴(立方)晶系四、各晶系的几何常数五、结晶符号1、晶面符号(米氏符号也称晶面符号):(hkl)表示2、晶棱符号::[uvw]表示六、晶体的微观对称要素(1)平移轴:是一直线方向,相应的对称变换为沿此直线方向平移一定的距离。
10-1 名词解释:烧结烧结温度泰曼温度液相烧结固相烧结初次再结晶晶粒长大二次再结晶(1)烧结:粉末或压坯在低于主要组分熔点的温度下的热处理,目的在于通过颗粒间的冶金结合以提高其强度。
(2)烧结温度:坯体在高温作用下,发生一系列物理化学反应,最后显气孔率接近于零,达到致密程度最大值时,工艺上称此种状态为"烧结",达到烧结时相应的温度,称为"烧结温度"。
(3)泰曼温度:固体晶格开始明显流动的温度,一般在固体熔点(绝对温度)的2/3处的温度。
在煅烧时,固体粒子在塔曼温度之前主要是离子或分子沿晶体表面迁移,在晶格内部空间扩散(容积扩散)和再结晶。
而在塔曼温度以上,主要为烧结,结晶黏结长大。
(4)液相烧结:烧结温度高于被烧结体中熔点低的组分从而有液相出现的烧结。
(5)固相烧结:在固态状态下进行的烧结。
(6)初次再结晶:初次再结晶是在已发生塑性变形的基质中出现新生的无应变晶粒的成核和长大过程。
(7)晶粒长大:是指多晶体材料在高温保温过程中系统平均晶粒尺寸逐步上升的现象.(8)二次再结晶:再结晶结束后正常长大被抑制而发生的少数晶粒异常长大的现象。
10-2 烧结推动力是什么?它可凭哪些方式推动物质的迁移,各适用于何种烧结机理?解:推动力有:(1)粉状物料的表面能与多晶烧结体的晶界能的差值,烧结推动力与相变和化学反应的能量相比很小,因而不能自发进行,必须加热!!(2)颗粒堆积后,有很多细小气孔弯曲表面由于表面张力而产生压力差,(3)表面能与颗粒之间形成的毛细管力。
传质方式:(1)扩散(表面扩散、界面扩散、体积扩散);(2)蒸发与凝聚;(3)溶解与沉淀;(4)黏滞流动和塑性流动等,一般烧结过程中各不同阶段有不同的传质机理,即烧结过程中往往有几种传质机理在起作用。
10-3 下列过程中,哪一个能使烧结体强度增大,而不产生坯体宏观上的收缩? 试说明理由。
(1)蒸发-冷凝;(2)体积扩散;(3)粘性流动;(4)晶界扩散;(5)表面扩散;(6)溶解-沉淀解:蒸发-凝聚机理(凝聚速率=颈部体积增加)烧结时颈部扩大,气孔形状改变,但双球之间中心距不变,因此坯体不发生收缩,密度不变。
第一章材料中的原子排列第一节原子的结合方式1 原子结构2 原子结合键(1)离子键与离子晶体原子结合:电子转移,结合力大,无方向性和饱和性;离子晶体;硬度高,脆性大,熔点高、导电性差。
如氧化物陶瓷。
(2)共价键与原子晶体原子结合:电子共用,结合力大,有方向性和饱和性;原子晶体:强度高、硬度高(金刚石)、熔点高、脆性大、导电性差。
如高分子材料。
(3)金属键与金属晶体原子结合:电子逸出共有,结合力较大,无方向性和饱和性;金属晶体:导电性、导热性、延展性好,熔点较高。
如金属。
金属键:依靠正离子与构成电子气的自由电子之间的静电引力而使诸原子结合到一起的方式。
(3)分子键与分子晶体原子结合:电子云偏移,结合力很小,无方向性和饱和性。
分子晶体:熔点低,硬度低。
如高分子材料。
氢键:(离子结合)X-H---Y(氢键结合),有方向性,如O-H—O(4)混合键。
如复合材料。
3 结合键分类(1)一次键(化学键):金属键、共价键、离子键。
(2)二次键(物理键):分子键和氢键。
4 原子的排列方式(1)晶体:原子在三维空间内的周期性规则排列。
长程有序,各向异性。
(2)非晶体:――――――――――不规则排列。
长程无序,各向同性。
第二节原子的规则排列一晶体学基础1 空间点阵与晶体结构(1)空间点阵:由几何点做周期性的规则排列所形成的三维阵列。
图1-5特征:a 原子的理想排列;b 有14种。
其中:空间点阵中的点-阵点。
它是纯粹的几何点,各点周围环境相同。
描述晶体中原子排列规律的空间格架称之为晶格。
空间点阵中最小的几何单元称之为晶胞。
(2)晶体结构:原子、离子或原子团按照空间点阵的实际排列。
特征:a 可能存在局部缺陷;b 可有无限多种。
2 晶胞图1-6(1)――-:构成空间点阵的最基本单元。
(2)选取原则:a 能够充分反映空间点阵的对称性;b 相等的棱和角的数目最多;c 具有尽可能多的直角;d 体积最小。
(3)形状和大小有三个棱边的长度a,b,c及其夹角α,β,γ表示。
一、名词:相图:表示合金系中的合金状态与温度、成分之间关系的图解匀晶转变:从液相结晶出单相固溶体的结晶过程。
平衡结晶:合金在极缓慢冷却条件下进行结晶的过程。
成分起伏:液相中成分、大小和位置不断变化着的微小体积。
异分结晶:结晶出的晶体与母相化学成分不同的结晶。
枝晶偏析:固溶体树枝状晶体枝干和枝间化学成分不同的现象。
共晶转变:在一定温度下,由—定成分的液相同时结晶出两个成分一定的固相的转变过程。
脱溶:由固溶体中析出另一个固相的过程,也称之为二次结晶包晶转变:在一定温度下,由一定成分的固相与一定成分的液相作用,形成另一个一定成分的固相的转变过程。
成分过冷:成分过冷:由液相成分变化而引起的过冷度。
二、简答:1.固溶体合金结晶特点?答:异分结晶;需要一定的温度范围。
2.晶内偏析程度与哪些因素有关?答:溶质平衡分配系数ko;溶质原子扩散能力;冷却速度。
3.影响成分过冷的因素?答:合金成分;液相内温度梯度;凝固速度。
三、书后习题1、何谓相图?有何用途?答:相图:表示合金系中的合金状态与温度、成分之间关系的图解。
相图的作用:由相图可以知道各种成分的合金在不同温度下存在哪些相、各个相的成分及其相对含量。
2、什么是异分结晶?什么是分配系数?答:异分结晶:结晶出的晶体与母相化学成分不同的结晶。
分配系数:在一定温度下,固液两平衡相中溶质浓度之比值。
3、何谓晶内偏析?是如何形成的?影响因素有哪些?对金属性能有何影响,如何消除?答:晶内偏析:一个晶粒内部化学成分不均匀的现象形成过程:固溶体合金平衡结晶使前后从液相中结晶出的固相成分不同,实际生产中,液态合金冷却速度较大,在一定温度下扩散过程尚未进行完全时温度就继续下降,使每个晶粒内部的化学成分布均匀,先结晶的含高熔点组元较多,后结晶的含低熔点组元较多,在晶粒内部存在着浓度差。
影响因素:1)分配系数k o:当k0 1时,k0值越小,则偏析越大;当k0 1 时,k0 越大,偏析也越大。
材料科学基础(第三版)第1章原子结构与键合1.1 原子结构1.1.1 物质的组成1.1.2 原子的结构1.1.3 原子的电子结构1.1.4 元素周期表1.2 原子间的键合1.2.1 金属键1.2.2 离子键1.2.3 共价键1.2.4 范德瓦耳斯力1.2.5 氢键1.3 高分子链1.3.1 高分子链的近程结构1.3.2 高分子链的远程结构第2章固体结构2.1 晶体学基础2.1.1 空间点阵和晶胞2.1.2 晶向指数和晶面指数2.1.3 晶体的对称性2.1.4 极射投影2.1.5 倒易点阵2.2 金属的晶体结构2.2.1 三种典型的金属晶体结构2.2.2 晶体的原子堆垛方式和间隙2.2.3 多晶型性2.3 合金相结构2.3.1 固溶体2.3.2 中间相2.4 离子晶体结构2.4.1 离子晶体的结构规则2.4.2 典型的离子晶体结构2.4.3 硅酸盐的晶体结构2.5 共价晶体结构2.6 聚合物的晶态结构2.6.1 聚合物的晶体形态2.6.2 聚合物晶态结构的模型2.6.3 聚合物晶体的晶胞结构2.7 准晶态结构2.8 液晶态结构2.8.1 液晶的分子结构特征与分类2.8.2 液晶的结构2.9 非晶态结构第3章晶体缺陷3.1 点缺陷3.1.1 点缺陷的形成3.1.2 点缺陷的平衡浓度3.1.3 点缺陷的运动3.2 位错3.2.1 位错的基本类型和特征3.2.2 伯氏矢量3.2.3 位错的运动3.2.4 位错的弹性性质3.2.5 位错的生成和增殖3.2.6 实际晶体结构中的位错3.3 表面及界面3.3.1 外表面3.3.2 晶界和亚晶界3.3.3 孪晶界3.3.4 相界第4章固体中原子及分子的运动4.1 表象理论4.1.1 菲克第一定律4.1.2 菲克第二定律4.1.3 扩散方程的解4.1.4 置换型固溶体中的扩散4.1.5 扩散系数D与浓度相关时的求解4.2 扩散的热力学分析4.3 扩散的原子理论4.3.1 扩散机制4.3.2 原子跳跃和扩散系数4.4 扩散激活能4.5 无规则行走与扩散距离4.6 影响扩散的因素4.7 反应扩散4.8 离子晶体中的扩散4.9 高分子的分子运动4.9.1 分子链运动的起因及其柔顺性4.9.2 分子的运动方式及其结构影响因素4.9.3 高分子不同力学状态的分子运动解说第5章材料的形变和再结晶5.1 弹性和黏弹性5.1.1 弹性变形的本质5.1.2 弹性变形的特征和弹性模量5.1.3 弹性的不完整性5.1.4 黏弹性5.2 晶体的塑性变形5.2.1 单晶体的塑性变形5.2.2 多晶体的塑性变形5.2.3 合金的塑性变形5.2.4 塑性变形对材料组织与性能的影响5.3 回复和再结晶5.3.1 冷变形金属在加热时的组织与性能变化5.3.2 回复5.3.3 再结晶5.3.4 晶粒长大5.3.5 再结晶退火后的组织.5.4 热变形与动态回复、再结晶5.4.1 动态回复与动态再结晶5.4.2 热加工对组织性能的影响5.4.3 蠕变5.4.4 超塑性5.5 陶瓷材料变形的特点5.6 高聚物的变形特点第6章单组元相图及纯晶体的凝固6.1 单元系相变的热力学及相平衡6.1.1 相平衡条件和相律6.1.2 单元系相图6.2 纯晶体的凝固6.2.1 液态结构6.2.2 晶体凝固的热力学条件6.2.3 形核6.2.4 晶体长大6.2.5 结晶动力学及凝固组织6.2.6 凝固理论的应用举例6.3 气-固相变与薄膜生长6.3.1 蒸气压6.3.2 蒸发和凝聚的热力学条件6.3.3 气体分子的平均自由程6.3.4 形核6.3.5 薄膜的生长方式6.3.6 应用举例(巨磁电阻多层膜和颗粒膜) 6.4 高分子的结晶特征第7章二元系相图和合金的凝固与制备原理7.1 相图的表示和测定方法7.2 相图热力学的基本要点7.2.1 固溶体的自由能-成分曲线7.2.2 多相平衡的公切线原理7.2.3 混合物的自由能和杠杆法则7.2.4 从自由能-成分曲线推测相图7.2.5 二元相图的几何规律7.3 二元相图分析7.3.1 匀晶相图和固溶体凝固7.3.2 共晶相图及其合金凝固7.3.3 包晶相图及其合金凝固7.3.4 溶混间隙相图与调幅分解7.3.5 其他类型的二元相图7.3.6 复杂二元相图的分析方法7.3.7 根据相图推测合金的性能7.3.8 二元相图实例分析7.4 二元合金的凝固理论7.4.1 固溶体的凝固理论7.4.2 共晶凝固理论7.4.3 合金铸锭(件)的组织与缺陷7.4.4 合金的铸造和二次加工7.5 高分子合金概述7.5.1 高分子合金的相容性7.5.2 高分子体系的相图及测定方法7.5.3 高分子合金的制备方法7.5.4 高分子合金的形态结构7.5.5 高分子合金性能与组元的一般关系7.5.6 高分子及其合金的主要类型7.6 陶瓷合金概述7.6.1 陶瓷粉体的合成7.6.2 陶瓷粉体的成型和烧结7.6.3 玻璃的制备7.6.4 陶瓷材料的性能第8章三元相图8.1 三元相图的基础8.1.1 三元相图成分表示方法8.1.2 三元相图的空间模型8.1.3 三元相图的截面图和投影图8.1.4 三元相图中的杠杆定律及重心定律8.2 固态互不溶解的三元共晶相图8.3 固态有限互溶的三元共晶相图8.4 两个共晶型二元系和一个匀晶型二元系构成的三元相图8.5 包共晶型三元系相图8.6 具有四相平衡包晶转变的三元系相图8.7 形成稳定化合物的三元系相图8.8 三元相图举例8.9 三元相图小结第9章材料的亚稳态9.1 纳米晶材料9.1.1 纳米晶材料的结构9.1.2 纳米晶材料的性能9.1.3 纳米晶材料的形成9.1.4 纳米碳管简介9.2 准晶态9.2.1 准晶的结构9.2.2 准晶的形成9.2.3 准晶的性能……第10章材料的功能特性中英对照的关键词参考文献。
第二章晶体结构2.1名词解释晶体由原子(或离子分子等)在空间作周期性排列所构成的固态物质晶胞是能够反应晶体结构特征的最小单位, 晶体可看成晶胞的无间隙堆垛而成。
晶体结构中的平行六面体单位点阵(空间点阵) 一系列在三维空间按周期性排列的几何点.对称:物体相同部分作有规律的重复。
对称型:晶体结构中所有点对称要素(对称面、对称中心、对称轴和旋转反伸轴)的集合,又叫点群.空间群:是指一个晶体结构中所有对称要素的集合布拉菲格子把基元以相同的方式放置在每个格点上,就得到实际的晶体结构。
基元只有一个原子的晶格称为布拉菲格子。
范德华健分子间由于色散、诱导、取向作用而产生的吸引力的总和配位数:晶体结构中任一原子周围最近邻且等距离的原子数.2.2试从晶体结构的周期性论述晶体点阵结构不可能有5次和大于6次的旋转对称?2.3金属Ni具有立方最紧密堆积的结构试问: I一个晶胞中有几个Ni原子? II 若已知Ni原子的半径为0.125nm,其晶胞边长为多少?2.4金属铝属立方晶系,其边长为0.405nm,假定其质量密度为2.7g/m3试确定其晶胞的布拉维格子类型2.5某晶体具有四方结构,其晶胞参数为a=b,c=a/2,若一晶面在x y z轴上的截距分别为2a 3b 6c,试着给出该晶面的密勒指数。
2.6试着画出立方晶体结构中的下列晶面(001)(110)(111)并分别标出下列晶向[210] [111] [101].2.14氯化铯(CsCl)晶体属于简立方结构,假设Cs+和Cl-沿立方对角线接触,且Cs+的半径为0.170nm Cl-的半径为0.181nm,试计算氯化铯晶体结构中离子的堆积密度,并结合紧密堆积结构的堆积密度对其堆积特点进行讨论。
2.15氧化锂(Li2O)的晶体结构可看成由O2-按照面心立方密堆,Li+占据其四面体空隙中,若Li+半径为0.074nm,O2-半径为0.140nm试计算I Li2O的晶胞常数 II O2-密堆积所形成的空隙能容纳阳正离子的最大半径是多少。
一课程性质与任务《材料科学基础》是材料科学与工程系各专业本科生的一门重要的专业基础课,以介绍工程材料的基础理论为目的,既具有较强的理论性,又与生产实际有紧密的联系。
其任务是:1 研究材料的成份、组织结构、性能及三者间的关系。
2 掌握有关工程材料的基本理论和知识,训练用所学理论分析实际问题的方法和思路。
3 初步掌握材料的科学实验方法和有关的实验技术;掌握定量、半定量地解决工程材料问题的方法。
二教学安排1 材料科学基础》为15学分,计96学时,其中讲课84学时,实验、讨论等12学时。
23 实验: 实验共六次,计12学时,每次实验二学时。
内容为:(1) 显微镜的构造及使用;(2) 常见金属晶体结构和原子堆垛模型分析;(3) 二元合金平衡组织分析;(4) 二元合金不平衡组织分析;(5) 铁碳合金平衡组织与性能分析;(6) 金属的塑性变形与再结晶。
三教学目的和要求第一章工程材料中的原子排列目的:1.原子之间的键合2.介绍晶体学的基本概念及晶格类型3.晶向指数和晶面指数及其表示方法4.金属的晶体结构特点5.陶瓷的晶体结构6.晶体缺陷的类型及特征要求:1.掌握晶面、晶向的表示方法2.熟悉三种典型的晶体结构3.晶体缺陷的基本类型、基本特征、基本性质4.位错的应力场和应变能;位错的运动与交互作用第二章固体中的相结构目的:1.介绍金属固溶体的分类、结构特点及溶解度2.金属间化合物相的分类、特点及性能3.陶瓷晶体相的结构及特点4.玻璃相及其形成5.分子相的结构特点要求:1.熟悉合金相的主要类型,形成条件和性能特点2.理解Hume—Rothery规则;3.玻璃相的形成条件4.了解分子相的结构特点及分子晶体第三章凝固与结晶目的:1.介绍结晶的基本规律2.结晶的基本条件3.晶核的形成4.晶体的长大5.陶瓷、聚合物的凝固6.结晶理论的应用要求:1.掌握凝固理论及过冷度的概念2.晶体长大机制及界面形态3.用凝固理论解释或说明实际生产问题第四章二元相图目的:1.相、相平衡及相图制作2.二元匀晶相图3.二元共晶相图4.二元包晶相图5.其它二元要相图6.二元相图的分析方法7.介绍相图的热力学依据8.铸件的组织与偏析要求:1.能认识一般的二元相图,并会分析合金的结晶过程及得到的组织.2.掌握分析相图的方法3.能依据相图判断合金的工艺性能与机械性能4.理解成分过冷的形成、影响因素5.会分析铁碳合金平衡结晶过程及室温下所得到的组织6.说明含碳量的改变怎样影响铁碳合金的组织和性能第五章三元相图目的:1.介绍三元相图的几何特性2.三元匀晶相图3.三元共晶相图4.三元相图中的相平衡特征5.实用三元相图举例要求:1.熟悉三元合金成分表示方法,懂得直线定律与重心法则的应用2.掌握三元合金结晶过程中相与组织的转变规律3.会看简单的等温截面图和变温截面图第六章固体中的扩散目的:1.介绍扩散定律及其应用2.扩散的微观机理3.扩散的热力学理论4.反应扩散5.一些影响扩散的重要因素要求:1.扩散第一、第二定律的表达式,适用的条件,各符号的意义和单位2.说明扩散系数的意义和影响扩散的因素3.认识几种重要的扩散现象4.了解扩散的实际应用,如渗碳过程等第七章塑性变形目的:1.介绍滑移系统和Schmid定律金属的应力一应变曲线2.单晶体的塑性变形3.多晶体塑性变形的特点4.合金的塑性变形5.冷变形金属的组织与性能6.聚合物的塑性变形7.陶瓷材料的塑性变形要求:1.熟悉滑移、孪生变形的主要特点2.说明多晶体塑性变形的过程及特点3.理解加工硬化、细晶强化等产生的原因和它的实际意义4.塑性变形过程中组织和性能的变化规律第八章回复和再结晶目的:1.介绍冷变形金属在加热时组织和力学性能的变化2.回复机制及动力学3.再结晶时组织的变化及影响再结晶的因素4.再结晶后晶粒的长大过程5.金属的热变形要求:1.变形金属发生回复和再结晶的条件是什么?有些什么变化?2.T再对生产有什么意义?如何确定T再?影响T再的因素有哪些?3.再结晶后晶粒大小如何控制?4.动态回复过程中位错运动有何特点?从显微组织上如何区分动、静态回复和动、静态再结晶第九章复合效应与界面目的:1.复合材料、增强体及复合效应2.复合材料增强原理3.复合材料的界面要求:1.了解研究界面的意义2.界面类型及性能3.界面结合原理4.对界面的基本要求及控制界面的原理第十章固态相变目的:1.介绍固态相变的特点2.固态相变的形核3.固态相变的核长大4.扩散型相变示例5.无扩散型相变6.陶瓷的相变与增韧要求:1.了解固态相变有哪些类型?2.掌握贝氏体转变与珠光体转变、马氏体转变有什么异同点?3.马氏体相变有哪些特征一、考试内容1.工程材料中的原子排列:(1)原子键合,工程材料种类;(2)原子的规则排列:晶体结构与空间点陈,晶向及晶面的表示,金属的晶体结构,陶瓷的晶体结构。
第10章回复与再结晶§1 冷变形金属在加热时的变化一、显微组织的变化二、性能的变化(一)力学性能的变化回复阶段:强度、硬度、塑性等力学性能变化不大。
再结晶阶段:随加热温度升高,强度、硬度显著下降,塑性急剧升高。
当晶粒长大时,强度、硬度继续下降,塑性在晶粒严重粗化时,也下降。
(二)物理性能的变化回复阶段:,密度变化不大,电阻明显下降;再结晶阶段:密度急剧升高。
(三)内应力的变化回复阶段,内应力部分消除;再结晶阶段,内应力全部消除。
§2 回复一、回复过程中微观结构的变化机制回复:回复的驱动力:弹性畸变能的降低。
根据回复阶段加热温度及内部结构变化特征、机制不同,将其分为三类:(一)低温回复温度:0.1T m~0.3 T m。
结构变化:主要是点缺陷的运动,空位浓度降低。
(二)中温回复温度:0.3T m~0.5 T m。
结构变化:除点缺陷的运动外,位错也开始运动,位错密度降低。
(三)高温回复温度:≥0.5 T m。
结构变化:位错运动发生多边化,形成亚晶结构;总的应变能下降。
二、回复动力学特点:①无孕育期;②变化速率先快后慢;③最后趋于恒定值。
回复过程的表达式:dx / dt= - cx (c=c0exp(-Q/RT))→ln(x0/x)= c0texp(-Q/RT)。
如果采用两个不同温度将同一冷变形金属的性能回复到同样程度,则有:三、去应力退火§3 再结晶再结晶:经冷变形的金属在足够高的温度下加热时,通过新晶粒的形核及长大,以无畸变的等轴晶粒取代变形晶粒的过程。
再结晶是一个显微组织彻底改组、变形储能充分释放、性能显著变化的过程。
一、再结晶的形核及长大形核的两种方式:晶界凸出形核、亚晶形核。
(一)晶界凸出形核变形度较小时,再结晶核心一般以凸出形核方式形成。
如右图所示。
若界面由I向II推进,则:当α>π/2时,晶界可以自发生长,因此,凸出形核所需的能量条件为:ΔE>2σ/ lΔE-单位体积A、B相邻晶粒储存能差;ΔA-增加的晶界面积。
材料科学基础(下)复习提纲第六章 金属与合金的塑性变形与断裂1、常温和低温下金属塑性变形的两种主要方式为( )和 ( )。
2、体心、面心、密排六方晶格金属的主要滑移系,详见表6-2。
解释体心立方的金属的塑性为什么比面心立方金属差?3、了解施密特定律,并会做相应的计算(见第六章作业)4、晶体的滑移的实质(是位错在切应力的作用下沿着滑移面逐步移动的结果)。
了解位错的交割和塞积对金属的力学性能的影响。
5、掌握塑性变形对金属组织和性能的影响。
第七章 金属及合金的回复与再结晶1、了解回复过程的组织结构和性能的变化?2、了解再结晶过程的组织结构和性能的变化?3、从金属学角度,金属的热加工和冷加工是如何划分的? 第八章 扩散1、固态下原子扩散的机制主要有哪两种?扩散的本质原因是什么?2、掌握扩散第二定律的误差函数解,并会做相应计算。
(见作业题型)3、了解影响扩散的因素。
第九章 钢的热处理原理 1、钢的奥氏体化过程? 2、钢在冷却过程中的转变。
高温转变⎪⎩⎪⎨⎧︒︒︒,托氏体,索氏体,珠光体C C C A 550~600600~650650~1 解释珠光体、索氏体和托氏体的力学性能与片间距的关系。
(详见P246)中温转变⎩⎨⎧︒,下贝氏体,上贝氏体S M C ~350350~600 了解下贝氏体的力学性能及生产方式(详见P261)低温转变 {下,马氏体转变、,快冷至f S C M M V V ≥(1) 什么是马氏体?马氏体的晶体结构、组织形态、性能特点? (2) 马氏体转变的特点?3、淬火钢的回火转变过程?(一)~(五)P268~272,淬火钢回火时力学性能的变化?4、了解第一类和第二类回火脆性及解决办法? 第十章 钢的热处理工艺1、了解退火和正火的目的?各种退火工艺的目的和适用对象。
正火工艺适用的四个主要方面。
2、淬火的加热温度的选择?原因?淬火常用的介质有哪几种?淬火常用方法?3、什么是淬透性、淬硬性?它们的差别?(详见P289)4、低温、中温、高温回火各获得什么组织?其性能有何特征?5、了解感应加热表面淬火的工作原理?淬硬层深度与电流频率的关系?5、渗碳的适用材料、主要方法、渗碳温度及渗碳介质?渗氮的适用材料、主要方法、渗氮温度及渗氮介质?第十一章 工业用钢1、 合金元素在钢里的存在方式?合金元素对铁-渗碳体相图的影响?合金元素对钢热处理过程的影响?2、 什么时回火稳定性和二次硬化?3、 造成金属腐蚀的原因?耐磨钢耐磨的原因?耐热钢的抗氧化型和热强性? 第十二章 铸铁1、 铸铁石墨化过程?铸铁的组织?影响铸铁石墨化的因素? 第十三章 有色金属及其合金1、 铝合金的分类及铝合金的强化方法?(重点掌握铝合金的沉淀强化P384)2、 铜合金的分类?黄铜的力学性能与含锌量的关系?锡青铜的力学性能与含锡量的关系。
第十章相图一、学习目的金属及其他工程材料的性能决定于其内部的组织、结构,金属材料的组织又由基本的相所组成。
由一个相所组成的组织叫单相组织,两个或两个以上的相组成的叫两相或多相组织。
材料中相的状态由其成分和所处温度来决定,它是研究组织的基础。
相图就是用来表示材料相的状态和温度及成分关系的综合图形,其所表示的相的状态是平衡状态,因而是在一定温度、成分条件下热力学最稳定、自由能最低的状态。
利用相图可以制订材料生产和处理工艺,可以预测材料性能,可以进行材料生产过程中的故障分析,还可以利用相图推断不平衡态可能的组织变化趋势和特征。
这对理解非平衡结构并研制、开发新材料有重要意义。
总之相图知识的掌握和理解对于从事设计和控制热处理相关工艺的工程师而言具有重要的应用价值。
二、本章的主要内容1、() 画简单的完全固溶相图和共晶相图的示意图。
(b) 在这些相图中标出不同相区区域。
(c) 标出液相线、固相线、固溶相线。
2、给定的二元相图中,已知合金的组成,所处温度,并假定合金处在平衡状态,确定:() 存在的相;(b) 平衡相的组成;(c) 合金中平衡相的质量分数。
3、二元相图中() 确定共晶,共析和包晶转变的温度和组成(b) 写出加热或冷却时上述所有转变的反应式4、已知组成在0.022 wt% C 和2.14 wt% C之间的Fe-C合金() 指定合金是否为亚共析或过共析合金;(b) 给出先共析相的名称;(c) 计算先共析相和珠光体的质量分数;(d) 画出温度刚好在共析温度之下时的显微组织的示意图三、重要术语和概念Austenite: 奥氏体具有面心立方晶体结构的铁-Fe,也是碳溶解于-Fe所形成的间隙固溶体。
Cementite: 渗碳体铁与碳形成的化合物Fe3C叫做渗碳体,它的含碳量为6.67%Component: 组元组成合金的化学组分(元素或化合物),可用于确定其组成。
Congruent transformation: 无成分变化转变相同成分的不同相之间的转变。
《金属学原理》习题解答北京科技大学余永宁目录第一章.晶体学 3 第二章.晶体结构19 第三章.相图22 第四章.金属和合金中的扩散45 第五章.凝固56 第六章.位错65 第七章.晶态固体的表面和界面79 第八章.晶体的塑性形变86 第九章.回复和再结晶92 第十章.固态转变98第1章1. 把图1-55的图案抽象出一个平面点阵。
解:按照等同点的原则,右图(图1-55)黑线勾画出的点阵就是由此图案抽象出的平面点阵。
2. 图1-56的晶体结构中包含两类原子,把这个晶体结构抽象出空间点阵,画出其中一个结构基元。
解:下右图(图1-56)的结构单元是由一个黑点和一个白点组成,按照等同点原则,抽象除的空间点阵如下左图所示,它的布拉喇菲点阵是面心立方。
3. 在图1-57的平面点阵中,指出哪些矢量对是初基矢量对。
请在它上面再画出三个不同的初基矢量对。
解:根据初基矢量的定义,由它们组成的平面初基单胞只含一个阵点,右图(图1-57)中的①和②是初基矢量对,③不是初基矢量对。
右图的黑粗线矢量对,即④、⑤和⑥是新加的初基矢量对。
4. 用图1-58a 中所标的a 1和a 2初基矢量来写出r 1,r 2,r 3和r 4的平移矢量的矢量式。
用图1-58b 中所标的初基矢量a 1,a 2和a 3来写出图中的r 矢量的矢量式。
解:右图(图1-58)a 中的a 1和a 2表示图中的各矢量:r 1=a 1+2a 2 r 2=-2a 2 r 3=-5a 1-2a 2 r 4=2a 1-a 2右图b 中的a 1、a 2和a 3表示图中的r 矢量: r =-a 1+a 2+a 35. 用矩阵乘法求出乘积{2[100]⋅4[001]}的等价操作,再求{4[001]⋅2[100]}的等价操作,这些结果说明什么? 解:因−−=100010001}2{]100[−=100001010}4{]001[{2[100]⋅4[001]}的等价操作为−−−= −⋅−−=⋅100001010100001010100010001}4{}2{]001[]100[这组合的操作和}2]011[{操作等效。
第二章答案2-1略。
2-2〔1〕一晶面在x、y、z轴上的截距分别为2a、3b、6c,求该晶面的晶面指数;〔2〕一晶面在x、y、z轴上的截距分别为a/3、b/2、c,求出该晶面的晶面指数。
答:〔1〕h:k:l==3:2:1,∴该晶面的晶面指数为〔321〕;〔2〕h:k:l=3:2:1,∴该晶面的晶面指数为〔321〕。
2-3在立方晶系晶胞中画出以下晶面指数和晶向指数:〔001〕与[],〔111〕与[],〔〕与[111],〔〕与[236],〔257〕与[],〔123〕与[],〔102〕,〔〕,〔〕,[110],[],[]答:2-4定性描述晶体构造的参量有哪些.定量描述晶体构造的参量又有哪些.答:定性:对称轴、对称中心、晶系、点阵。
定量:晶胞参数。
2-5依据结合力的本质不同,晶体中的键合作用分为哪几类.其特点是什么.答:晶体中的键合作用可分为离子键、共价键、金属键、范德华键和氢键。
离子键的特点是没有方向性和饱和性,结合力很大。
共价键的特点是具有方向性和饱和性,结合力也很大。
金属键是没有方向性和饱和性的的共价键,结合力是离子间的静电库仑力。
范德华键是通过分子力而产生的键合,分子力很弱。
氢键是两个电负性较大的原子相结合形成的键,具有饱和性。
2-6等径球最严密堆积的空隙有哪两种.一个球的周围有多少个四面体空隙、多少个八面体空隙.答:等径球最严密堆积有六方和面心立方严密堆积两种,一个球的周围有8个四面体空隙、6个八面体空隙。
2-7n个等径球作最严密堆积时可形成多少个四面体空隙、多少个八面体空隙.不等径球是如何进展堆积的.答:n个等径球作最严密堆积时可形成n个八面体空隙、2n个四面体空隙。
不等径球体进展严密堆积时,可以看成由大球按等径球体严密堆积后,小球按其大小分别填充到其空隙中,稍大的小球填充八面体空隙,稍小的小球填充四面体空隙,形成不等径球体严密堆积。
2-8写出面心立方格子的单位平行六面体上所有结点的坐标。
答:面心立方格子的单位平行六面体上所有结点为:〔000〕、〔001〕〔100〕〔101〕〔110〕〔010〕〔011〕〔111〕〔0〕〔0〕〔0〕〔1〕〔1〕〔1〕。
第十章相图一、学习目的金属及其他工程材料的性能决定于其内部的组织、结构,金属材料的组织又由基本的相所组成。
由一个相所组成的组织叫单相组织,两个或两个以上的相组成的叫两相或多相组织。
材料中相的状态由其成分和所处温度来决定,它是研究组织的基础。
相图就是用来表示材料相的状态和温度及成分关系的综合图形,其所表示的相的状态是平衡状态,因而是在一定温度、成分条件下热力学最稳定、自由能最低的状态。
利用相图可以制订材料生产和处理工艺,可以预测材料性能,可以进行材料生产过程中的故障分析,还可以利用相图推断不平衡态可能的组织变化趋势和特征。
这对理解非平衡结构并研制、开发新材料有重要意义。
总之相图知识的掌握和理解对于从事设计和控制热处理相关工艺的工程师而言具有重要的应用价值。
二、本章的主要内容1、(α) 画简单的完全固溶相图和共晶相图的示意图。
(b) 在这些相图中标出不同相区区域。
(c) 标出液相线、固相线、固溶相线。
2、给定的二元相图中,已知合金的组成,所处温度,并假定合金处在平衡状态,确定:(α) 存在的相;(b) 平衡相的组成;(c) 合金中平衡相的质量分数。
3、二元相图中(α) 确定共晶,共析和包晶转变的温度和组成(b) 写出加热或冷却时上述所有转变的反应式4、已知组成在0.022 wt% C 和2.14 wt% C之间的Fe-C合金(α) 指定合金是否为亚共析或过共析合金;(b) 给出先共析相的名称;(c) 计算先共析相和珠光体的质量分数;(d) 画出温度刚好在共析温度之下时的显微组织的示意图三、重要术语和概念Austenite: 奥氏体具有面心立方晶体结构的铁γ-Fe,也是碳溶解于γ-Fe所形成的间隙固溶体。
Cementite: 渗碳体铁与碳形成的化合物Fe3C叫做渗碳体,它的含碳量为6.67%Component: 组元组成合金的化学组分(元素或化合物),可用于确定其组成。
Congruent transformation: 无成分变化转变相同成分的不同相之间的转变。
Equilibrium (Phase): 平衡(相)是指体系的一种状态,在此状态下,在无限长的时间内,相的性质保持不变。
平衡状态下自由能达到最小值。
Eutectic structure: 共晶结构具有共晶成分的液体凝固得到的两相显微结构(组织) 。
Eutectic phase: 共晶相共晶结构中存在的两相中的某一相。
Eutectic reaction: 共晶反应随着冷却过程,一个液相等温可逆地转变为两个紧密混合的新固相的反应。
Eutectoid reaction: 共析反应随着冷却过程,一个固相等温可逆地转变为两个紧密混合的新固相的反应。
Ferrite: 铁素体具有体心立方晶体结构的铁α-Fe,同样碳溶于α-Fe中的间隙固溶体称为铁素体。
Free energy: 自由能一热力学量,它是体系的内能和熵(或无序度)的函数。
在平衡态,自由能达到其最小值。
Gibbs phase rule: 吉布斯相律多相平衡系统中,系统的自由度数、独立组分数、相数和对系统的平衡状态能够发生影响的外界因素之间的关系:F=C-P+nHypereutectoid alloy: 过共析合金可得到共析反应的合金体系,此合金中溶质的浓度大于共析成分。
Hypoeutectoid alloy: 亚共析合金可得到共析反应的合金体系,此合金中溶质的浓度小于共析成分。
Intermediate solid solution: 中间固溶体非纯组分的一定成分范围的固溶体或相。
Intermetallic compound: 金属间化合物具有明确的化学式的两种金属间的化合物。
在相图中,它以中间相出现,其存在的成分范围非常窄。
Invariant point: 三相点二元相图中三相平衡共存的点Isomorphous: 同晶形具有相同结构的物质。
从相图的理解来讲,同构意味着具有相同的结构或者在所有成分范围内固态完全互溶。
Lever rule: 杠杆规则一种数学表达式,用来计算在两相平衡合金体系中的每一相的相对质量。
Liquidus line: 液相线在二元相图中,液相和液+固相之间的分界线。
合金而言,此线上的液态温度是在平衡冷却条件下开始产生固相的温度。
Metastable: 亚稳在非常长的时间内可持续存在的非平衡态。
Microconstituent: 微组元显微组织的组成,它具有确定的特征结构。
由一个以上的相组成,如珠光体。
Pearlite: 珠光体由共析成分的奥氏体转变而得到的在一些钢和铸铁中出现的两相显微结构,是由 -铁素体和渗碳体交互形成的层状或片状组成。
Peritectic reaction: 包晶反应随着冷却过程,一固相和一液相等温可逆转变为具有不同组成的固相的反应。
Phase: 相体系具有相同的物理和化学性质的均匀部分Phase diagram: 相图用图形来描述相平衡系统的成分、外界条件(例:温度和压力)与相的状态,这种综合图形称为相图。
Primary phase: 初晶相除了共晶结构之外存在的相。
Proeutectoid cementite: 先共析渗碳体过共析钢中与珠光体共存的最初析出的渗碳体。
Proeutectoid ferrite: 先共析铁素体亚共析钢中与珠光体共存的最初析出的铁素体。
Solidus line: 固相线在相图中,连接平衡冷却条件下完成凝固或者平衡加热条件下开始熔化之点的轨迹线。
Solubility limit: 溶解度不形成新相的条件下,溶质可溶解在溶剂中的最大浓度。
Solvus line: 固溶相线在相图中描述固溶度与温度关系的点的轨迹线System: 体系有两种可能的含意:(1)所研究的对象既指定材料(2) 由相同组元组成的一系列可存在的合金。
Terminal solid solution: 端部固溶体成分范围处于二元相图中两端的固溶体。
Tie line: 结线二元相图中穿过两相平衡区的水平线;结线与相分界线之间的两个交点各描述在所讨论温度下相的平衡组成。
四、主要例题、习题的分析10.11 A 1.5kg specimen of a 90wt% Pb-10wt% Sn alloy is heated to 250︒C, at whichtemperature it is entirely an α-phase solid solution (Figure 10.7). The alloy is to be melted to the extent that 50% of the specimen is liquid, the remainder being the α-phase. This may be accomplished either by heating the alloy or changing its composition while holding the temperature constant.(a)To what temperature must the specimen be heated?The Specimen must be heated to 295.84︒C.(b)How much tin must be added to the 1.5kg specimen at 250︒C to achieve thisstate?答:(a) 样品必须加热到295.84︒C(b) 此时的组成应为23.7 wt% Sn。
设加入的Sn量为x kg,则应满足下列关系。
237.05.11.05.1=+⨯+=xxWSn解此方程得:x=0.269kg10.24 A 30 wt% Sn-70 wt% Pb alloy is heated to a temperature within the α+liquidphase region. If the mass fraction of each phase is 0.5, estimate (a) the temperature of the alloy, and (b) the compositions of the two phases.答:(a) 根据Sn-Pb相图,组成为A 30 wt% Sn-70 wt% Pb的合金,平衡两相质量分数为0.5时的对应合金温度为225︒C。
(b) 平衡两相中,α相的组成为16.4 wt% Sn-83.6 wt% Pb,液相的组成为43.6wt% Sn-56.4 wt% Pb。
10.26由金属A和B元素构成的合金由富含A的α相和富含B的β平衡两相组成。
在确定温度下,从下列的两相质量分数数据,确定α、β两相的组成。
合金成分α相分数β相分数60wt%A-40wt%B 0.57 0.4330wt%A-70wt%B 0.14 0.86答:设α相的组成为x wt% B, β相的组成为y wt% B,则当合金组成为60wt%A-40wt%B时,根据杠杆定律有:0.57⨯(40-x)=0.43⨯( y-40)当合金组成为30wt%A-70wt%B时,同理有:0.14⨯(70-x)=0.86⨯( y-70)联立方程得:x=10;y=80即α相的组成为90wt%A-10wt%B,β相的组成为20wt%A-80wt%B。
10.27组成为55 wt% B-45 wt% A的A-B合金,在某一确定温度下,由质量分数为0.5的α、β两相组成。
如果β相的组成为90 wt% B-10 wt% A,则α相的组成为多少?答:质量分数为0.5,意味着Wα=Wβ设α相的组成为x wt% B, 根据杠杆定律有:(55-x)⨯ Wα =(90-55)⨯ Wβ解得:x=20,即α相的组成为20 wt% B-80 wt% A10.51相和组织的区别是什么?答:相是物理化学性质均匀的部分组织表示的是材料的微观结构,它可以由一个相或若干相组成。
10.69 组成为5 wt% C-95 wt% Fe的Fe-C合金,以非常缓慢的速度冷却至下列温度:1175︒C, 1145︒C, and 700︒C时,给出显微结构的示意性草图。
标出相,指出它们的组成(近似)答:1175︒C时:L + Fe3C;1145︒C时:γ + Fe3C;700︒C时:α + Fe3C 示意草图(略):五、背景资料虽然纯金属在人类生活和和生产中也获得了一定程度的应用,但它们的性能远不能满足多方面的要求。
在工业中更广泛地被应用的是合金。
为了正确地对各种合金进行熔铸、锻压和热处理,必须了解它们的熔点和发生固态转变的温度,并研究它们的凝固过程和凝固后的组织。
目前已测定出许多二元合金系的成分与其熔点及固态转变温度曲线,并分析了不同成分的合金在不同温度下的组织状态。