二次函数的图象与字母系数之间的关系
- 格式:pptx
- 大小:362.26 KB
- 文档页数:10
二次函数的图像与字母系数的关系作者:刘昌盛来源:《中学教学参考·语英版》2011年第02期二次函数是初中数学的重点内容之一,它的图像与字母系数的关系非常密切,其图像是一种直观形象的交流语言,为考查学生的“数形结合的思想”和应用图像信息解决问题的能力,二次函数图像信息已成为近年中考的热点,现将二次函数的图像与字母系数的关系归纳如下:(1)a>抛物线开口向上;a<抛物线开口向下.(2)∣a∣抛物线开口大小,∣a∣越大开口越小.(3)a,b同号对称轴在y轴左侧;a,b异号对称轴在y轴右侧;对称轴为y轴.(4)c>抛物线与y轴的交点在x轴上方;c<抛物线与y轴的交点在x轴下方;抛物线必过原点.(5)-4ac>抛物线与x轴有两个交点;-抛物线与x轴有唯一交点;-<抛物线与x轴没有交点.(6)x=1决定a+b+c的符号;x=-1决定a-b+c的符号.图1【例1】如图1所示为二次函数的图像,给出四个结论:①a>0;②b<0;③c>0;④a+b+c=0;⑤a-b+c<0;⑥-4ac>0中,正确的是 .解:由开口向上得a>0,对称轴在y轴右侧得a、b异号,所以b<0,抛物线与y轴的交点在x轴下方,得c<0, 当x=1时,a+b+c=0,x=-1时,a-b+c>0,抛物线与x轴有两个交点,所以-4ac>0.选①②④⑥.【例2】如图2,已知二次函数的图像与x轴相交于()两点,且0<x<1,1<x<2,与y轴相交于(0,-2),下列结论:①2a+b>1;②3a+b>0;③a+b<2;④>0;⑤a-b>2.其中正确结论的个数为()图2个个个个分析:当x=1时,y>0,即a+b-2>0,所以a+b>2,故③错误;因为抛物线与x轴有两个交点,所以-4ac>0,即>0,故④正确;当x=2时,由图像得y=4a+2b-2又因为4a+2b-2<0,又a+b-2>0,所以3a+2b当x=-1时,y<0,即a -b-2<0,所以a-b<2,故⑤错误.所以答案选.(责任编辑金铃)。
课次教学方案教学过程:一、知识要点二次函数y=ax 2+bx+c 系数符号确实定:〔1〕a 由抛物线开口方向确定:开口方向向上,那么a >0;否那么a <0. 〔2〕b 由对称轴和a 的符号确定:由对称轴公式x=判断符号.〔3〕c 由抛物线与y 轴的交点确定:交点在y 轴正半轴,那么c >0;否那么c <0.〔4〕b 2-4ac 的符号由抛物线与x 轴交点的个数确定:2个交点,b 2-4ac >0;1个交点,b 2-4ac=0; 没有交点,b 2-4ac <0.〔5〕当x=1时,可确定a+b+c 的符号,当x=-1时,可确定a-b+c 的符号. 〔6〕由对称轴公式x=,可确定2a+b 的符号.二、根底练习1、抛物线y=ax 2+bx+c 〔a ≠0〕在平面直角坐标系中的位置如下图,那么以下结论中,正确的选项是〔 D 〕 A 、a >0 B 、b <0 C 、c <0 D 、a+b+c >02、二次函数y=ax 2+bx+c 的图象如图,其对称轴x=-1,给出以下结果①b 2>4ac ; ②abc >0;③2a+b=0; ④a+b+c >0;⑤a-b+c <0,那么正确的结论是〔 D 〕 A 、①②③④ B 、②④⑤ C 、②③④ D 、①④⑤任课教师学科 版本 年段 辅导类型 上课时间学生签名数学北师大初三课题二次函数y=a 2x +bx+c 系数符号确实定方法课次教学目标掌握二次函数中字母 a 、b 、c 三者与图象之间的关系。
教学策略 教学重点、难点:利用图形的性质与特殊性来确定字母a 、b 、c 三者之间的关系。
3、如图,二次函数y=ax 2+bx+c 的图象与y 轴正半轴相交,其顶点坐标为〔21,1〕,以下结论:①ac <0;②a+b=0;③4ac-b 2=4a ;④a+b+c <0.其中正确结论的个数是〔 C 〕1\2\3 A 、1 B 、2 C 、3 D 、44、二次函数y=ax 2+bx+c 的图象如下图,对称轴为直线x=1,那么以下结论正确的选项是〔B 〕 A 、ac >0 B 、方程ax 2+bx+c=0的两根是x 1=-1,x 2=3 C 、2a-b=0 D 、当x >0时,y 随x 的增大而减小5、二次函数y=ax 2+bx+c 〔a ,b ,c 为常数,a ≠0〕的图象如下图,有以下结论: ①abc >0,②2b -4ac <0,③a-b+c >0,④4a-2b+c <0,其中正确结论的个数是〔A4 〕 A 、1 B 、2 C 、3 D 、46、〔如下图的二次函数y=ax 2+bx+c 的图象中,刘星同学观察得出了下面四条信息: 〔1〕b 2-4ac >0;〔2〕c >1;〔3〕2a-b <0;〔4〕a+b+c <0.你认为其中错误的有〔D2〕 A 、2个 B 、3个 C 、4个 D 、1个7、抛物线y=ax 2+bx+c 〔a ≠0〕的图象如下图,那么以下说法正确的选项是〔C 〕 A 、b 2-4ac <0 B 、abc <0 C 、 -a2b<-1 D 、a-b+c <08、二次函数y=ax 2+bx+c 〔a ≠0〕的图象如下图,现有以下结论:①b 2-4ac >0 ②a >0 ③b >0 ④c >0 ⑤9a+3b+c <0,那么其中结论正确的个数是〔B 〕1/2/5 A 、2个 B 、3个 C 、4个 D 、5个9、二次函数y=ax 2的图象开口向上,那么直线y=ax-1经过的象限是〔D 〕 A 、第一、二、三象限 B 、第二、三、四象限 C 、第一、二、四象限 D 、第一、三、四象限10、二次函数y=ax 2+bx+c 的图象如下图,那么以下结论正确的选项是〔D 〕A 、a <0,b <0,c >0,b 2-4ac >0B 、a >0,b <0,c >0,b 2-4ac <0C 、a <0,b >0,c <0,b 2-4ac >0D 、a <0,b >0,c >0,b 2-4ac >011、二次函数y=ax 2+bx+c 的图象如下图,那么以下判断不正确的选项是〔B 〕 A 、ac <0 B 、a-b+c >0C 、b=-4aD 、关于x 的方程a 2x +bx+c=0的根是x 1=-1,x 2=512、二次函数y=ax 2+bx+c 的图象如下图,那么a ,b ,c 满足〔A 〕A 、a <0,b <0,c >0,2b -4ac >0 B 、a <0,b <0,c <0,2b -4ac >0 C 、a <0,b >0,c >0,2b -4ac <0 D 、a >0,b <0,c >0,2b -4ac >013、二次函数y=2ax +bx+c 〔a ≠0〕的图象如下图,有以下4个结论,其中正确的结论是〔B 〕 A 、abc >0 B 、b >a+c C 、2a-b=0 D 、2b -4ac <014、二次函数y=2ax +bx+c 〔a ≠0〕的图象如下图,那么以下结论: ①ac >0;②a-b+c <0;③当x <0时,y <0;④方程2ax +bx+c=0〔a ≠0〕有两个大于-1的实数根.其中错误的结论有〔C 〕 A 、②③ B 、②④ C 、①③ D 、①④15、如下图为二次函数y=ax 2+bx+c 〔a ≠0〕的图象,在以下选项中错误的选项是〔C 〕 A 、ac <0 B 、x >1时,y 随x 的增大而增大 C 、a+b+c >0 D 、方程ax 2+bx+c=0的根是1x =-1,2x =316、二次函数y=ax 2+bx+c 的图象如下图,以下结论错误的选项是〔B 〕 A 、ab <0 B 、ac <0C 、当x <2时,函数值随x 增大而增大;当x >2时,函数值随x 增大而减小D 、二次函数y=2ax +bx+c 的图象与x 轴交点的横坐标就是方程2ax +bx+c=0的根17、二次函数y=ax 2+bx+c 的图象如下图,那么以下结论正确的选项是〔D 〕 A 、a >0 B 、c <0 C 、b 2-4ac <0 D 、a+b+c >018、二次函数y=ax 2+bx+c 〔a ≠0〕的图象如下图,以下结论①a ,b 异号;②当x=1和x=3时,函数值相等; ③4a+b=0;④当y=4时,x 的取值只能为0,结论正确的个数有〔 C 〕个.1/2/3 A 、1 B 、2 C 、3 D 、4三、能力练习c bx ax y ++=2的图象如图 l -2-2所示,那么a 、b 、c 满足〔 〕 A .a <0,b <0,c >0 B .a <0,b <0,c <0C .a <0,b >0,c >0D .a >0,b <0,c >02.二次函数c bx ax y ++=2(a≠0〕且a <0,a -b+c >0,那么一定有〔 〕A .b 2-4ac >0B .b 2-4ac =0C .b 2-4ac <0D .b 2-4ac≤03.二次函数c bx ax y ++=2的图象如图1-2-10,那么点〔b ,c a〕在〔 〕A .第一象限B .第二象限C .第三象限D .第四象限4.假设二次函数c bx ax y ++=2的图象如图,那么ac_____0〔“<〞“>〞或“=〞〕第4题图5.二次函数c bx ax y ++=2的图象如图 1-2-14所示,那么以下关于a 、b 、c 间的关系判断正确的选项是〔 〕 A .ab <0 B 、bc <0 C .a+b +c >0 D .a -b 十c <0四、知识小结:例题.抛物线c bx ax y ++=2过三点〔-1,-1〕、〔0,-2〕、〔1,l 〕.〔1〕求抛物线所对应的二次函数的表达式; 〔2〕写出它的开口方向、对称轴和顶点坐标;〔3〕这个函数有最大值还是最小值? 这个值是多少?五、中考真题回忆:〔09佛山〕19.〔1〕请在坐标系中画出二次函数22y x x =-+的大致图象;〔2〕在同一个坐标系中画出22y x x =-+的图象向上平移两个单位后的图象; 〔3〕直接写出平移后的图象的解析式. 注:图中小正方形网格的边长为1.〔1〕画图〔略〕注:根本反映图形的特征〔如顶点、对称性、变化趋势、平滑〕给2分, 满足其中的两至三项给1分,满足一项以下给0分; 〔2〕画图、写解析式〔略〕注:画图总分值2分,同〔1〕的标准;写解析式2分〔无过程不扣分〕.〔11·佛山〕21.如图,二次函数y =ax 2+bx +c 的图像经过A 〔-1,-1〕、B 〔0,2〕、C 〔1,3〕; 〔1〕求二次函数的解析式; 〔2〕画出二次函数的图像;【答案】解:〔1〕根据题意,得⎩⎪⎨⎪⎧a -b +c =-1c =2a +b +c =3………………2分解得a =-1,b =2,c =2………………4分所以二次函数的解析式为y =-x 2+2x +2………………5分〔2〕二次函数的图象如图………………8分 给分要点:顶点、对称、光滑〔各1分〕〔12佛山〕xyO第19题图xyoABC1xyoABC122.(1)任选以下三个条件中的一个,求二次函数c bx ax y ++=2的解析式; ①y 随x 变化的局部数值规律如下表:②有序数对()0,1-、()4,1、()0,3满足c bx ax y ++=2; ③函数c bx ax y ++=2的图象的一局部〔如图〕. (2)直接写出二次函数c bx ax y ++=2的三个性质.解析:〔1〕方法一:由 可得:C=3,0=+-c b a ,4=++c b a ,所以1-=a ,2=b ,C=3,所以二次函数解析式为:322++-=x x y方法二:由②可得:0=+-c b a ,4=++c b a ,039=++c b a ,解之得:1-=a ,2=b ,C=3,所以二次函数解析式为:322++-=x x y 方法三:由③可得:C=3,0=+-c b a ,12=-ab,解之得:1-=a ,2=b ,C=3, 所以二次函数解析式为:322++-=x x y 〔三种选其一即可〕〔2〕1、对称轴为1=x , 2、开口向下 3、与x 轴有2个交点 4、交 y 轴正半轴考察知识:待定系数法求二次函数解析式、二次函数的性质及图像〔2021•佛山〕24.如图①,抛物线y=ax 2+bx+c 经过点A 〔0,3〕,B 〔3,0〕,C 〔4,3〕.x -1 0 1 2 3 y343〔1〕求抛物线的函数表达式;〔2〕求抛物线的顶点坐标和对称轴;〔3〕把抛物线向上平移,使得顶点落在x轴上,直接写出两条抛物线、对称轴和y轴围成的图形的面积S〔图②中阴影局部〕.分析:〔1〕把点A、B、C代入抛物线解析式y=ax2+bx+c利用待定系数法求解即可;〔2〕把抛物线解析式整理成顶点式形式,然后写出顶点坐标与对称轴即可;〔3〕根据顶点坐标求出向上平移的距离,再根据阴影局部的面积等于平行四边形的面积,列式进展计算即可得解.解:〔1〕∵抛物线y=ax2+bx+c经过点A〔0,3〕,B〔3,0〕,C〔4,3〕,∴,解得,所以抛物线的函数表达式为y=x2﹣4x+3;〔2〕∵y=x2﹣4x+3=〔x﹣2〕2﹣1,∴抛物线的顶点坐标为〔2,﹣1〕,对称轴为直线x=2;〔3〕如图,∵抛物线的顶点坐标为〔2,﹣1〕,∴PP′=1,阴影局部的面积等于平行四边形A′APP′的面积,平行四边形A′APP′的面积=1×2=2,∴阴影局部的面积=2.点评:此题考察了待定系数法求二次函数解析式,二次函数的性质,二次函数图象与几何变换,〔3〕根据平移的性质,把阴影局部的面积转化为平行四边形的面积是解题的关键.【本文档内容可以自由复制内容或自由编辑修改内容期待你的好评和关注,我们将会做得更好】。
专题:二次函数y =ax 2+bx +c (a ≠0)的图象与字母系数的关系二次函数y =ax 2+bx +c (a ≠0)系数符号的确定:⑴a 由抛物线开口方向确定:开口方向向上,则a >0;否则a <0.⑵b 由对称轴和a 的符号确定:由对称轴公式x = -2ba判断符号(左同右异). ⑶c 由抛物线与y 轴的交点确定:交点在y 轴正半轴,则c >0;否则c <0.⑷b 2-4ac 的符号由抛物线与x 轴交点的个数确定:2个交点,b 2-4ac >0;1个交点,b 2-4ac =0;没有交点,b 2-4ac <0. ⑸当x =1时,y =a +b +c ,当x =-1时,y =a -b +c .故由点(1, a +b +c ) 所在的象限,可判断a +b +c 的符号;由点(-1, a -b +c ) 所在的象限,可判断a -b +c 的符号.同理,当x =2时,可确定4a +2b +c 的符号,当x =-2时,可确定4a -2b +c 的符号……⑹由对称轴x = -2b a 与x =±1的位置关系,可确定2a ±b 的符号.当x = -2b a =1时,b = -2a ,即2a +b =0;当x = -2ba=-1时,b = 2a ,即2a -b =0.例1.抛物线y =ax 2+bx +c 图象如图所示,则下列式子中正确的个数为( )①a <0;②b <0;③c >0;④a +b +c >0;⑤ 4a -2b +c <0;⑥2a +b >0;⑦b 2-4ac >0;⑧4a +c <0C .5D .6c 的图象如图所示,给出下列结论:①2a +b >0;②b >a >c ;③若-1<m <n <1,则m +n <-ba;④3|a |+|c |<2|b |.其中正确的结论是 (写出你认为正确的所有结论序号).例3.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,与y 轴相交点C ,与x 轴负半轴相交点A ,且OA =OC ,下列5个结论:①abc >0;②b <a +c ;③4a +2b +c >0;④2a +b =0;⑤c +1a= -2,其中正确的结论有 .(请填序号)强化训练1.如图为二次函数y =ax 2+bx +c (a ≠0)的图象,则下列说法:①a >0②2a +b =0 ③a +b +c >0 ④当-1<x <3时,y >0,其中正确的个数为( )A .1 B .2 C .3 D .42.已知二次函数y =ax 2+bx +c +2的图象如图所示,顶点为(-1,0),下列结论:①abc <0;②b 2-4ac =0;③a >2;④4a -2b +c >0.其中正确结论的个数是( )A .1 B .2 C .3 D .43.已知二次函数y =ax 2+bx +c 的图象如图所示,则下列结论:①c =2;②b 2-4ac >0;③2a +b =0;④a -b +c <0.其中正确的为( )A .①②③ B .①②④ C .①② D .③④4.如图是二次函数y =ax 2+bx +c =(a ≠0)图象的一部分,对称轴是直线x =-2.关于下列结论:①ab <0;②b 2-4ac >0;③9a -3b +c <0;④b -4a =0;⑤方程ax 2+bx =0的两个根为x 1=0,x 2=-4,其中正确的结论有( ) A .①③④ B .②④⑤ C .①②⑤ D .②③⑤5.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列5个结论:①abc >0;②b <a +c ;③4a +2b +c >0;④2c <3b ;⑤a +b >m (am +b )(m ≠1的实数).其中正确的结论有( ) A .2个 B .3个 C .4个 D .5个6.如图,抛物线y =ax 2+bx +c (a ≠0)过点(1,0)和点(0,-2),且顶点在第三象限,设P =a -b +c ,则P 的取值范围是( )A .-4<P <0 B .-4<P <-2 C .-2<P <0 D .-1<P <07.已知二次函数y =ax 2+bx +c 的图象与x 轴交于点(-2,0)、(x 1,0),且1<x 1<2,与y 轴的正半轴的交点在(0,2)的下方.下列结论:①4a -2b +c =0;②a -b +c <0;③2a +c >0;④2a -b +1>0.其中正确结论的个数是( )个.A .4个B .3个C .2个D .1个8.如图,已知二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于点A (-1,0),对称轴为直线x =1,与y 轴的交点B 在(0,2)和(0,3)之间(包括这两点),下列结论:①当x >3时,y <0;②3a +b <0;③-1≤a ≤-23;④4ac -b 2>8a ;其中正确的结论是( )A .①③④ B .①②③ C .①②④ D .①②③④9. 如图,二次函数y =ax 2+bx +c (a ≠0)的图象经过点(1,2)且与x 轴交点的横坐标分别为x 1,x 2,其中-1<x 1<0,1<x 2<2,下列结论:4a +2b +c <0,2a +b <0,b 2+8a >4ac ,a <-1,其中结论正确的有( ) A .1个B .2个C .3个D .4个10.抛物线y =ax 2+bx +c (a ≠0)满足条件:(1)4a -b =0;(2)a -b +c >0;(3)与x 轴有两个交点,且两交点间的距离小于2.以下有四个结论:①a <0;②c >0;③a +b +c <0;④4c <a <3c,其中所有正确结论的序号是 .有已知二次函数y=ax2+bx+c的图象与x轴交于点(-2,0),(x1,0),且1<x1<2,与y轴正半轴的交点在(0,2)的下方,下列结论:①a<b<0;②2a+c>0;③4a+c<0;④2a-b+1>0.其中正确的结论是.(填写序号)。
专题训练(二)二次函数y=ax2+bx+c(a≠0)的系数a,b,c与图象的关系知识储备二次函数y=ax2+bx+c的图象与字母系数a,b,c 之间的关系:项目字母字母的符号图象的特征a a>0 开口向上a<0 开口向下bb=0 对称轴为y轴ab>0(b与a同号) 对称轴在y轴左侧ab<0(b与a异号) 对称轴在y轴右侧c c=0 经过原点c>0 与y轴正半轴相交c<0 与y轴负半轴相交b2-4ac b2-4ac=0与x轴有一个交点(顶点)b2-4ac>0 与x轴有两个交点b2-4ac<0 与x轴没有交点特殊关系当x=1时,y=a+b+c;当x=-1时,y=a-b+c当x=2时,y=4a+2b+c;当x=-2时,y=4a-2b+c若a+b+c>0,则当x=1时,y>0若a-b+c>0,则当x=-1时,y>0当对称轴为直线x=1时,2a+b=0;当对称轴为直线x=-1时,2a-b=0;判断2a+b的值大于还是小于0,看对称轴与直线x=1的位置关系;判断2a-b的值大于还是小于0,看对称轴与直线x=-1的位置关系▶类型一利用二次函数图象考查以上表格中的问题1.[2020·宁波江北区期末]二次函数y=ax2+bx+c(a≠0)的图象如图1所示,则下列关系式错误的是()A.a<0B.b>0C.b2-4ac>0D.a+b+c<0图 1 图22.[2020·宁波]如图2,二次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,与y轴正半轴交于点C,它的对称轴为直线x=-1.则下列选项中正确的是A.abc<0 B.4ac-b2>0C.c-a>0D.当x=-n2-2(n为实数)时,y≥c3.在同一平面直角坐标系内,二次函数y=ax2+bx+b(a≠0)与一次函数y=ax+b的图象可能是()图 3▶类型二利用二次函数图象考查ma+nc或mb+nc(m,n为非零整数)与0的关系4.如图4,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1.给出下列结论:①ac<0;②b2-4ac>0;③2a-b=0;④a-b+c=0.其中,正确的结论有()图4A.1个B.2个C.3个D.4个5.[2020·遵义改编]抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=-2,抛物线与x轴的一个交点在点(-4, 0)和点(-3,0)之间,其部分图象如图5所示,下列结论中正确的有()①4a-b=0;②c≤3a;③关于x的方程ax2+bx+c=2有两个不相等的实数根;④b2+2b>4ac.图5A.1个B.2个C.3个D.4个▶类型三利用二次函数图象考查am2+bm+c(a≠0,a,b,c为常数)与a+b+c的关系6.已知二次函数y=ax2+bx+c(a≠0)图象的对称轴为直线x=1,其图象如图6所示,现有下列结论:①abc>0,②b-2a<0,③a-b+c>0,④a+b>n(an+b)(n ≠1),⑤2c<3b.其中正确的是()A.①③B.②⑤C.③④D.④⑤图6 图77.抛物线y=ax2+bx+c(a≠0)的一部分如图7所示,与x轴的一个交点坐标为(4,0),抛物线的对称轴是直线x=1,有下列结论:①abc>0;②2a+b=0;③方程ax2+bx+c=3有两个不相等的实数根;④抛物线与x 轴的另一个交点坐标为(-2,0);⑤若点A(m,n)在该抛物线上,则am2+bm+c≤a+b+c.其中正确的有() A.5个B.4个C.3个D.2个▶类型四利用二次函数图象解一元二次方程或不等式8.若二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x的方程x2+bx=5的解为()A.x1=0,x2=4B.x1=1,x2=5C.x1=1,x2=-5D.x1=-1,x2=59.二次函数y=ax2+bx+c(a≠0)的图象如图8所示,则关于x的不等式ax2+bx+c>0的解是()图8A.x<-1B.x>3C.-1<x<3D.x<-1或x>3▶类型五利用一次函数、二次函数的图象解一元二次方程或不等式10.如图9所示,一次函数y1=kx+n(k≠0)与二次函数y2=ax2+bx+c(a≠0)的图象相交于A(-1,5),B(9,2)两点,则关于x的不等式kx+n≥ax2+bx+c的解为()图9A.-1≤x≤9B.-1≤x<9C.-1<x≤9D.x≤-1或x≥911.二次函数y=ax2+bx+c(a≠0)和正比例函数y=23x的图象如图10所示,则方程ax2+(32b x+c=0的两根之和()图10A.大于0B.等于0C.小于0D.不能确定专题二教师详解详析1.D[解析] 抛物线开口向下,则a<0,所以A选项的关系式正确;抛物线的对称轴在y轴的右侧,a,b异号,则b>0,所以B选项的关系式正确;抛物线与x轴有2个交点,则b2-4ac>0,所以C选项的关系式正确;当x=1时,y>0,则a+b+c>0,所以D选项的关系式错误.故选D.2.D[解析] ∵二次函数图象的对称轴为直线x=-1,∴-b2a=-1,∴b=2a.又∵a>0,∴b>0.∵抛物线与y轴正半轴交于点C,∴c>0,∴abc>0,故A错误;∵抛物线与x轴有两个不同的交点,∴b2-4ac>0,∴4ac-b2<0,故B错误;∵b=2a,∴当x=-1时,y=a-b+c=c-a<0,故C 错误;当x=-n2-2(n为实数)时,y=a(-n2-2)2+b(-n2-2)+c=a(-n2-2)2+2a(-n2-2)+c=a( n2+1)2-a+c.∵n为实数,∴n2≥0,(n2+1)2≥1.又∵a>0,∴a(n2+1)2-a≥0,∴y≥c,故D正确,因此本题选D.3.C4.C[解析] ∵抛物线开口向下,∴a<0.∵抛物线交y轴于正半轴,∴c>0,∴ac<0,故①正确;∵抛物线与x轴有两个交点,∴b2-4ac>0,故②正确;∵抛物线的对称轴为直线x=1,∴-b2a=1,∴-b=2a,∴2a+b=0,故③错误;∵抛物线与x轴的两个交点关于对称轴对称,∴点(3,0)关于直线x=1的对称点为(-1,0),即抛物线经过点(-1,0),∴a-b+c=0,故④正确.综上可知,正确的结论有①②④,共3个.5.C[解析] 由-b2a=-2,得4a-b=0,故①正确;由抛物线与x轴的一个交点在点(-4,0)和点(-3,0)之间,当x≤-2时,y随x的增大而增大,可知当x=-3时,y>0,由抛物线的对称性可知,当x=-1时,y>0,即a-b+c>0.又4a=b,∴a-4a+c>0,即c>3a.故②错误; 由图象得,关于x的方程ax2+bx+c=2有两个不相等的实数根正确; 由4ac-b24a=3,得4ac-b2=12a,∴4ac=12a+b2=3b+b2.易知a<0,b<0,c<0,∴4ac<2b+b2 ,故④正确.故选C.6.D[解析] ①由图象可知:a<0,b>0,c>0,∴abc<0,故此选项错误;②当x=-2时,y=4a-2b+c<0,即b-2a>c2>0,故此选项错误;③当x=-1时,y=a-b+c<0,故此选项错误;④当x=1时,y的值最大,此时,y=a+b+c,而当x=n 时,y=an2+bn+c,所以a+b+c>an2+bn+c(n≠1),故a+b>an2+bn,即a+b>n(an+b)(n≠1),故此选项正确.⑤由抛物线的对称性可知当x=3时函数值小于0,即y=9a+3b+c<0.∵抛物线的对称轴为直线x=-b2a=1,∴a=-b2,代入9a+3b+c<0,得9-b2 +3b+c<0,得2c<3b,故此选项正确;故④⑤正确.因此本题选D.7.B8.D9.D[解析] 根据图象可知,当y=0时,对应的x的值分别为x1=-1,x2=3.当y>0时,函数的图象在x轴的上方,由左边一段图象可知x<-1,由右边一段图象可知x>3.因此,当函数值y>0时,x的取值范围是x<-1或x>3.故选D.10.A[解析] 由图象可以看出:二次函数y2=ax2+bx+c(a≠0)和一次函数y1=kx+n(k≠0)的图象的交点的横坐标分别为-1,9.而当y1≥y2时,对应的图象正好在两交点之间,所以-1≤x≤9.故选A.11.A。
课次教学计划教学过程:一、知识要点二次函数y=ax 2+bx+c 系数符号的确定:(1)a 由抛物线开口方向确定:开口方向向上,则a >0;否则a <0. (2)b 由对称轴和a 的符号确定:由对称轴公式x=判断符号.(3)c 由抛物线与y 轴的交点确定:交点在y 轴正半轴,则c >0;否则c <0.(4)b 2-4ac 的符号由抛物线与x 轴交点的个数确定:2个交点,b 2-4ac >0;1个交点,b 2-4ac=0; 没有交点,b 2-4ac <0.(5)当x=1时,可确定a+b+c 的符号,当x=-1时,可确定a-b+c 的符号. (6)由对称轴公式x=,可确定2a+b 的符号.二、基础练习1、已知抛物线y=ax 2+bx+c (a ≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是( D ) A 、a >0 B 、b <0 C 、c <0 D 、a+b+c >02、已知二次函数y=ax 2+bx+c 的图象如图,其对称轴x=-1,给出下列结果①b 2>4ac ; ②abc >0;③2a+b=0; ④a+b+c >0;⑤a-b+c <0,则正确的结论是( D ) A 、①②③④ B 、②④⑤ C 、②③④ D 、①④⑤3、如图,二次函数y=ax 2+bx+c 的图象与y 轴正半轴相交,其顶点坐标为(21,1),下列结论:①ac <0;②a+b=0;③4ac-b 2=4a ;④a+b+c <0.其中正确结论的个数是( C )1\2\3A 、1B 、2C 、3D 、4任课教师学科 版本 年段 辅导类型 上课时间 学生签名数学北师大初三课题二次函数y=a 2x +bx+c 系数符号的确定方法课次教学目标 掌握二次函数中字母 a 、b 、c 三者与图象之间的关系。
教学策略 教学重点、难点:利用图形的性质与特殊性来确定字母a 、b 、c 三者之间的关系。
4、已知二次函数y=ax 2+bx+c 的图象如图所示,对称轴为直线x=1,则下列结论正确的是(B )A 、ac >0B 、方程ax 2+bx+c=0的两根是x 1=-1,x 2=3 C 、2a-b=0 D 、当x >0时,y 随x 的增大而减小5、已知二次函数y=ax 2+bx+c (a ,b ,c 为常数,a ≠0)的图象如图所示,有下列结论: ①abc >0,②2b -4ac <0,③a-b+c >0,④4a-2b+c <0,其中正确结论的个数是(A4 ) A 、1 B 、2 C 、3 D 、46、(如图所示的二次函数y=ax 2+bx+c 的图象中,刘星同学观察得出了下面四条信息:(1)b 2-4ac >0;(2)c >1;(3)2a-b <0;(4)a+b+c <0.你认为其中错误的有(D2) A 、2个 B 、3个 C 、4个 D 、1个7、抛物线y=ax 2+bx+c (a ≠0)的图象如图所示,则下列说法正确的是(C ) A 、b 2-4ac <0 B 、abc <0 C 、 -a2b<-1 D 、a-b+c <08、已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,现有下列结论:①b 2-4ac >0 ②a >0 ③b >0 ④c >0 ⑤9a+3b+c <0,则其中结论正确的个数是(B )1/2/5 A 、2个 B 、3个 C 、4个 D 、5个9、已知二次函数y=ax 2的图象开口向上,则直线y=ax-1经过的象限是(D ) A 、第一、二、三象限 B 、第二、三、四象限 C 、第一、二、四象限 D 、第一、三、四象限10、二次函数y=ax 2+bx+c 的图象如图所示,则下列结论正确的是(D )A 、a <0,b <0,c >0,b 2-4ac >0B 、a >0,b <0,c >0,b 2-4ac <0C 、a <0,b >0,c <0,b 2-4ac >0D 、a <0,b >0,c >0,b 2-4ac >011、已知二次函数y=ax 2+bx+c 的图象如图所示,那么下列判断不正确的是(B ) A 、ac <0 B 、a-b+c >0C 、b=-4aD 、关于x 的方程a 2x +bx+c=0的根是x 1=-1,x 2=512、已知二次函数y=ax 2+bx+c 的图象如图所示,则a ,b ,c 满足(A )A 、a <0,b <0,c >0,2b -4ac >0 B 、a <0,b <0,c <0,2b -4ac >0C 、a <0,b >0,c >0,2b -4ac <0D 、a >0,b <0,c >0,2b -4ac >013、已知二次函数y=2ax +bx+c (a ≠0)的图象如图所示,有下列4个结论,其中正确的结论是(B ) A 、abc >0 B 、b >a+c C 、2a-b=0 D 、2b -4ac <014、已知二次函数y=2ax +bx+c (a ≠0)的图象如图所示,则下列结论: ①ac >0;②a-b+c <0;③当x <0时,y <0;④方程2ax +bx+c=0(a ≠0)有两个大于-1的实数根.其中错误的结论有(C ) A 、②③ B 、②④ C 、①③ D 、①④15、如图所示为二次函数y=ax 2+bx+c (a ≠0)的图象,在下列选项中错误的是(C ) A 、ac <0 B 、x >1时,y 随x 的增大而增大C 、a+b+c >0D 、方程ax 2+bx+c=0的根是1x =-1,2x =316、二次函数y=ax 2+bx+c 的图象如图所示,下列结论错误的是(B ) A 、ab <0 B 、ac <0C 、当x <2时,函数值随x 增大而增大;当x >2时,函数值随x 增大而减小D 、二次函数y=2ax +bx+c 的图象与x 轴交点的横坐标就是方程2ax +bx+c=0的根17、已知二次函数y=ax 2+bx+c 的图象如图所示,则下列结论正确的是(D )A 、a >0B 、c <0C 、b 2-4ac <0 D 、a+b+c >018、二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,下列结论①a ,b 异号;②当x=1和x=3时,函数值相等; ③4a+b=0;④当y=4时,x 的取值只能为0,结论正确的个数有( C )个.1/2/3A 、1B 、2C 、3D 、4三、能力练习1.已知二次函数c bx ax y ++=2的图象如图 l -2-2所示,则a 、b 、c 满足( ) A .a <0,b <0,c >0 B .a <0,b <0,c <0C .a <0,b >0,c >0D .a >0,b <0,c >0 2.已知二次函数c bx ax y ++=2(a ≠0)且a <0,a -b+c >0,则一定有( )A .b 2-4ac >0B .b 2-4ac =0C .b 2-4ac <0D .b 2-4ac ≤03.二次函数c bx ax y ++=2的图象如图1-2-10,则点(b ,ca)在( )A .第一象限B .第二象限C .第三象限D .第四象限4.若二次函数c bx ax y ++=2的图象如图,则ac_____0(“<”“>”或“=”)第4题图 5.二次函数c bx ax y ++=2的图象如图 1-2-14所示,则下列关于a 、b 、c 间的关系判断正确的是( ) A .ab <0 B 、bc <0 C .a+b +c >0 D .a -b 十c <0四、知识小结:函数二次函数)0,,(2≠++=a c b a c bx ax y 是常数,图像 a>0a<0y0 xy0 x性质(1)抛物线开口向上,并向上无限延伸;(2)对称轴是x=ab2-,顶点坐标是 (a b 2-,ab ac 442-);(3)在对称轴的左侧,即当x<a b2-时,y 随x 的增大而减小;在对称轴的右侧,即当x>ab2-时,y 随x 的增大而增大,简记左减右增; (4)抛物线有最低点,当x=ab2-时,y 有最小值,(1)抛物线开口向下,并向下无限延伸;(2)对称轴是x=ab2-,顶点坐标是 (a b 2-,ab ac 442-);(3)在对称轴的左侧,即当x<ab2-时,y 随x 的增大而增大;在对称轴的右侧,即当x>ab2-时,y 随x的增大而减小,简记左增右减; (4)抛物线有最高点,当x=ab2-时,y 有最大值,例题.已知抛物线c bx ax y ++=2过三点(-1,-1)、(0,-2)、(1,l ). (1)求抛物线所对应的二次函数的表达式; (2)写出它的开口方向、对称轴和顶点坐标;(3)这个函数有最大值还是最小值? 这个值是多少?五、中考真题回顾: (09佛山)19.(1)请在坐标系中画出二次函数22y x x =-+的大致图象;(2)在同一个坐标系中画出22y x x =-+的图象向上平移两个单位后的图象; (3)直接写出平移后的图象的解析式.注:图中小正方形网格的边长为1.(1)画图(略)注:基本反映图形的特征(如顶点、对称性、变化趋势、平滑)给2分, 满足其中的两至三项给1分,满足一项以下给0分; (2)画图、写解析式(略)注:画图满分2分,同(1)的标准;写解析式2分(无过程不扣分).(11·佛山)21.如图,已知二次函数y =ax 2+bx +c 的图像经过A (-1,-1)、B (0,2)、C (1,3); (1)求二次函数的解析式; (2)画出二次函数的图像;【答案】解:(1)根据题意,得⎩⎪⎨⎪⎧a -b +c =-1c =2a +b +c =3 ………………2分解得a =-1,b =2,c =2………………4分ab ac y 442-=最小值ab ac y 442-=最大值xy O第19题图xyoABC1所以二次函数的解析式为y =-x 2+2x +2………………5分(2)二次函数的图象如图………………8分 给分要点:顶点、对称、光滑(各1分)(12佛山)22.(1)任选以下三个条件中的一个,求二次函数c bx ax y ++=2的解析式; ①y 随x 变化的部分数值规律如下表:②有序数对()0,1-、()4,1、()0,3满足c bx ax y ++=2; ③已知函数c bx ax y ++=2的图象的一部分(如图). (2)直接写出二次函数c bx ax y ++=2的三个性质.解析:(1)方法一:由 可得:C=3,0=+-c b a ,4=++c b a ,所以1-=a ,2=b ,C=3, 所以二次函数解析式为:322++-=x x y方法二:由②可得:0=+-c b a ,4=++c b a ,039=++c b a , 解之得:1-=a ,2=b ,C=3,所以二次函数解析式为:322++-=x x y 方法三:由③可得:C=3,0=+-c b a ,12=-ab,解之得:1-=a ,2=b ,C=3, 所以二次函数解析式为:322++-=x x y (三种选其一即可)(2)1、对称轴为1=x , 2、开口向下 3、与x 轴有2个交点x -1 0 1 2 3 y343xyoABC14、交y轴正半轴考察知识:待定系数法求二次函数解析式、二次函数的性质及图像(2013•佛山)24.如图①,已知抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3).(1)求抛物线的函数表达式;(2)求抛物线的顶点坐标和对称轴;(3)把抛物线向上平移,使得顶点落在x轴上,直接写出两条抛物线、对称轴和y轴围成的图形的面积S(图②中阴影部分).分析:(1)把点A、B、C代入抛物线解析式y=ax2+bx+c利用待定系数法求解即可;(2)把抛物线解析式整理成顶点式形式,然后写出顶点坐标与对称轴即可;(3)根据顶点坐标求出向上平移的距离,再根据阴影部分的面积等于平行四边形的面积,列式进行计算即可得解.解:(1)∵抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3),∴,解得,所以抛物线的函数表达式为y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1),对称轴为直线x=2;(3)如图,∵抛物线的顶点坐标为(2,﹣1),∴PP′=1,阴影部分的面积等于平行四边形A′APP′的面积,平行四边形A′APP′的面积=1×2=2,∴阴影部分的面积=2.点评:本题考查了待定系数法求二次函数解析式,二次函数的性质,二次函数图象与几何变换,(3)根据平移的性质,把阴影部分的面积转化为平行四边形的面积是解题的关键.。