数学分析ch14-3Green公式、Gauss公式和Stokes公式
- 格式:ppt
- 大小:1.67 MB
- 文档页数:3
stokes公式Stokes公式是数学中的一个重要定理,描述了曲线或曲面上的矢量场的环量与流量之间的关系。
该公式由爱尔兰数学家乔治·斯托克斯(George Stokes)在19世纪中叶提出,并被广泛应用于天文学、电磁学、流体力学等领域。
Stokes公式用于求解曲线或曲面上的矢量场的环量,即该矢量场沿曲线或曲面的积分。
一般来说,环量和流量可以通过不同的方法进行计算,但Stokes公式提供了一个统一的方法,将环量转化为曲面上的流量。
首先,我们来看一个简单的例子来理解Stokes公式。
假设我们有一个平面曲线C,以逆时针方向围成一个封闭的区域D。
在这个曲线上存在一个矢量场v(x, y) = (P, Q),如果v(x, y)是一个可微分函数,那么Stokes公式可以表示如下:∮C v·ds = ∬D (curl v)·dS其中,∮C v·ds表示矢量场v沿曲线C的环量,也可以理解为矢量场v在曲线C上的积分;∬D (curl v)·dS表示矢量场v的旋度curl v在D区域上的流量,也可以理解为矢量场v的旋度在曲面D上的积分;ds和dS分别表示曲线上和曲面上的微小线元。
Stokes公式的核心在于旋度的引入。
旋度描述了矢量场在其中一点的旋转程度或转动方向。
在二维空间中,任何矢量场v(x, y)都可以表示为两个分量P和Q的线性组合,即v(x, y) = P(x, y)i + Q(x, y)j,其中i和j分别是x和y轴的单位矢量。
旋度的定义为:curl v = (∂Q/∂x - ∂P/∂y)k其中k是垂直于二维平面的单位矢量。
旋度是一个矢量,它表示了平面矢量场的局部旋转性质。
Stokes公式可以看作是格林公式在曲面上的推广。
格林公式描述了平面上一个标量函数的环量与流量之间的关系,而Stokes公式描述了二维平面上的矢量场的环量与流量之间的关系。
Stokes公式的证明可以分为两个步骤。
设空间闭区域Ω由分片光滑的闭曲面Σ围成, 函数),,(z y x P 、),,(z y x Q 、),,(z y x R 在Ω上具有 一阶连续偏导数, 则有公式⎰⎰⎰⎰⎰∑Ω++=∂∂+∂∂+∂∂Rdxdy Qdzdx Pdydz dv z Ry Q x P )(高 斯 公 式dSR Q P dvz Ry Q x P )cos cos cos ()(⎰⎰⎰⎰⎰∑Ωγ+β+α=∂∂+∂∂+∂∂或这里∑是Ω的整个边界曲面的外侧,γβαcos ,cos ,cos 是∑上点),,(z y x 处的法向量的方向余弦.xyzo例 计算曲面积分ds z y x )cos cos cos (222γβα++⎰⎰∑,其中Σ为锥面 222z y x=+介于平面0=z 及)0(>=h h z之间的部分的下侧,γβαcos ,cos ,cos 是Σ在),,(z y x 处的法向量的方向余弦.h⋅xyD xyzoh⋅1∑解 空间曲面在 面上的投影域为 xoy xy D )(:2221h y x h z ≤+=∑补充曲面∑不是封闭曲面, 为利用高斯公式取上侧,1∑∑构成封闭曲面,1∑+∑.1Ω∑+∑围成空间区域,上使用高斯公式在Ω⎰⎰⎰⎰⎰Ω∑+∑++=++dv z y x dSz y x)(2)cos cos cos (1222γβα⎰⎰⎰+++=xyD h y x dz z y x dxdy 22,)(2}.|),{(222h y x y x D xy ≤+=其中⎰⎰⎰+=+xyDhy x dz y x dxdy 22,0)(⎰⎰⎰⎰--=++∴∑+∑xyD dxdy y x h dSz y x)()cos cos cos (2222221γβα.214h π=⎰⎰⎰⎰∑∑=γ+β+α112222)cos cos cos (dSz dS z y x⎰⎰=xyDdxdy h 2.4h π=故所求积分为⎰⎰∑γ+β+αdSz y x)cos cos cos (222421h π=4h π-.214h π-=定理 设Γ为分段光滑的空间有向闭曲线,∑是以Γ为边界的分片光滑的有向曲面, Γ的正向与∑的侧符合右手规则, 函数),,(z y x P ,),,(z y x Q ,),,(z y x R 在包含曲面∑在内的一个空间区域内具有一阶连续偏导数, 则有公式一、斯托克斯(stokes)公式dxdyy Px Q dzdx x R z P dydz z Q y R )()()(∂∂-∂∂+∂∂-∂∂+∂∂-∂∂⎰⎰∑⎰Γ++=RdzQdy Pdx 斯托克斯公式nΓ∑是有向曲面 的正向边界曲线Γ∑右手法则⎰⎰⎰Γ∑++=∂∂∂∂∂∂Rdz Qdy Pdx R Q P z y x dxdydzdx dydz ⎰⎰⎰Γ∑++=∂∂∂∂∂∂Rdz Qdy Pdx ds RQ P z y x γβαcos cos cos 另一种形式}cos ,cos ,{cos γβα=n其中便于记忆形式Stokes 公式的实质:表达了有向曲面上的曲面积分与其边界曲线上的曲线积分之间的关系.斯托克斯公式格林公式特殊情形(当Σ是xoy 面的平面闭区域时)例1. Γ 为柱面与平面 y = z 的交线,从 z轴正向看为顺时针, 计算o z2Γyx解: 设∑为平面 z = y 上被 Γ 所围椭圆域 , 且取下侧, 利用斯托克斯公式得SI d ⎰⎰∑=0=则其法线方向余弦γβαcos cos cos zy x ∂∂∂∂∂∂zx y x y2∑例2 计算曲线积分dzy x dy x z dx z y)()()(222222-+-+-⎰Γ其中Γ是平面23=++z y x 截立方体:10≤≤x ,10≤≤y ,10≤≤z 的表面所得的截痕,若从 ox轴的正向看去,取逆时针方向.解 取Σ为平面23=++z y x 的上侧被Γ所围成的部分.则 }1,1,1{31=n zxyo∑nΓ即 ,31cos cos cos ===γβαdsy x x z z y z y x I ⎰⎰∑---∂∂∂∂∂∂=∴222222313131⎰⎰∑++-=ds z y x )(34⎰⎰∑⋅-=ds 2334⎰⎰-=xyD dxdy 332.29-=)23(=++∑z y x 上在 xyD 23=+y x 21=+y xz R y Q x P u d d d d ++=空间曲线积分与路径无关的条件定理2. 设 G 是空间一维单连通域, 内在函数G R Q P ,,具有连续一阶偏导数, 则下列四个条件相互等价: (1) 对G 内任一分段光滑闭曲线 Γ, 有d d d =++⎰Γz R y Q x P (2) 对G 内任一分段光滑曲线 Γ, ⎰Γ++zR y Q x P d d d 与路径无关(3) 在G 内存在某一函数 u , 使 (4) 在G 内处处有zP x R y R zQ x Q yP∂∂∂∂∂∂∂∂∂∂∂∂===,,z y x y x z x z y d )(d )(d )(+++++⎰Γ与路径无关, 并求函数z y x y x z x z y z y x u z y x d )(d )(d )(),,(),,()0,0,0(+++++=⎰解: 令 yx R x z Q z y P +=+=+=,,,1xQ y P ∂∂==∂∂,1yR z Q ∂∂==∂∂yPx R ∂∂==∂∂1∴ 积分与路径无关, zy x xy )(++=y x y d 0⎰+zy x z d )(0⎰++zxyz xy ++=xzyo),,(z y x )0,,(y x )0,0,(x 因此例3. 验证曲线积分 z y x y x z x z y d )(d )(d )(+++++⎰Γ与路径无关, 并求函数z y x y x z x z y z y x u z y x d )(d )(d )(),,(),,()0,0,0(+++++=⎰解: 令 yx R x z Q z y P +=+=+=,,,1xQy P ∂∂==∂∂ ,1yR z Q ∂∂==∂∂yPx R ∂∂==∂∂1∴ 积分与路径无关, z y x xy )(++=y x y d 0⎰+zy x z d )(0⎰++zxyz xy ++=xzyo ),,(z y x )0,,(y x )0,0,(x 因此例3. 验证曲线积分 三、 环流量与旋度斯托克斯公式⎰Γ++=zR y Q x P d d d 设曲面 ∑ 的法向量为 曲线 Γ的单位切向量为 则斯托克斯公式可写为⎰Γ++=sR Q P d )cos cos cos (νμλ)cos ,cos ,(cos γβα=n )cos ,cos ,(cos νμλτ=令 , 引进一个向量),,(R Q P A =Arot 记作向量 rot A 称为向量场 A 的 RQ P kj i zy x ∂∂∂∂∂∂=称为向量场A 定义: s A z R y Q x P d d d d ⎰⎰ΓΓ=++τ沿有向闭曲线 Γ的环流量. s A S n A d d rot ⎰⎰⎰Γ∑⋅=⋅τ或sA S A n d d )(rot ⎰⎰⎰Γ∑=τ①于是得斯托克斯公式的向量形式 :旋度 .z yxkjiA ∂∂∂∂∂∂=rot 的外法向量, 计算 解: )1,0,0(=SI d cos ⎰⎰∑=∴γπ8=232zx y 例4. 设.d rot S n A I ⋅=⎰⎰∑∑为n。
Green公式、Stokes公式、Gauss公式在专业学科中的应用摘要格林(Green)公式,斯托克斯(Stokes)公式和高斯(Gauss)公式是多元函数积分学中的三个基本公式,它们分别建立了曲线积分与二重积分、曲面积分与三重积分、曲线积分和曲面积分的联系。
它们建立了向量的散度与通量、旋度与环量之间的关系,除了在数学上应用于计算多元函数积分,在其他领域也有很多重要的应用。
本文将主要从这三个公式与物理学之间的联系展开介绍它们的其他应用,其中包括应用于GPS面积测量仪,确定外部扰动重力场,应用于保守场以及推证阿基米德定律和高斯定理等,帮助人们加深对格林公式、斯托克斯公式和高斯公式的理解,从而能够更准确地应用此三个公式。
关键词:格林公式斯托克斯公式高斯公式散度旋度应用目录一、引言 (1)二、格林(Green)公式的应用 (1)(一)格林公式的定义 (1)1、单连通区域的概念 (1)2、区域的边界曲线的正向规定 (1)3、陈述 (1)(二)格林公式的物理原型 (1)1、物理原型 (2)2、计算方法 (2)(三)格林公式与GPS面积测量仪 (3)1.应用曲线积分计算平面区域面积 (3)2.GPS面积测量仪的数学原理 (4)3.实验结果 (5)4.进一步讨论 (5)(四)应用格林积分直接以地面边值确定外部扰动重力场 61.扰动重力位的地面边值问题 (6)2.地面边值问题的格林公式表示 (6)三、Stokes公式的应用 (8)(一)Stokes公式简介 (8)(二)环量与环量密度 (9)(三)环量的应用 (9)1.开尔文定理 (9)2.开尔文定理的推论 (10)3.升力 (10)(四)旋度 (11)(五)旋度的应用 (12)1. 平面矢量场的旋度 (12)2.环流量是区域S 内有无漩涡的量度 (12)3.旋度是矢量场某点漩涡强度的量度 (13)4.空间矢量场的旋度 (13)四、Gauss公式的应用 (16)1、数学中的高斯公式 (16)2、保守场的推导 (17)3、高斯公式在电场中的运用 (17)4、高斯定理在万有引力场中的应用 (19)5.高斯公式推证阿基米德浮力定律 (21)6.高斯公式推证静电场中的高斯定理 (22)7.高斯公式与散度 (24)五、结语 (25)六、参考文献 (26)一、引言格林(Green)公式,斯托克斯(Stokes)公和高斯(Gauss)公式是多元函数积分学中的三个基本公式,它们分别建立了曲线积分与二重积分、曲面积分与三重积分、曲线积分和曲面积分的联系。
Green公式、Stokes公式、Gauss公式在专业学科中的应用摘要格林(Green)公式,斯托克斯(Stokes)公式和高斯(Gauss)公式是多元函数积分学中的三个基本公式,它们分别建立了曲线积分与二重积分、曲面积分与三重积分、曲线积分和曲面积分的联系。
它们建立了向量的散度与通量、旋度与环量之间的关系,除了在数学上应用于计算多元函数积分,在其他领域也有很多重要的应用。
本文将主要从这三个公式与物理学之间的联系展开介绍它们的其他应用,其中包括应用于GPS面积测量仪,确定外部扰动重力场,应用于保守场以及推证阿基米德定律和高斯定理等,帮助人们加深对格林公式、斯托克斯公式和高斯公式的理解,从而能够更准确地应用此三个公式。
关键词:格林公式斯托克斯公式高斯公式散度旋度应用目录一、引言 (1)二、格林(Green)公式的应用 (1)(一)格林公式的定义 (1)1、单连通区域的概念 (1)2、区域的边界曲线的正向规定 (1)3、陈述 (1)(二)格林公式的物理原型 (1)1、物理原型 (2)2、计算方法 (2)(三)格林公式与GPS面积测量仪 (3)1.应用曲线积分计算平面区域面积 (3)2.GPS面积测量仪的数学原理 (4)3.实验结果 (5)4.进一步讨论 (5)(四)应用格林积分直接以地面边值确定外部扰动重力场 61.扰动重力位的地面边值问题 (6)2.地面边值问题的格林公式表示 (6)三、Stokes公式的应用 (8)(一)Stokes公式简介 (8)(二)环量与环量密度 (9)(三)环量的应用 (9)1.开尔文定理 (9)2.开尔文定理的推论 (10)3.升力 (10)(四)旋度 (11)(五)旋度的应用 (12)1. 平面矢量场的旋度 (12)2.环流量是区域S 内有无漩涡的量度 (12)3.旋度是矢量场某点漩涡强度的量度 (13)4.空间矢量场的旋度 (13)四、Gauss公式的应用 (16)1、数学中的高斯公式 (16)2、保守场的推导 (17)3、高斯公式在电场中的运用 (17)4、高斯定理在万有引力场中的应用 (19)5.高斯公式推证阿基米德浮力定律 (21)6.高斯公式推证静电场中的高斯定理 (22)7.高斯公式与散度 (24)五、结语 (25)六、参考文献 (26)一、引言格林(Green)公式,斯托克斯(Stokes)公和高斯(Gauss)公式是多元函数积分学中的三个基本公式,它们分别建立了曲线积分与二重积分、曲面积分与三重积分、曲线积分和曲面积分的联系。
格林公式、高斯公式、斯托克斯公式的应用Green公式、Stokes公式、Gauss公式在专业学科中的应用摘要格林(Green)公式,斯托克斯(Stokes)公式和高斯(Gauss)公式是多元函数积分学中的三个基本公式,它们分别建立了曲线积分与二重积分、曲面积分与三重积分、曲线积分和曲面积分的联系。
它们建立了向量的散度与通量、旋度与环量之间的关系,除了在数学上应用于计算多元函数积分,在其他领域也有很多重要的应用。
本文将主要从这三个公式与物理学之间的联系展开介绍它们的其他应用,其中包括应用于GPS面积测量仪,确定外部扰动重力场,应用于保守场以及推证阿基米德定律和高斯定理等,帮助人们加深对格林公式、斯托克斯公式和高斯公式的理解,从而能够更准确地应用此三个公式。
关键词:格林公式斯托克斯公式高斯公式散度旋度应用一、引言格林(Green )公式,斯托克斯(Stokes )公和高斯(Gauss )公式是多元函数积分学中的三个基本公式,它们分别建立了曲线积分与二重积分、曲面积分与三重积分、曲线积分和曲面积分的联系。
它们有很强的物理意义即建立了向量的散度与通量、旋度与环量之间的关系,因此它们有许多重要的应用,在数学上它们主要用来简化某些多元函数积分的运算,而在其他各个专业领域它们也有很多重要的应用。
接下来将一一介绍它们在不同专业中的应用。
二、格林(Green )公式的应用(一)格林公式的定义Green 公式反映了第二型平面线积分与二重积分的联系。
1、单连通区域的概念 设D 为平面区域,如果D 内任一闭曲线所围的部分区域都属于D ,则D 称为平面单连通区域;否则称为复连通区域.通俗地讲,单连通区域是不含"洞"(包括"点洞")与"裂缝"的区域.2、区域的边界曲线的正向规定设L 是平面区域D 的边界曲线,规定L 的正向为:当观察者沿的这个方向行走时,平面区域(也就是上面的D)内位于他附近的那一部分总在他的左边.简言之:区域的边界曲线的正向应符合条件:人沿曲线走,区域在左边,人走的方向就是曲线的正向。
Gauss 公式和Stokes 公式1.Gauss 公式 定理: 设3Ω⊆是有界闭区域,其边界∂Ω由若干1C 曲面组成,∂Ω取外法向量为正向。
则对任何1C 向量场3(,,):T F X Y Z =Ω→,成立,d div d F F v σ∂ΩΩ=⎰⎰⎰⎰⎰n ,其中n 是∂Ω的单位外法向量, (,,)div tr(,,)X Y Z X Y ZF x y z x y z∂∂∂∂==++∂∂∂∂是F 的散度。
上述结论可用微分形式表示为,对二阶微分形式d d d d d d X y z Y z x Z x y ω=∧+∧+∧,成立d ωω∂ΩΩ=⎰⎰⎰⎰⎰其中d d d d X Y Z x y z x y z ω⎛⎫∂∂∂=++∧∧ ⎪∂∂∂⎝⎭是ω的外微分。
证明:我们对d d Z x y ω=∧证明d ωω∂ΩΩ=⎰⎰⎰⎰⎰。
然后再利用两边积分的线性,得到最终结论。
把3Ω⊆分解为形如{(,)(,)|(,)}f x y z g x y x y D ∆=≤≤∈的简单区域,记 {(,,(,))|(,)}x y g x y x y D ∑=∈上,{(,,(,))|(,)}x y f x y x y D ∑=∈上,{(,,)|(,)(,),(,)}x y z f x y z g x y x y D ∑=≤≤∈∂侧(,)(,)d d d d d d d d (,,(,))d d (,,(,))d d (,,(,))(,,(,))d d (,,)d d d (,,)d d d DDDg x y f x y DZ x y Z x y Z x y Z x yZ x y g x y x y Z x y f x y x yZ x y g x y Z x y f x y x yZ Zx y z z x y x y z x y zz z ∂∆∑∑∑∆∧=∧+∧+∧=-=-∂∂==∧∧∂∂⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰下上侧■注:考虑3{(,,)|max{,,}}C x y z x y z ε=∈≤。
外微分形式 green 公式, gauss 公式和 stokes 公式.
格林公式(Green's theorem):是一个描述曲线与曲线包围的区域之间的关系的定理。
它将曲线上的曲线积分与区域内的二重积分联系起来。
在二维空间中,格林公式的一种形式为:
∮C Pdx + Qdy = ∬D ( ∂Q/∂x - ∂P/∂y )dA
其中,C是曲线的边界,P和Q是曲线上的连续可微函数,D 是曲线包围的区域,∂P/∂y和∂Q/∂x分别是P和Q的偏导数。
高斯公式(Gauss's theorem):也被称为散度定理,是描述矢量场的散度和矢量场通过曲面的通量之间的关系的定理。
在三维空间中,高斯公式的一种形式为:
∬S F·n dS = ∭V div(F) dV
其中,S是一个封闭曲面,F是一个有连续偏导数的矢量场,n是S上某一点的单位法向量,V是由S包围的区域,div(F)是F的散度。
斯托克斯公式(Stokes' theorem):是描述矢量场沿着曲线的环量和该矢量场通过曲面的通量之间的关系的定理。
在三维空间中,斯托克斯公式的一种形式为:
∮C F·dr = ∬S curl(F)·n dS
其中,C是曲面S的边界曲线,F是一个有连续偏导数的矢量场,dr是沿着C的微小位移矢量,S是由C所围成的曲面,
curl(F)是F的旋度,n是S上某一点的单位法向量。
这些公式都是重要的数学工具,在物理学和工程学等领域中有广泛的应用。