数学分析公式
- 格式:doc
- 大小:344.50 KB
- 文档页数:15
数学分析知识要点整理数学分析是数学专业的重要基础课程,它为后续的许多课程提供了必备的知识和方法。
以下是对数学分析中的一些关键知识要点的整理。
一、函数函数是数学分析的核心概念之一。
1、函数的定义设 X 和 Y 是两个非空数集,如果对于 X 中的每个元素 x,按照某种确定的对应关系 f,在 Y 中都有唯一确定的元素 y 与之对应,那么就称 f 是定义在 X 上的函数,记作 y = f(x),x ∈ X。
2、函数的性质(1)单调性:若对于定义域内的任意两个自变量 x1 和 x2,当 x1< x2 时,都有 f(x1) < f(x2)(或 f(x1) > f(x2)),则称函数 f(x)在其定义域上单调递增(或单调递减)。
(2)奇偶性:若对于定义域内的任意 x,都有 f(x) = f(x),则称函数 f(x)为奇函数;若 f(x) = f(x),则称函数 f(x)为偶函数。
(3)周期性:若存在非零常数 T,使得对于定义域内的任意 x,都有 f(x + T) = f(x),则称函数 f(x)为周期函数,T 为函数的周期。
3、反函数设函数 y = f(x),其定义域为 D,值域为 R。
如果对于 R 中的每一个 y,在 D 中都有唯一确定的 x 与之对应,使得 y = f(x),则这样得到的 x 关于 y 的函数称为 y = f(x)的反函数,记作 x = f⁻¹(y)。
二、极限极限是数学分析中的重要概念,用于描述变量在一定变化过程中的趋势。
1、数列的极限对于数列{an},若存在常数 A,对于任意给定的正数ε(不论它多么小),总存在正整数 N,使得当 n > N 时,不等式|an A| <ε 恒成立,则称常数 A 是数列{an} 的极限,记作lim(n→∞) an = A。
2、函数的极限(1)当x → x0 时函数的极限:设函数 f(x)在点 x0 的某个去心邻域内有定义,如果存在常数 A,对于任意给定的正数ε,总存在正数δ,使得当 0 <|x x0| <δ 时,不等式|f(x) A| <ε 恒成立,则称常数A 是函数 f(x)当x → x0 时的极限,记作lim(x→x0) f(x) = A。
第一章 变量与函数 §1 函数的概念一 变量 变量、常量、实数性质、区间表示二 函数 1.定义1 设,X Y R ⊂,如果存在对应法则f ,使对x X ∀∈,存在唯一的一个数y Y ∈与之对应,则称f 是定义在数集X 上的函数,记作:f X Y →(|x y →).也记作|()x f x →。
习惯上称x 自变量,y 为因变量。
函数f 在点x 的函数值,记为()f x ,全体函数值的集合称为函数f 的值域,记作()f X .{}()|(),f X y y f x x X ==∈。
2.注 (1) 函数有三个要素,即定义域、对应法则和值域。
例:1)()1,,f x x R =∈ {}()1,\0.g x x R =∈(不相同,对应法则相同,定义域不同)2)()||,,x x x R ϕ=∈().x x R ψ=∈(相同,对应法则的表达形式不同)。
(2)函数的记号中的定义域D可省略不写,而只用对应法则f 来表示一个函数。
即“函数()y f x =”或“函数f ”。
(3)“映射”的观点来看,函数f 本质上是映射,对于a D ∈,()f a 称为映射f 下a 的象。
a 称为()f a 的原象。
3. 函数的表示方法 1 主要方法:解析法(分式法)、列表法和图象法。
2 可用“特殊方法”来表示的函数。
分段函数:在定义域的不同部分用不同的公式来表示。
例: 1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩,(符号函数)用语言叙述的函数。
例:1)[]y x =(x 的最大整数部分)2)1,()0,x D x x ⎧=⎨⎩当为有理数,当为无理数,(Dirichlet )三 函数的一些几何特性 1、单调函数 定义 2 设f 为定义在X 上的函数,1212,,,x x X x x ∀∈< (1)若12()()f x f x ≤,则称f 为X 上的增函数;若12()()f x f x <,则称f 为X 上的严格增函数。
第一章 变量与函数 §1 函数的概念一 变量 变量、常量、实数性质、区间表示二 函数 1.定义1 设,X Y R ⊂,如果存在对应法则f ,使对x X ∀∈,存在唯一的一个数y Y ∈与之对应,则称f 是定义在数集X 上的函数,记作:f X Y →(|x y →).也记作|()x f x →。
习惯上称x 自变量,y 为因变量。
函数f 在点x 的函数值,记为()f x ,全体函数值的集合称为函数f 的值域,记作()f X .{}()|(),f X y y f x x X ==∈。
2.注 (1) 函数有三个要素,即定义域、对应法则和值域。
例:1)()1,,f x x R =∈ {}()1,\0.g x x R =∈(不相同,对应法则相同,定义域不同)2)()||,,x x x R ϕ=∈().x x R ψ=∈(相同,对应法则的表达形式不同)。
(2)函数的记号中的定义域D可省略不写,而只用对应法则f 来表示一个函数。
即“函数()y f x =”或“函数f ”。
(3)“映射”的观点来看,函数f 本质上是映射,对于a D ∈,()f a 称为映射f 下a 的象。
a 称为()f a 的原象。
3. 函数的表示方法 1 主要方法:解析法(分式法)、列表法和图象法。
2 可用“特殊方法”来表示的函数。
分段函数:在定义域的不同部分用不同的公式来表示。
例: 1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩,(符号函数)用语言叙述的函数。
例:1)[]y x =(x 的最大整数部分)2)1,()0,x D x x ⎧=⎨⎩当为有理数,当为无理数,(Dirichlet )三 函数的一些几何特性 1、单调函数 定义2 设f 为定义在X 上的函数,1212,,,x x X x x ∀∈< (1)若12()()f x f x ≤,则称f 为X 上的增函数;若12()()f x f x <,则称f 为X 上的严格增函数。
数学分析公式总结数学分析是数学中的一门重要课程,它主要研究函数的性质和运算法则,以及极限、导数和积分等概念及其应用。
在学习数学分析时,我们经常会遇到各种各样的公式。
下面是对其中一些重要的数学分析公式进行总结。
一、极限公式1.常值函数的极限公式:\(\lim_{x\to a} c = c\)2.幂函数的极限公式:\(\lim_{x\to a} x^{m} = a^{m}\) (其中m为整数)3.正弦函数和余弦函数的极限公式:\(\lim_{x\to 0} \dfrac{\sin x}{x} = 1\)\(\lim_{x\to 0} \dfrac{1-\cos x}{x} = 0\)4.自然对数函数的极限公式:\(\lim_{x\to 0} \dfrac{e^{x}-1}{x} = 1\)5.无穷小替换公式:当\(x\to a\)时,若\(\lim_{x\to a} f(x) = 0\),\(\lim_{x\to a} g(x) = 0\),且\(\lim_{x\to a} \dfrac{f(x)}{g(x)}\)存在,则:\(\lim_{x\to a} \dfrac{f(x)}{g(x)} = \lim_{x\to a}\dfrac{f'(x)}{g'(x)}\)二、导数公式1.基本导数公式:\((c)'=0\)(其中c为常数)\((x^{n})' = nx^{n-1}\) (其中n为整数)\((\sin x)' = \cos x\)\((\cos x)' = -\sin x\)\((e^{x})'=e^{x}\)2.乘积法则:\((f(x)g(x))'=f'(x)g(x)+f(x)g'(x)\)3.商法则:\((\dfrac{f(x)}{g(x)})' = \dfrac{f'(x)g(x) -f(x)g'(x)}{(g(x))^2}\)4.链式法则:若y=f(u)和u=g(x)都可导,则\(y'(x)=f'(u)g'(x)\)三、积分公式1.基本积分公式:\(\int cdx = cx + C\) (其中c为常数,C为常数)\(\int x^{n}dx = \dfrac{x^{n+1}}{n+1} + C\) (其中n不等于-1)\(\int \sin xdx = -\cos x + C\)\(\int \cos xdx = \sin x + C\)\(\int e^{x}dx = e^{x} + C\)2.基本换元公式:\(\int f(g(x))g'(x)dx = \int f(u)du\) (其中u = g(x))四、泰勒展开公式泰勒展开公式是一种将一个函数在其中一点附近用多项式逼近的方法。
常用十个泰勒展开公式1. e^x的泰勒展开公式:e^x = 1 + x + x^2/2! + x^3/3! + + x^n/n! +其中,n!表示n的阶乘。
2. sinx的泰勒展开公式:sinx = x x^3/3! + x^5/5! x^7/7! + + (1)^(n1)x^(2n1)/(2n1)! +其中,n为正整数。
3. cosx的泰勒展开公式:cosx = 1 x^2/2! + x^4/4! x^6/6! + + (1)^n x^(2n)/(2n)! +其中,n为正整数。
4. ln(1+x)的泰勒展开公式:ln(1+x) = x x^2/2 + x^3/3 x^4/4 + + (1)^(n1) x^n/n +其中,n为正整数。
5. (1+x)^a的泰勒展开公式:(1+x)^a = 1 + ax + a(a1)x^2/2! + a(a1)(a2)x^3/3! + +a(a1)(a2)(an+1)x^n/n! +其中,n为正整数,a为实数。
6. 1/(1x)的泰勒展开公式:1/(1x) = 1 + x + x^2 + x^3 + + x^n +其中,n为正整数。
7. sqrt(1+x)的泰勒展开公式:sqrt(1+x) = 1 + 1/2x 1/8x^2 + 1/16x^3 + (1)^(n1) (2n3)!! x^n/(2n)!! +其中,n为正整数,!!表示双阶乘。
8. arctanx的泰勒展开公式:arctanx = x x^3/3 + x^5/5 x^7/7 + + (1)^(n1)x^(2n1)/(2n1) +其中,n为正整数。
9. 1/sqrt(1x^2)的泰勒展开公式:1/sqrt(1x^2) = 1 + 1/2x^2 + 3/8x^4 + 5/16x^6 + +(2n1)/2^n x^(2n) +其中,n为正整数。
10. 1/(1+x^2)的泰勒展开公式:1/(1+x^2) = 1 x^2 + x^4 x^6 + + (1)^n x^(2n) +其中,n为正整数。
导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
完整版)数学分析复习资料及公式大全导数公式:求导是微积分的重要内容之一,掌握导数公式对于解题至关重要。
常见的导数公式如下:tan(x)的导数为sec^2(x)cot(x)的导数为-csc^2(x)sec(x)的导数为sec(x)·tan(x)csc(x)的导数为-csc(x)·cot(x)ax的导数为ax·ln(a)log_a(x)的导数为1/(x·ln(a))基本积分表:积分是微积分的重要内容之一,掌握基本积分表对于解题至关重要。
常见的基本积分表如下:arcsin(x)的导数为1/(sqrt(1-x^2))arccos(x)的导数为-1/(sqrt(1-x^2))arctan(x)的导数为1/(1+x^2)arcctan(x)的导数为-1/(1+x^2)tan(x)dx=-ln|cos(x)|+Ccot(x)dx=ln|sin(x)|+Csec(x)dx=ln|sec(x)+tan(x)|+Ccsc(x)dx=ln|csc(x)-cot(x)|+Cdx/x=ln|x|+Csin(x)dx=-cos(x)+Ccos(x)dx=sin(x)+Cdx/(x^2+a^2)=1/a·arctan(x/a)+Cdx/(a^2-x^2)=1/(2a)·ln|(a+x)/(a-x)|+C dx/(a^2+x^2)=1/a·ln|(a+x)/x|+Cdx/(x^2-a^2)=1/(2a)·ln|(x+a)/(x-a)|+C e^x dx=e^x+Csin^2(x)dx=1/2·(x-sin(x)cos(x))+C cos^2(x)dx=1/2·(x+sin(x)cos(x))+Csec(x)·tan(x)dx=sec(x)+Ccsc(x)·cot(x)dx=-csc(x)+Ca^x dx=a^x/ln(a)+Csinh(x)dx=cosh(x)+Ccosh(x)dx=sinh(x)+Cdx/(x^2-a^2)=1/(2a)·ln|(x+a)/(x-a)|+Cπ/2+πn (n为整数)lim(1+x)→∞=e=2.xxxxxxxxxxxxxxx。
数学分析中的积分运算法则在数学分析中,积分是一个非常重要的概念。
积分的定义就是求某个函数在某个区间上的面积。
而积分的运算法则则是指在进行积分运算时所需要遵守的一些规则和方法。
积分运算法则可以分为两种,一种是基本积分运算法则,一种是复杂积分运算法则。
1. 基本积分运算法则基本积分运算法则包括以下几个方面:(1)线性性质如果f(x)和g(x)是两个可积的函数,a和b是任意常数,则有:∫[a, b][f(x)+g(x)]dx = ∫[a, b]f(x)dx + ∫[a, b]g(x)dx∫[a, b]af(x)dx = a∫[a, b]f(x)dx(2)积分的可加性如果函数f(x)在区间[a, c]和[c, b]上可积,则有:∫[a, b]f(x)dx = ∫[a, c]f(x)dx + ∫[c, b]f(x)dx这就是积分的可加性。
(3)积分公式在数学中,一些基本的函数积分公式是非常重要的,例如:∫x^αdx = (x^(α+1))/(α+1),其中α≠-1∫e^xdx = e^x∫sin(x)dx = -cos(x)∫cos(x)dx = sin(x)这些积分公式在积分运算中非常常见,掌握它们可以帮助我们更快、更准确地进行积分。
2. 复杂积分运算法则复杂积分运算法则则是一些比较高级、综合的运算方法,常见的包括:(1)分部积分法分部积分法是将求和型积分转化为乘积型积分。
假设有两个可积函数u(x)和v(x),则有:∫u(x)v'(x)dx = u(x)v(x) - ∫v(x)u'(x)dx这就是分部积分法。
(2)换元积分法当被积函数较为复杂,难以直接积分时,我们可以采用换元积分法。
设x经过某种关系变化成t,而f(x)是在x上的函数,g(t)是在t上的函数,则有:∫f(x)dx = ∫f[g(t)]g'(t)dt换元积分法的核心就是把x用t表示出来,从而把被积函数的形式变得更简单。
数学分析知识点总结数学分析是数学专业的重要基础课程,它为后续的许多数学课程提供了必要的理论基础和方法。
以下是对数学分析中的一些重要知识点的总结。
一、函数函数是数学分析中的核心概念之一。
函数可以理解为一种对应关系,对于给定的自变量的值,通过某种规则确定唯一的因变量的值。
1、函数的定义设 X 和 Y 是两个非空数集,如果对于 X 中的每一个数 x,按照某种确定的对应关系 f,在 Y 中都有唯一确定的数 y 与之对应,那么就称f 是定义在 X 上的函数,记作 y = f(x),x ∈ X。
2、函数的性质(1)单调性:如果对于定义域内某个区间 D 上的任意两个自变量的值 x₁、x₂,当 x₁< x₂时,都有 f(x₁) < f(x₂)(或 f(x₁) >f(x₂)),那么就说函数 f(x)在区间 D 上是增函数(或减函数)。
(2)奇偶性:如果对于函数 f(x)的定义域内任意一个 x,都有 f(x)= f(x),那么函数 f(x)就叫做奇函数;如果都有 f(x) = f(x),那么函数f(x)就叫做偶函数。
(3)周期性:对于函数 y = f(x),如果存在一个不为零的常数 T,使得当 x 取定义域内的每一个值时,f(x + T) = f(x)都成立,那么就把函数 y = f(x)叫做周期函数,周期为 T。
3、反函数设函数 y = f(x),其定义域为 D,值域为 R。
如果对于 R 中的每一个 y 值,在 D 中都有唯一确定的 x 值与之对应,那么就可以得到一个新的函数 x =φ(y),称其为函数 y = f(x)的反函数。
二、极限极限是数学分析中用于描述函数在某个过程中的变化趋势的重要概念。
1、数列的极限对于数列{an},如果存在一个常数 A,对于任意给定的正数ε(无论它多么小),总存在正整数 N,使得当 n > N 时,不等式|an A|<ε 都成立,那么就称常数 A 是数列{an} 的极限,记作lim(n→∞)an = A。
证明近似公式摘要:1.引言2.泰勒公式3.莱布尼茨公式4.高斯公式5.结论正文:1.引言在数学分析中,证明近似公式是一种常用的方法。
通过这些公式,我们可以将复杂的函数近似为简单的形式,从而更容易地进行分析和计算。
本文将介绍三种常用的证明近似公式:泰勒公式、莱布尼茨公式和高斯公式。
2.泰勒公式泰勒公式是一种在给定点附近将函数展开为无穷级数的方法。
泰勒公式的表达形式如下:f(x) = f(a) + f"(a)(x-a) + f""(a)(x-a)^2/2! + f"""(a)(x-a)^3/3! +...+f^n(a)(x-a)^n/n! + R_n(x)其中,f(x) 是给定函数,a 是给定点,f"(a)、f""(a) 等表示函数在点a 的各阶导数,R_n(x) 是余项。
3.莱布尼茨公式莱布尼茨公式是一种将函数在给定点附近展开为幂级数的方法。
莱布尼茨公式的表达形式如下:f(x) = f(a) + f"(a)(x-a) + f""(a)(x-a)^2/2! + f"""(a)(x-a)^3/3! +...+f^n(a)(x-a)^n/n!其中,f(x) 是给定函数,a 是给定点,f"(a)、f""(a) 等表示函数在点a 的各阶导数。
4.高斯公式高斯公式是一种将函数在给定点附近展开为幂级数和余项的和的方法。
高斯公式的表达形式如下:f(x) = f(a) + f"(a)(x-a) + f""(a)(x-a)^2/2! + f"""(a)(x-a)^3/3! +...+f^n(a)(x-a)^n/n! + R_n(x)其中,f(x) 是给定函数,a 是给定点,f"(a)、f""(a) 等表示函数在点a 的各阶导数,R_n(x) 是余项。
不定积分概念与基本积分公式微分法的基本问题——从已知函数求出它的导数;但在某些实际问题中,往往需要考虑与之相反的问题——求一个已知函数,使其导数恰好是某一已知函数——这就是所谓的积分问题。
一原函数与不定积分(一)原函数定义1设函数)(x f 与)(x F 在区间I 上有定义。
若)()(x f x F =',I x ∈,则称)(x F 为)(x f 在区间I 上的一个原函数。
如:331x 是2x 在R 上的一个原函数;x 2cos 21-,12cos 21+x ,x 2sin ,x 2cos -等都有是x 2sin 在R 上的原函数——若函数)(x f 存在原函数,则其原函数不是唯一的。
问题1)(x f 在什么条件下必存在原函数?若存在,其个数是否唯一;又若不唯一,则有多少个?问题2若函数)(x f 的原函数存在,如何将它求出?(这是本章的重点内容)。
定理1若)(x f 在区间I 上连续,则)(x f 在I 上存在原函数)(x F 。
证明:在第九章中进行。
说明:(1)由于初等函数在其定义域内都是连续的,故初等函数在其定义域内必存在原函数(但其原函数不一定仍是初等函数)。
(2)连续是存在原函数的充分条件,并非必要条件。
定理2设)(x F 是)(x f 在在区间I 上的一个原函数,则(1)设C x F +)(是)(x f 在在区间I 上的原函数,其中C 为任意常量(若)(x f 存在原函数,则其个数必为无穷多个)。
(2))(x f 在I 上的任何两个原函数之间,只可能相差上个常数(揭示了原函数间的关系)。
证明:由定义即可得。
(二)不定积分定义2函数)(x f 在区间I 上的原函数的全体称为)(x f 在I 上的不定积分,记作:⎰dxx f )(其中⎰--积分号;--)(x f 被积函数;--dx x f )(被积表达式;--x 积分变量。
注1⎰dx x f )(是一个整体记号;注2不定积分与原函数是总体与个体的关系,即若)(x F 是)(x f 的一个原函数,则)(x f 的不定积分是一个函数族{}C x F +)(,其中C 是任意常数,于是,记为:⎰dx x f )(=C x F +)(。
高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:x x F f a F b F a f b f a b f a f b f =''=---'=-)(F )()()()()()())(()()(ξξξ曲率:.1;0.)1(lim M s M M :.,13202aK a K y y ds d s K M M sK tg y dx y ds s =='+''==∆∆='∆'∆∆∆==''+=→∆的圆:半径为直线:点的曲率:弧长。
:化量;点,切线斜率的倾角变点到从平均曲率:其中弧微分公式:ααααααααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==定积分的近似计算:⎰⎰⎰----+++++++++-≈++++-≈+++-≈ban n n ban n ba n y y y y y y y y nab x f y y y y n a b x f y y y nab x f )](4)(2)[(3)(])(21[)()()(1312420110110 抛物线法:梯形法:矩形法:定积分应用相关公式:⎰⎰--==⋅=⋅=bab a dt t f a b dx x f a b y k rmm k F Ap F sF W )(1)(1,2221均方根:函数的平均值:为引力系数引力:水压力:功:空间解析几何和向量代数:。
代表平行六面体的体积为锐角时,向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。
是向量在轴上的投影:点的距离:空间ααθθθϕϕ,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(2222222212121*********c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a kj ib ac b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u j z z y y x x M Md zyx z y xzy xzyxz y xzy x z y x zz y y x x z z y y x x u u⋅⨯==⋅⨯=⨯=⋅==⨯=++⋅++++=++=⋅=⋅+=+=-+-+-==(马鞍面)双叶双曲面:单叶双曲面:、双曲面:同号)(、抛物面:、椭球面:二次曲面:参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程:113,,22211};,,{,1302),,(},,,{0)()()(1222222222222222222220000002220000000000=+-=-+=+=++⎪⎩⎪⎨⎧+=+=+===-=-=-+++++==++=+++==-+-+-cz b y a x c z b y a x q p z q y p x c z b y a x ptz z nty y mtx x p n m s t p z z n y y m x x C B A DCz By Ax d czb y a x D Cz By Ax z y x M C B A n z z C y y B x x A多元函数微分法及应用zy z x y x y x y x y x F F y zF F x z z y x F dx dy F F y F F x dx y d F F dx dy y x F dy y v dx x v dv dy y u dx x u du y x v v y x u u xvv z x u u z x z y x v y x u f z tvv z t u u z dt dz t v t u f z y y x f x y x f dz z dz zu dy y u dx x u du dy y z dx x z dz -=∂∂-=∂∂=⋅-∂∂-∂∂=-==∂∂+∂∂=∂∂+∂∂===∂∂⋅∂∂+∂∂⋅∂∂=∂∂=∂∂⋅∂∂+∂∂⋅∂∂==∆+∆=≈∆∂∂+∂∂+∂∂=∂∂+∂∂=, , 隐函数+, , 隐函数隐函数的求导公式: 时,,当 :多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22),(),(1),(),(1),(),(1),(),(1),(),(0),,,(0),,,(y u G F J y v v y G F J y u x u G F J x v v x G F J x u G G F F vG uG v FuFv u G F J v u y x G v u y x F vu v u ∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂=∂∂∂∂∂∂∂∂=∂∂=⎩⎨⎧== 隐函数方程组:微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx y x x z x z z y z y -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ωψϕωψϕωψϕ方向导数与梯度:上的投影。