专题08 平面几何基础(第03期)-2017年中考数学试题分项版解析汇编(原卷版)
- 格式:doc
- 大小:457.00 KB
- 文档页数:6
2017年浙江中考真题分类汇编(数学):平面几何基础一、单选题(共5题;共10分)1、(2017•宁波)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A、B两点分别落在直线m、n上.若∠1=20°,则∠2的度数为()A、20°B、30°C、45°D、50°2、(2017·台州)如图,点P使∠AOB平分线上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA 的距离是()A、1B、2C、D、43、(2017·衢州)下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线。
则对应作法错误的是()A、①B、②C、③D、④4、(2017·衢州)如图,AB∥CD,∠A=70°,∠C=40°,则∠E等于()A、30°B、40°C、60°D、70°5、(2017·台州)如图,已知△ABC,AB=AC,若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A、AE=ECB、AE=BEC、∠EBC=∠BACD、∠EBC=∠ABE二、填空题(共2题;共2分)6、(2017·台州)如图,已知直线a∥b,∠1=70°,则∠2=________7、(2017·金华)如图,已知l1//l2,直线l与l1,l2相交于C,D两点,把一块含30°角的三角尺按如图位置摆放.若∠1=130°,则∠2=________°.答案解析部分一、单选题1、【答案】D【考点】平行线的性质【解析】【解答】解:∵m∥n.∴∠2=∠1+∠ABC.又∵∠1=20°,∠ABC=30°∴∠2=50°.故答案为D.【分析】根据平行线的性质即可得出内错角相等,由题目条件即可得出答案.2、【答案】B【考点】角平分线的性质【解析】【解答】解:过P作PE⊥OA于点E,∵OC是∠AOB的平分线,PD⊥OB,∴PE=PD,∵PD=2,∴PE=2,即点P到OA的距离是2cm.故答案为B.【分析】过P作PE⊥OA于点E,根据角平分线上的点到角两边的距离相等即可得到PE=PD.从而得出答案.3、【答案】C【考点】作图—基本作图【解析】【解答】解:作一条线段垂直平分线的方法:1.分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线,得到两个交点(两交点交于线段的两侧).2.连接这两个交点即可.故选C【分析】根据角的平分线,线段的在垂直平分线,过直线外一点P作已知直线的垂线按照这些作图要求去做图即可得出正确答案。
中考数学分项解析3--图形的变换(2017版)专题04图形的变换一、选择题1.(2017四川省南充市)如图由7个小正方体组合而成的几何体,它的主视图是()A.B.C.D.【答案】A.考点:简单组合体的三视图.二、填空题2.(2017四川省南充市)如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;②BE⊥DG;③,其中正确结论是(填序号)【答案】①②③.【解析】试题分析:设BE,DG交于O,∵四边形ABCD和EFGC都为正方形,∴BC=CD,CE=CG,∠BCD=∠ECG=90°,∴∠BCE+∠DCE=∠ECG+∠DCE=90°+∠DCE,即∠BCE=∠DCG,在△BCE和△DCG中,∵BC=DC,∠BCE=∠DCG,CE=CG,∴△BCE≌△DCG(SAS),∴BE=DG,∴∠1=∠2,∵∠1+∠4=∠3+∠1=90°,∴∠2+∠3=90°,∴∠BOC=90°,∴BE⊥DG;故①②正确;连接BD,EG,如图所示,∴DO2+BO2=BD2=BC2+CD2=2a2,EO2+OG2=EG2=CG2+CE2=b2,则BG2+DE2=DO2+BO2+EO2+OG2=2a2+b2,故③正确.故答案为:①②③.考点:1.旋转的性质;2.全等三角形的判定与性质;3.正方形的性质.三、解答题3.(2017四川省广安市)在4×4的方格内选5个小正方形,让它们组成一个轴对称图形,请在图中画出你的4种方案.(每个4×4的方格内限画一种)要求:(1)5个小正方形必须相连(有公共边或公共顶点式为相连)(2)将选中的小正方行方格用黑色签字笔涂成阴影图形.(每画对一种方案得2分,若两个方案的图形经过反折、平移、旋转后能够重合,均视为一种方案)【答案】(1)答案见解析;(2)答案见解析.【解析】试题分析:利用轴对称图形的性质用5个小正方形组成一个轴对称图形即可.试题解析:如图..考点:1.利用旋转设计图案;2.利用轴对称设计图案;3.利用平移设计图案.4.(2017四川省眉山市)在如图的正方形网格中,每一个小正方形的边长为1.格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(﹣4,6),(﹣1,4).(1)请在图中的网格平面内建立平面直角坐标系;(2)请画出△ABC关于x轴对称的△A1B1C1;(3)请在y轴上求作一点P,使△PB1C的周长最小,并写出点P的坐标.【答案】(1)答案见解析;(2)答案见解析;(3)P (0,2).【解析】试题分析:(1)根据A点坐标建立平面直角坐标系即可;(2)分别作出各点关于x轴的对称点,再顺次连接即可;(3)作出点B关于y轴的对称点B2,连接B2交y轴于点P,则P点即为所求.试题解析:(1)如图所示;(2)如图,即为所求;(3)作点C关于y轴的对称点C′,连接B1C′交y轴于点P,则点P即为所求.设直线B1C′的解析式为y=kx+b(k≠0),∵B1(﹣2,-2),C′(1,4),∴,解得:,∴直线AB2的解析式为:y=2x+2,∴当x=0时,y=2,∴P(0,2).考点:1.作图﹣轴对称变换;2.勾股定理;3.轴对称﹣最短路线问题;4.最值问题.5.(2017山东省枣庄市)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).(1)请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1;(2)以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.【答案】(1)作图见解析;(2)作图见解析,sin∠A2C2B2=.【解析】试题分析:(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点位置,再利用锐角三角三角函数关系得出答案.试题解析:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,由图形可知,∠A2C2B2=∠ACB,过点A作AD⊥BC交BC的延长线于点D,由A(2,2),C(4,﹣4),B(4,0),易得D(4,2),故AD=2,CD=6,AC==,∴sin∠ACB===,即sin∠A2C2B2=.考点:1.作图﹣位似变换;2.作图﹣平移变换;3.解直角三角形.6.(2017广西四市)如图,在平面直角坐标系中,△ABC 的三个顶点分别为A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).(1)把△ABC向上平移3个单位后得到△A1B1C1,请画出△A1B1C1并写出点B1的坐标;(2)已知点A与点A2(2,1)关于直线l成轴对称,请画出直线l及△ABC关于直线l对称的△A2B2C2,并直接写出直线l的函数解析式.【答案】(1)作图见解析;(2)y=﹣x.【解析】试题分析:(1)根据图形平移的性质画出△A1B1C1并写出点B1的坐标即可;(2)连接AA2,作线段AA2的垂线l,再作△ABC关于直线l对称的△A2B2C2即可.试题解析:(1)如图,△A1B1C1即为所求,B1(﹣2,﹣1);(2)如图,△A2B2C2即为所求,直线l的函数解析式为y=﹣x.考点:1.作图﹣轴对称变换;2.待定系数法求一次函数解析式;3.作图﹣平移变换.7.(2017江苏省连云港市)如图,在平面直角坐标系xOy 中,过点A(﹣2,0)的直线交y轴正半轴于点B,将直线AB绕着点顺时针旋转90°后,分别与x轴、y轴交于点D.C.(1)若OB=4,求直线AB的函数关系式;(2)连接BD,若△ABD的面积是5,求点B的运动路径长.【答案】(1)y=2x+4;(2).【解析】试题分析:(1)依题意求出点B坐标,然后用待定系数法求解析式;(2)设OB=m,则AD=m+2,根据三角形面积公式得到关于m的方程,解方程求得m的值,然后根据弧长公式即可求得.试题解析:(1)∵OB=4,∴B(0,4).∵A(﹣2,0),设直线AB的解析式为y=kx+b,则,解得,∴直线AB的解析式为y=2x+4;(2)设OB=m,则AD=m+2,∵△ABD的面积是5,∴ADOB=5,∴(m+2)m=5,即,解得或(舍去),∵∠BOD=90°,∴点B的运动路径长为:.考点:1.一次函数图象与几何变换;2.轨迹;3.弧长的计算.8.(2017河北省)如图,AB=16,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O逆时针旋转270°后得到扇形COD,AP,BQ分别切优弧于点P,Q,且点P,Q在AB异侧,连接OP.(1)求证:AP=BQ;(2)当BQ=时,求的长(结果保留π);(3)若△APO的外心在扇形COD的内部,求OC的取值范围.【答案】(1)见解析;(2);(3)4<OC<8.【解析】试题分析:(1)连接OQ.只要证明Rt△APO≌Rt△BQO即可解决问题;(2)求出优弧DQ的圆心角以及半径即可解决问题;(3)由△APO的外心是OA的中点,OA=8,推出△APO的外心在扇形COD的内部时,OC的取值范围为4<OC<8;试题解析:(1)证明:连接OQ.∵AP、BQ是⊙O的切线,∴OP⊥AP,OQ⊥BQ,∴∠APO=∠BQO=90°,在Rt△APO和Rt△BQO中,∵OA=OB,OP=OQ,∴Rt△APO≌Rt△BQO,∴AP=BQ;(2)∵Rt△APO≌Rt△BQO,∴∠AOP=∠BOQ,∴P、O、Q 三点共线,∵在Rt△BOQ中,cosB=,∴∠B=30°,∠BOQ=60°,∴OQ=OB=4,∵∠COD=90°,∴∠QOD=90°+60°=150°,∴优弧的长==;(3)∵△APO的外心是OA的中点,OA=8,∴△APO的外心在扇形COD的内部时,OC的取值范围为4<OC<8.考点:1.切线的性质;2.弧长的计算;3.旋转的性质.9.(2017湖北省襄阳市)如图,在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E,F,DF与AC交于点M,DE与BC交于点N.(1)如图1,若CE=CF,求证:DE=DF;(2)如图2,在∠EDF绕点D旋转的过程中:①探究三条线段AB,CE,CF之间的数量关系,并说明理由;②若CE=4,CF=2,求DN的长.【答案】(1)证明见解析;(2)①AB2=4CECF;②.【解析】试题分析:(1)根据等腰直角三角形的性质得到∠BCD=∠ACD=45°,∠BCE=∠ACF=90°,于是得到∠DCE=∠DCF=135°,根据全等三角形的性质即可的结论;(2)①证得△CDF∽△CED,根据相似三角形的性质得到,即CD2=CECF,根据等腰直角三角形的性质得到CD=AB,于是得到AB2=4CECF;②如图,过D作DG⊥BC于G,于是得到∠DGN=∠ECN=90°,CG=DG,当CE=4,CF=2时,求得CD=,推出△CEN∽△GDN,根据相似三角形的性质得到=2,根据勾股定理即可得到结论.试题解析:(1)证明:∵∠ACB=90°,AC=BC,AD=BD,∴∠BCD=∠ACD=45°,∠BCE=∠ACF=90°,∴∠DCE=∠DCF=135°,在△DCE与△DCF中,∵CE=CF,∠DCE=∠DCF,CD=CD,∴△DCE≌△DCF,∴DE=DF;考点:1.几何变换综合题;2.探究型;3.和差倍分;4.综合题.10.(2017山东省济宁市)实验探究:(1)如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开;再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN.请你观察图1,猜想∠MBN的度数是多少,并证明你的结论.(2)将图1中的三角形纸片BMN剪下,如图2,折叠该纸片,探究MN与BM的数量关系,写出折叠方案,并结合方案证明你的结论.【答案】(1)∠MBN=30°;(2)MN=BM.【解析】试题分析:(1)猜想:∠MBN=30°.只要证明△ABN是等边三角形即可;(2)结论:MN=BM.折纸方案:如图2中,折叠△BMN,使得点N落在BM上O 处,折痕为MP,连接OP.理由:由折叠可知△MOP≌△MNP,∴MN=OM,∠OMP=∠NMP=∠OMN=30°=∠B,∠MOP=∠MNP=90°,∴∠BOP=∠MOP=90°,∵OP=OP,∴△MOP≌△BOP,∴MO=BO=BM,∴MN=BM.考点:1.翻折变换(折叠问题);2.矩形的性质;3.剪纸问题.11.(2017广西四市)如图,已知抛物线与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△PAD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,均为定值,并求出该定值.【答案】(1)a=,A(﹣,0),抛物线的对称轴为x=;(2)点P的坐标为(,2)或(,0)或(,﹣4);(3).【解析】试题分析:(1)由点C的坐标为(0,3),可知﹣9a=3,故此可求得a的值,然后令y=0得到关于x的方程,解关于x的方程可得到点A和点B的坐标,最后利用抛物线的对称性可确定出抛物线的对称轴;(3)设直线MN的解析式为y=kx+1,接下来求得点M和点N的横坐标,于是可得到AN的长,然后利用特殊锐角三角函数值可求得AM的长,最后将AM和AN的长代入化简即可.试题解析:(1)∵C(0,3),∴﹣9a=3,解得:a=.令y=0得:,∵a≠0,∴,解得:x=﹣或x=,∴点A的坐标为(﹣,0),B(,0),∴抛物线的对称轴为x=.(2)∵O A=,OC=3,∴tan∠CAO=,∴∠CAO=60°.∵AE为∠BAC的平分线,∴∠DAO=30°,∴DO=AO=1,∴点D的坐标为(0,1).设点P的坐标为(,a).依据两点间的距离公式可知:AD2=4,AP2=12+a2,DP2=3+(a﹣1)2.当AD=PA时,4=12+a2,方程无解.当AD=DP时,4=3+(a﹣1)2,解得a=2或a=0,∴点P 的坐标为(,2)或(,0).当AP=DP时,12+a2=3+(a﹣1)2,解得a=﹣4,∴点P 的坐标为(,﹣4).综上所述,点P的坐标为(,2)或(,0)或(,﹣4).(3)设直线AC的解析式为y=mx+3,将点A的坐标代入得:,解得:m=,∴直线AC的解析式为.设直线MN的解析式为y=kx+1.把y=0代入y=kx+1得:kx+1=0,解得:x=,∴点N的坐标为(,0),∴AN==.将与y=kx+1联立解得:x=,∴点M的横坐标为.过点M作MG⊥x轴,垂足为G.则AG=.∵∠MAG=60°,∠AGM=90°,∴AM=2AG==,∴====.考点:1.二次函数综合题;2.旋转的性质;3.定值问题;4.动点型;5.分类讨论;6.压轴题.12.(2017四川省南充市)如图1,已知二次函数(a、b、c为常数,a≠0)的图象过点O(0,0)和点A(4,0),函数图象最低点M的纵坐标为,直线l的解析式为y=x.(1)求二次函数的解析式;(2)直线l沿x轴向右平移,得直线l′,l′与线段OA 相交于点B,与x轴下方的抛物线相交于点C,过点C作CE⊥x轴于点E,把△BCE沿直线l′折叠,当点E恰好落在抛物线上点E′时(图2),求直线l′的解析式;(3)在(2)的条件下,l′与y轴交于点N,把△BON 绕点O逆时针旋转135°得到△B′ON′,P为l′上的动点,当△PB′N′为等腰三角形时,求符合条件的点P的坐标.【答案】(1);(2)y=x﹣3;(3)P坐标为(0,﹣3)或(,)或(,).【解析】试题分析:(1)由题意抛物线的顶点坐标为(2,),设抛物线的解析式为,把(0,0)代入得到a=,即可解决问题;(3)分两种情形求解即可①当P1与N重合时,△P1B′N′是等腰三角形,此时P1(0,﹣3).②当N′=N′B′时,设P(m,m﹣3),列出方程解方程即可;试题解析:(1)由题意抛物线的顶点坐标为(2,),设抛物线的解析式为,把(0,0)代入得到a=,∴抛物线的解析式为,即.(2)如图1中,设E(m,0),则C(m,),B(,0),∵E′在抛物线上,∴E、B关于对称轴对称,∴=2,解得m=1或6(舍弃),∴B(3,0),C(1,﹣2),∴直线l′的解析式为y=x﹣3.(3)如图2中,①当P1与N重合时,△P1B′N′是等腰三角形,此时P1(0,﹣3).②当N′=N′B′时,设P(m,m﹣3),则有,解得m=或,∴P2(,),P3(,).综上所述,满足条件的点P坐标为(0,﹣3)或(,)或(,).考点:1.二次函数综合题;2.几何变换综合题;3.分类讨论;4.压轴题.13.(2017四川省达州市)如图1,点A坐标为(2,0),以OA为边在第一象限内作等边△OAB,点C为x轴上一动点,且在点A右侧,连接BC,以BC为边在第一象限内作等边△BCD,连接AD交BC于E.(1)①直接回答:△OBC与△ABD全等吗?②试说明:无论点C如何移动,AD始终与OB平行;(2)当点C运动到使AC2=AEAD时,如图2,经过O、B、C三点的抛物线为y1.试问:y1上是否存在动点P,使△BEP为直角三角形且BE为直角边?若存在,求出点P 坐标;若不存在,说明理由;(3)在(2)的条件下,将y1沿x轴翻折得y2,设y1与y2组成的图形为M,函数的图象l与M有公共点.试写出:l与M的公共点为3个时,m的取值.【答案】(1)①△OBC与△ABD全等;②证明见解析;(2)P(3,)或(﹣2,);(3)﹣≤m<0.【解析】试题分析:(1)①利用等边三角形的性质证明△OBC≌△ABD;②证明∠OBA=∠BAD=60°,可得OB∥AD;(2)首先证明DE⊥BC,再求直线AE与抛物线的交点就是点P,所以分别求直线AE和抛物线y1的解析式组成方程组,求解即可;(3)先画出如图3,根据图形画出直线与图形M有个公共点时,两个边界的直线,上方到,将向下平移即可满足l与图形M有3个公共点,一直到直线l与y2相切为止,主要计算相切时,列方程组,确定△≥0时,m的值即可.试题解析:(1)①△OBC与△ABD全等,理由是:如图1,∵△OAB和△BCD是等边三角形,∴∠OBA=∠CBD=60°,OB=AB,BC=BD,∴∠OBA+∠ABC=∠CBD+∠ABC,即∠OBC=∠ABD,∴△OBC≌△ABD(SAS);②∵△OBC≌△ABD,∴∠BAD=∠BOC=60°,∴∠OBA=∠BAD,∴OB∥AD,∴无论点C如何移动,AD始终与OB平行;(2)如图2,∵AC2=AEAD,∴,∵∠EAC=∠DAC,∴△AEC∽△ACD,∴∠ECA=∠ADC,∵∠BAD=∠BAO=60°,∴∠DAC=60°,∵∠BED=∠AEC,∴∠ACB=∠ADB,∴∠ADB=∠ADC,∵BD=CD,∴DE⊥BC,Rt△ABE中,∠BAE=60°,∴∠ABE=30°,∴AE=AB=×2=1,Rt△AEC 中,∠EAC=60°,∴∠ECA=30°,∴AC=2AE=2,∴C(4,0),等边△OAB中,过B作BH⊥x轴于H,∴BH==,∴B (1,),设y1的解析式为:y=ax(x﹣4),把B(1,)代入得:=a(1﹣4),a=﹣,∴设y1的解析式为:y1=﹣x(x﹣4)=,过E作EG⊥x轴于G,Rt△AGE中,AE=1,∴AG=AE=,EG==,∴E(,),设直线AE的解析式为:y=kx+b,把A(2,0)和E(,)代入得:,解得:,∴直线AE的解析式为:,则,解得:,,∴P(3,)或(﹣2,);(3)如图3,y1==,顶点(2,),∴抛物线y2的顶点为(2,﹣),∴y2=,当m=0时,与图形M两公共点,当y2与l相切时,即有一个公共点,l与图形M有3个公共点,则:,,x2﹣7x﹣3m=0,△=(﹣7)2﹣4×1×(﹣3m)≥0,m≥﹣,∴当l与M的公共点为3个时,m的取值是:﹣≤m<0.考点:1.二次函数综合题;2.翻折变换(折叠问题);3.动点型;4.存在型;5.分类讨论;6.压轴题.14.(2017江苏省连云港市)如图,已知二次函数(a≠0)的图象经过点A(3,0),B(4,1),且与y轴交于点C,连接AB、AC、BC.(1)求此二次函数的关系式;(2)判断△ABC的形状;若△ABC的外接圆记为⊙M,请直接写出圆心M的坐标;(3)若将抛物线沿射线BA方向平移,平移后点A、B、C 的对应点分别记为点A1、B1、C1,△A1B1C1的外接圆记为⊙M1,是否存在某个位置,使⊙M1经过原点?若存在,求出此时抛物线的关系式;若不存在,请说明理由.【答案】(1);(2)直角三角形,M(2,2);(3)或.【解析】试题分析:(1)直接利用待定系数法求出a,b的值进而得出答案;(2)首先得出∠OAC=45°,进而得出AD=BD,求出∠OAC=45°,即可得出答案;(2)△ABC是直角三角形,过点B作BD⊥x轴于点D,易知点C坐标为:(0,3),所以OA=OC,所以∠OAC=45°,又∵点B坐标为:(4,1),∴AD=BD,∴∠OAC=45°,∴∠BAC=180°﹣45°﹣45°=90°,∴△ABC是直角三角形,圆心M的坐标为:(2,2);(3)存在.取BC的中点M,过点M作ME⊥y轴于点E,∵M的坐标为:(2,2),∴MC=,OM=,∴∠MOA=45°,又∵∠BAD=45°,∴OM∥AB,∴要使抛物线沿射线BA方向平移,且使⊙M1经过原点,则平移的长度为:或;∵∠BAD=45°,∴抛物线的顶点向左、向下均分别平移个单位长度或个单位长度,∵,∴平移后抛物线的关系式为:,即或,即.综上所述,存在一个位置,使⊙M1经过原点,此时抛物线的关系式为:或.考点:1.二次函数综合题;2.平移的性质;3.动点型;4.存在型;5.压轴题.15.(2017浙江省绍兴市)如图,已知□ABCD,AB∥x 轴,AB=6,点A的坐标为(1,-4),点D的坐标为(-3,4),点B在第四象限,点P是□ABCD边上一个动点.(1)若点P在边BC上,PD=CD,求点P的坐标.(2)若点P在边AB、AD上,点P关于坐标轴对称的点Q,落在直线上,求点P的坐标.(3)若点P在边AB,AD,CD上,点G是AD与y轴的交点,如图,过点作y轴的平行线PM,过点G作x轴的平行线GM,它们相交于点M,将△PGM沿直线PG翻折,当点M的对应点落在坐标轴上时,求点P的坐标(直接写出答案).【答案】(1)P(3,4);(2)(-3,4)或(-1,0)或(5,-4)或(3,-4);(3)P(2,-4)或(-,3)或(-,4)或(,4).【解析】试题分析:(1)点P在BC上,要使PD=CD,只有P与C 重合;(2)首先要分点P在边AB,AD上时讨论,根据“点P关于坐标轴对称的点Q”,即还要细分“点P关于x轴的对称点Q和点P关于y轴的对称点Q”讨论,根据关于x 轴、y轴对称点的特征(关于x轴对称时,点的横坐标不变,纵坐标变成相反数;关于y轴对称时,相反;)将得到的点Q的坐标代入直线y=x-1,即可解答;(3)在不同边上,根据图象,点M翻折后,点M’落在x 轴还是y轴,可运用相似求解.试题解析:(1)∵CD=6,∴点P与点C重合,∴点P的坐标是(3,4).(3)因为直线AD为y=-2x-2,所以G(0,-2).①如图,当点P在CD边上时,可设P(m,4),且-3≤m≤3,则可得M′P=PM=4+2=6,M′G=GM=|m|,易证得△OGM′∽△HM′P,则,即,则OM′=,在Rt△OGM′中,由勾股定理得,,解得m=-或,则P(-,4)或(,4);②如下图,当点P在AD边上时,设P(m,-2m-2),则PM′=PM=|-2m|,GM′=MG=|m|,易证得△OGM′∽△HM′P,则,即,则OM′=,在Rt△OGM′中,由勾股定理得,,整理得m=-,则P(-,3);如下图,当点P在AB边上时,设P(m,-4),此时M′在y轴上,则四边形P M′GM是正方形,所以GM=PM=4-2=2,则P(2,-4).综上所述,点P的坐标为(2,-4)或(-,3)或(-,4)或(,4).考点:1.一次函数综合题;2.平行四边形的性质;3.翻折变换(折叠问题);4.动点型;5.分类讨论;6.压轴题.。
一、选择题目1.(2017四川省南充市)如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为()A.30°B.32°C.42°D.58°【答案】B.【解析】试题分析:如图,过点A作AB∥b,∴∠3=∠1=58°,∵∠3+∠4=90°,∴∠4=90°﹣∠3=32°,∵a∥b,AB∥B,∴AB∥b,∴∠2=∠4=32°,故选B.考点:平行线的性质.2.(2017四川省南充市)如图,在Rt△ABC中,AC=5cm,BC=12cm,∠ACB=90°,把Rt△ABC所在的直线旋转一周得到一个几何体,则这个几何体的侧面积为()A.60πcm2B.65πcm2C.120πcm2D.130πcm2【答案】B.考点:1.圆锥的计算;2.点、线、面、体.学科*网3.(2017四川省绵阳市)“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB=8cm,圆柱体部分的高BC=6cm,圆锥体部分的高CD=3cm,则这个陀螺的表面积是()A.68πcm2B.74πcm2C.84πcm2D.100πcm2【答案】C.【解析】试题分析:∵底面圆的直径为8cm,高为3cm,∴母线长为5cm,∴其表面积=π×4×5+42π+8π×6=84πcm2,故选C.考点:1.圆锥的计算;2.几何体的表面积.4.(2017四川省达州市)已知直线a∥b,一块含30°角的直角三角尺如图放置.若∠1=25°,则∠2等于()A.50°B.55°C.60°D.65°【答案】B.【解析】试题分析:如图所示:由三角形的外角性质得:∠3=∠1+30°=55°,∵a∥b,∴∠2=∠3=55°;故选B.考点:平行线的性质.5.(2017四川省达州市)下列命题是真命题的是()A.若一组数据是1,2,3,4,5,则它的方差是3B.若分式方程()()41111mx x x-=+--有增根,则它的增根是1C.对角线互相垂直的四边形,顺次连接它的四边中点所得四边形是菱形D.若一个角的两边分别与另一个角的两边平行,则这两个角相等【答案】C.【解析】试题分析:A.若一组数据是1,2,3,4,5,则它的中位数是3,故错误,是假命题;B.若分式方程()()41111mx x x-=+--有增根,则它的增根是1或﹣1,故错误,是假命题;C.对角线互相垂直的四边形,顺次连接它的四边中点所得四边形是菱形,正确,是真命题;D.若一个角的两边分别与另一个角的两边平行,则这两个角相等或互补,故错误,是假命题.故选C.学科&网考点:命题与定理.6.(2017四川省达州市)如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB=4,AD=3,则顶点A在整个旋转过程中所经过的路径总长为()A.2017πB.2034πC.3024πD.3026π【答案】D.【解析】试题分析:∵AB =4,BC =3,∴AC =BD =5,转动一次A 的路线长是:904180π⨯ =2π,转动第二次的路线长是:905180π⨯ =52π,转动第三次的路线长是:903180π⨯ =32π,转动第四次的路线长是:0,以此类推,每四次循环,故顶点A 转动四次经过的路线长为:52π+32π+2π=6π,∵2017÷4=504…1,∴顶点A 转动四次经过的路线长为:6π×504+2π=3026π,故选D .考点:1.轨迹;2.矩形的性质;3.旋转的性质;4.规律型;5.综合题.7.(2017山东省枣庄市)如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45° 【答案】A .考点:平行线的性质.8.(2017山西省)如图,直线a ,b 被直线c 所截,下列条件不能判定直线a 与b 平行的是( )A .∠1=∠3B .∠2+∠4=180°C .∠1=∠4D .∠3=∠4【答案】D . 【解析】试题分析:A .∵∠1=∠3,∴a ∥b ,故A 正确;B .∵∠2+∠4=180°,∠2+∠1=180°,∴∠1=∠4,∵∠4=∠3,∴∠1=∠3,∴a ∥b ,故B 正确;C . ∵∠1=∠4,∠4=∠3,∴∠1=∠3,∴a ∥b ,故C 正确;D .∠3和∠4是对顶角,不能判断a 与b 是否平行,故D 错误. 故选D .考点:平行线的判定.学&科网9.(2017山西省)2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为( )A .818610⨯吨 B .918.610⨯吨 C .101.8610⨯吨 D .110.18610⨯吨【答案】C .考点:科学记数法—表示较大的数.10.(2017广东省)已知∠A =70°,则∠A 的补角为( )A .110°B .70°C .30°D .20° 【答案】A . 【解析】试题分析:∵∠A =70°,∴∠A 的补角为110°,故选A . 考点:余角和补角.11.(2017广西四市)如图,△ABC 中,AB >AC ,∠CAD 为△ABC 的外角,观察图中尺规作图的痕迹,则下列结论错误的是( )A.∠DAE=∠B B.∠EAC=∠C C.AE∥BC D.∠DAE=∠EAC 【答案】D.【解析】试题分析:根据图中尺规作图的痕迹,可得∠DAE=∠B,故A选项正确,∴AE∥BC,故C选项正确,∴∠EAC=∠C,故B选项正确,∵AB>AC,∴∠C>∠B,∴∠CAE>∠DAE,故D选项错误,故选D.考点:1.作图—复杂作图;2.平行线的判定与性质;3.三角形的外角性质.12.(2017河北省)用量角器测得∠MON的度数,下列操作正确的是()A. B.C.D.【答案】C.【解析】试题分析:量角器的圆心一定要与O重合,故选C.考点:角的概念.13.(2017河北省)如图,码头A在码头B的正西方向,甲、乙两船分别从A,B同时出发,并以等速驶向某海域,甲的航向是北偏东35°,为避免行进中甲、乙相撞,则乙的航向不能是()A .北偏东55°B .北偏西55°C .北偏东35°D .北偏西35° 【答案】D .考点:方向角.14.(2017湖北省襄阳市)如图,BD ∥AC ,BE 平分∠ABD ,交AC 于点E .若∠A =50°,则∠1的度数为( )A .65°B .60°C .55°D .50° 【答案】A . 【解析】试题分析:∵BD ∥AC ,∠A =50°,∴∠ABD =130°,又∵BE 平分∠ABD ,∴∠1=12∠ABD =65°,故选A .考点:平行线的性质.学科*网 二、填空题目15.(2017四川省广安市)如图,若∠1+∠2=180°,∠3=110°,则∠4= .【答案】110°.【解析】试题分析:如图,∵∠1+∠2=180°,∴a∥b,∴∠3=∠4,又∵∠3=110°,∴∠4=110°.故答案为:110°.考点:平行线的判定与性质.16.(2017山东省济宁市)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧在第二象限内交于点P(a,b),则a与b的数量关系是.【答案】a+b=0.考点:1.作图—基本作图;2.坐标与图形性质;3.点到直线的距离.17.(2017江苏省盐城市)如图,在边长为1的小正方形网格中,将△ABC绕某点旋转到△A'B'C'的位置,则点B运动的最短路径长为..【解析】试题分析:如图作线段AA ′、CC ′的垂直平分线相交于点P ,点P 即为旋转中心,观察图象可知,旋转角为90°(逆时针旋转)时B 运动的路径长最短,PB =2223+=13,∴B 运动的最短路径长为=9013180π⋅ =132π,故答案为:132π.学科*网考点:1.轨迹;2.旋转的性质.18.(2017浙江省台州市)如图,已知直线a ∥b ,∠1=70°,则∠2= .【答案】110°.考点:平行线的性质.三、解答题19.(2017四川省达州市)如图,在△ABC 中,点O 是边AC 上一个动点,过点O 作直线EF ∥BC 分别交∠ACB 、外角∠ACD 的平分线于点E 、F . (1)若CE =8,CF =6,求OC 的长;(2)连接AE 、AF .问:当点O 在边AC 上运动到什么位置时,四边形AECF 是矩形?并说明理由.【答案】(1)5;(2)当点O在边AC上运动到AC中点时,四边形AECF是矩形.【解析】试题分析:(1)根据平行线的性质以及角平分线的性质得出∠OEC=∠OCE,∠OFC=∠OCF,证出OE=OC=OF,∠ECF=90°,由勾股定理求出EF,即可得出答案;(2)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:连接AE、AF,如图所示:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.考点:1.矩形的判定;2.平行线的性质;3.等腰三角形的判定与性质;4.探究型;5.动点型.20.(2017江苏省盐城市)如图,△ABC是一块直角三角板,且∠C=90°,∠A=30°,现将圆心为点O的圆形纸片放置在三角板内部.(1)如图①,当圆形纸片与两直角边AC、BC都相切时,试用直尺与圆规作出射线CO;(不写作法与证明,保留作图痕迹)(2)如图②,将圆形纸片沿着三角板的内部边缘滚动1周,回到起点位置时停止,若BC=9,圆形纸片的半径为2,求圆心O运动的路径长.学科&网【答案】(1)作图见解析;(2)15+ 【解析】试题分析:(1)作∠ACB 的平分线得出圆的一条弦,再作此弦的中垂线可得圆心O ,作射线CO 即可; (2)添加如图所示辅助线,圆心O 的运动路径长为12OO O C ∆,先求出△ABC 的三边长度,得出其周长,证四边形OEDO 1、四边形O 1O 2HG 、四边形OO 2IF 均为矩形、四边形OECF 为正方形,得出∠OO 1O 2=60°=∠ABC 、∠O 1OO 2=90°,从而知△OO 1O 2∽△CBA ,利用相似三角形的性质即可得出答案. 试题解析:(1)如图①所示,射线OC 即为所求;(2)如图2,圆心O 的运动路径长为12OO O C ∆,过点O 1作O 1D ⊥BC 、O 1F ⊥AC 、O 1G ⊥AB ,垂足分别为点D 、F 、G ,过点O 作OE ⊥BC ,垂足为点E ,连接O 2B ,过点O 2作O 2H ⊥AB ,O 2I ⊥AC ,垂足分别为点H 、I ,在Rt △ABC 中,∠ACB =90°、∠A =30°,∴AC=tan 30BC=933=93,AB =2BC =18,∠ABC =60°,∴C △ABC =9+93+18=27+93,∵O 1D ⊥BC 、O 1G ⊥AB ,∴D 、G 为切点,∴BD =BG ,在Rt △O 1BD 和Rt △O 1BG 中,∵BD =BG ,O 1B =O 1B ,∴△O 1BD ≌△O 1BG (HL ),∴∠O 1BG =∠O 1BD =30°,在Rt△O1BD中,∠O1DB=90°,∠O1BD=30°,∴BD=1tan 30O D==,∴OO1=9﹣2﹣=7﹣O1D=OE=2,O1D⊥BC,OE⊥BC,∴O1D∥OE,且O1D=OE,∴四边形OEDO1为平行四边形,∵∠OED=90°,∴四边形OEDO1为矩形,同理四边形O1O2HG、四边形OO2IF、四边形OECF为矩形,又OE=OF,∴四边形OECF为正方形,∵∠O1GH=∠CDO1=90°,∠ABC=60°,∴∠GO1D=120°,又∵∠FO1D=∠O2O1G=90°,∴∠OO1O2=360°﹣90°﹣90°=60°=∠ABC,同理,∠O1OO2=90°,∴△OO1O2∽△CBA,∴1212OO OABCC O OC BC∆∆==,∴12OO OC∆=15+,即圆心O运动的路径长为15+考点:1.轨迹;2.切线的性质;3.作图—复杂作图;4.综合题.21.(2017江苏省连云港市)如图,在平面直角坐标系xOy中,过点A(﹣2,0)的直线交y轴正半轴于点B,将直线AB绕着点顺时针旋转90°后,分别与x轴、y轴交于点D.C.(1)若OB=4,求直线AB的函数关系式;(2)连接BD,若△ABD的面积是5,求点B的运动路径长.学科*网【答案】(1)y =2x +4;(21112.【解析】试题分析:(1)依题意求出点B 坐标,然后用待定系数法求解析式;(2)设OB =m ,则AD =m +2,∵△ABD 的面积是5,∴12AD •OB =5,∴12(m +2)•m =5,即22100m m +-= ,解得111m 或111m(舍去),∵∠BOD =90°,∴点B 的运动路径长为:1111211142.考点:1.一次函数图象与几何变换;2.轨迹;3.弧长的计算.22.(2017重庆市B 卷)如图,直线EF ∥GH ,点A 在EF 上,AC 交GH 于点B ,若∠F AC =72°,∠ACD =58°,点D 在GH 上,求∠BDC 的度数.【答案】50°. 【解析】试题分析:由平行线的性质求出∠ABD =108°,由三角形的外角性质得出∠ABD =∠ACD +∠BDC ,即可求出∠BDC 的度数.试题解析:∵EF ∥GH ,∴∠ABD +∠F AC =180°,∴∠ABD =180°﹣72°=108°,∵∠ABD=∠ACD+∠BDC,∴∠BDC=∠ABD﹣∠ACD=108°﹣58°=50°.考点:平行线的性质.祝你考试成功!祝你考试成功!。
专题08 平面几何基础一、选择题1. (2017浙江衢州第5题)如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于()A.30° B.40° C.60° D.70°【答案】A.【解析】试题解析:如图,∵AB∥CD,∠A=70°,∴∠1=∠A=70°,∵∠1=∠C+∠E,∠C=40°,∴∠E=∠1﹣∠E=70°﹣40°=30°.故选A.考点:1.平行线的性质;2.三角形的外角性质.2. (2017浙江衢州第7题)下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线,则对应选项中作法错误的是()A.①B.②C.③D.④【答案】C.考点:基本作图.3. (2017浙江宁波第7题)已知直线m n∥,将一块含30°角的直角三角板ABC按如图方式放置(30( )∠°,则2ABC==∠°),其中A,B两点分别落在直线m,n上,若120∠的度数为A.20°B.30°C.45°D.50°【答案】D.【解析】试题解析:如图,∵m n∥∴∠2=∠3+∠1∵∠1=20°,∠3=30°∴∠2=50°故选D.考点:平行线的性质.4. (2017甘肃庆阳第6题)将一把直尺与一块三角板如图放置,若∠1=45°,则∠2为()2A.115°B.120°C.135°D.145°【答案】C.【解析】试题解析:如图,由三角形的外角性质得,∠3=90°+∠1=90°+45°=135°,∵直尺的两边互相平行,∴∠2=∠3=135°.故选C.考点:平行线的性质;余角和补角.5. (2017广西贵港第15题)如图,AB CD,点E在AB上,点F在CD上,如果:3:4,40CFE EFB ABF∠∠=∠=,那么BEF∠的度数为.【答案】60°【解析】试题解析:∵AB∥CD,∠ABF=40°,∴∠CFB=180°﹣∠B=140°,又∵∠CFE:∠EFB=3:4,∴∠CFE=37∠CFB=60°,∵AB∥CD,∴∠BEF=∠CFE=60°考点:平行线的性质.6. (2017贵州安顺第5题)如图,已知a∥b,小华把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为()A.100°B.110°C.120°D.130°【答案】D.【解析】试题解析:如图,∵∠1+∠3=90°,∴∠3=90°﹣40°=50°,∵a∥b,∴∠2+∠3=180°.∴∠2=180°﹣50°=130°.故选D.考点:平行线的性质.7.(2017湖南怀化第5题)如图,直线a b∠°,则2∥,150=∠的度数是( )A.130°B.50°C.40°D.150°4【答案】【解析】试题解析:如图:∵直线a∥直线b,∠1=50°,∴∠1=∠3=50°,∴∠2=∠3=50°.故选:B.考点:平行线的性质.8.(2017江苏盐城第12题)在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1= °.【答案】120°.【解析】试题解析:由三角形的外角的性质可知,∠1=90°+30°=120°.考点:三角形的外角性质;三角形内角和定理.9.(2017贵州黔东南州第2题)如图,∠ACD=120°,∠B=20°,则∠A的度数是()A.120°B.90° C.100°D.30°【答案】C.【解析】试题解析:∠A=∠ACD﹣∠B6 =120°﹣20°=100°,故选:C .考点:三角形的外角性质.10.(2017山东烟台第4题)如图所示的工件,其俯视图是( )【答案】B .考点:简单组合体的三视图.11. (2017山东烟台第5题)某城市几条道路的位置关系如图所示,已知CD AB //,AE 与AB 的夹角为048,若CF 与EF 的长度相等,则C 的度数为( )A .048B .040C .030D .024【答案】D .【解析】试题解析:∵AB ∥CD ,∴∠1=∠BAE=48°,∵∠1=∠C+∠E ,∵CF=EF ,∴∠C=∠E,∴∠C=12∠1=12×48°=24°.故选D.考点:等腰三角形的性质;平行线的性质.12.(2017贵州黔东南州第4题)如图所示,所给的三视图表示的几何体是()A.圆锥 B.正三棱锥 C.正四棱锥 D.正三棱柱【答案】D.考点:由三视图判断几何体.13.(2017甘肃兰州第2题)如图所示,该几何体的左视图是( )A B C D【答案】D【解析】试题解析:在三视图中,实际存在而被遮挡的线用虚线表示,故选D.考点:简单组合体的三视图.14.(2017江苏盐城第2题)如图是某个几何体的主视图、左视图、俯视图,该几何体是()A.圆柱 B.球C.圆锥 D.棱锥【答案】C【解析】试题解析:由于主视图与左视图是三角形,俯视图是圆,故该几何体是圆锥,故选C考点:由三视图判断几何体.15.(2017湖北武汉第7题)某物体的主视图如图所示,则该物体可能为()A .B . C.D .【答案】D【解析】试题解析:只有选项A的图形的主视图是拨给图形,其余均不是.故选A.考点:三视图.16.(2017贵州安顺第4题)如图是一个圆柱体和一个长方体组成的几何体,圆柱的下底面紧贴在长方体的8上底面上,那么这个几何体的俯视图为()A. B.C.D.【答案】C.【解析】试题解析:从上边看矩形内部是个圆,故选C.考点:简单组合体的三视图.17.(2017广西贵港第3题)如图是一个空心圆柱体,它的左视图是()A. B. C. D.【答案】B【解析】试题解析:从左边看是三个矩形,中间矩形的左右两边是虚线,故选:B.考点:简单几何体的三视图.18.(2017浙江衢州第2题)下图是由四个相同的小立方块搭成的几何体,它的主视图是【答案】D.【解析】试题解析:如图是由四个相同的小立方体搭成的几何体,它的主视图是.故选D.考点:简单组合体的三视图.)19.(2017山东德州第4题)如图,两个等直径圆柱构成如图所示的T形管道,则其俯视图正确的是(【答案】B( )20.(2017浙江宁波第5题)如图所示的几何体的俯视图为【答案】D【解析】试题解析:从上往下看,易得一个正六边形和圆.故选D.考点:三视图.21.(2017甘肃庆阳第4题)某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是()10A. B. C. D.【答案】D.【解析】试题解析:空心圆柱由上向下看,看到的是一个圆环,并且大小圆都是实心的.故选D.考点:简单组合体的三视图.22.(2017四川泸州第4题)如图是一个由4个相同的正方体组成的立体图形,它的左视图是()A. B. C. D.【答案】D.【解析】试题解析:左视图有2行,每行一个小正方体.故选D.考点:三视图.23.(2017四川宜宾第3题)下面的几何体中,主视图为圆的是()【答案】C.12考点:简单几何体的三视图.24. (2017四川宜宾第4题)如图,BC ∥DE ,若∠A=35°,∠C=24°,则∠E 等于( )A .24°B .59°C .60°D .69°【答案】B.【解析】试题解析:∵∠A=35°,∠C=24°,∴∠CBE=∠A+∠C=59°,∵BC ∥DE ,∴∠E=∠CBE=59°;故选B .考点:平行线的性质.25.(2017四川自贡第5题)如图,a ∥b ,点B 在直线a 上,且AB ⊥BC ,∠1=35°,那么∠2=()A .45°B .50°C .55°D .60°【答案】C.【解析】试题解析:如图∵AB⊥BC,∠1=35°,∴∠2=90°﹣35°=55°.∵a∥b,∴∠2=∠3=55°.故选C.考点:平行线的性质.26. (2017四川自贡第8题)下面是几何体中,主视图是矩形的()【答案】A.考点:三视图.27.(2017新疆建设兵团第2题)某几何体的三视图如图所示,则该几何体是()A.球B.圆柱 C.三棱锥D.圆锥【答案】D.【解析】试题解析:根据主视图是三角形,圆柱和球不符合要求,A、B错误;根据俯视图是圆,三棱锥不符合要求,C错误;根据几何体的三视图,圆锥符合要求.故选D.考点:由三视图判断几何体.28. (2017新疆建设兵团第6题)如图,AB∥CD,∠A=50°,∠C=30°,则∠AEC等于()A.20° B.50° C.80° D.100°【答案】C.考点:平行线的性质.29.(2017浙江嘉兴第4题)一个正方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是()A.中B.考C.顺D.利14【答案】C.考点:正方体展开图.二、填空题1.(2017山东德州第14题)如图利用直尺和三角板过已知直线l外一点p作直线l平行线的方法,其理由是【答案】同位角相等,两直线平行【解析】试题解析:利用三角板中两个60°相等,可判定平行考点:平行线的判定三、解答题1.(2017重庆A卷第19题)如图,AB∥CD,点E是CD上一点,∠AEC=42°,EF平分∠AED交AB于点F,求∠AFE的度数.【答案】【解析】试题分析:由平角求出∠AED的度数,由角平分线得出∠DEF的度数,再由平行线的性质即可求出∠AFE的度数.试题解析:∵∠AEC=42°,16∴∠AED=180°﹣∠AEC=138°,∵EF 平分∠AED ,∴∠DEF=12∠AED=69°, 又∵AB ∥CD ,∴∠AFE=∠DEF=69°.考点:平行线的性质.2.(2017广西贵港第20题)尺规作图(不写作法,保留作图痕迹): 已知线段a 和AOB ∠,点M 在OB 上(如图所示).(1)在OA 边上作点P ,使2OP a = ;(2)作AOB ∠的平分线;(3)过点M 作OB 的垂线.【答案】作图见解析.试题解析:(1)点P 为所求作;(2)OC 为所求作;(3)MD 为所求作;考点:作图—复杂作图.。
中考数学专项复习、中考真题分类解析专题08 平面几何基础一、选择题1. (2017浙江衢州第5题)如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于()A.30° B.40° C.60° D.70°2. (2017浙江衢州第7题)下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线,则对应选项中作法错误的是()A.①B.②C.③D.④3. (2017浙江宁波第7题)已知直线m n∥,将一块含30°角的直角三角板ABC按如图方式放置(30∠的度数为( )∠°,则2ABC∠°),其中A,B两点分别落在直线m,n上,若120A.20°B.30°C.45°D.50°4. (2017甘肃庆阳第6题)将一把直尺与一块三角板如图放置,若∠1=45°,则∠2为()A.115°B.120°C.135°D.145°5. (2017广西贵港第15题)如图,AB CD,点E在AB上,点F在CD上,如果∠∠=∠=,那么BEFCFE EFB ABF:3:4,40∠的度数为.6. (2017贵州安顺第5题)如图,已知a∥b,小华把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为()A.100°B.110°C.120°D.130°7.(2017湖南怀化第5题)如图,直线a b∠的度数是( )∥,150∠°,则2A.130°B.50°C.40°D.150°8.(2017江苏盐城第12题)在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1= °.9.(2017贵州黔东南州第2题)如图,∠ACD=120°,∠B=20°,则∠A的度数是()A.120°B.90° C.100°D.30°10.(2017山东烟台第4题)如图所示的工件,其俯视图是()11. (2017山东烟台第5题)某城市几条道路的位置关系如图所示,已知CD AB //,AE 与AB 的夹角为048,若CF 与EF 的长度相等,则C 的度数为( )学科网A .048B .040C .030D .02412.(2017贵州黔东南州第4题)如图所示,所给的三视图表示的几何体是( )A .圆锥B .正三棱锥C .正四棱锥D .正三棱柱13.(2017甘肃兰州第2题)如图所示,该几何体的左视图是( )ABCD14.(2017江苏盐城第2题)如图是某个几何体的主视图、左视图、俯视图,该几何体是( )A .圆柱B .球C .圆锥D .棱锥15.(2017湖北武汉第7题)某物体的主视图如图所示,则该物体可能为( )A. B. C. D.16.(2017贵州安顺第4题)如图是一个圆柱体和一个长方体组成的几何体,圆柱的下底面紧贴在长方体的上底面上,那么这个几何体的俯视图为()A.B.C.D.17.(2017广西贵港第3题)如图是一个空心圆柱体,它的左视图是()A. B. C. D.18.(2017浙江衢州第2题)下图是由四个相同的小立方块搭成的几何体,它的主视图是19.(2017山东德州第4题)如图,两个等直径圆柱构成如图所示的T形管道,则其俯视图正确的是()20.(2017浙江宁波第5题)如图所示的几何体的俯视图为( )21.(2017甘肃庆阳第4题)某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是()学*科网A. B. C. D.22.(2017四川泸州第4题)如图是一个由4个相同的正方体组成的立体图形,它的左视图是()A. B. C. D.23.(2017四川宜宾第3题)下面的几何体中,主视图为圆的是()24. (2017四川宜宾第4题)如图,BC∥DE,若∠A=35°,∠C=24°,则∠E等于()A.24° B.59° C.60° D.69°25.(2017四川自贡第5题)如图,a∥b,点B在直线a上,且AB⊥BC,∠1=35°,那么∠2=()A.45° B.50° C.55° D.60°26. (2017四川自贡第8题)下面是几何体中,主视图是矩形的()27.(2017新疆建设兵团第2题)某几何体的三视图如图所示,则该几何体是()A.球B.圆柱 C.三棱锥D.圆锥28. (2017新疆建设兵团第6题)如图,AB∥CD,∠A=50°,∠C=30°,则∠AEC等于()A.20° B.50° C.80° D.100°29.(2017浙江嘉兴第4题)一个正方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是()A .中B .考C .顺D .利二、填空题1.(2017山东德州第14题)如图利用直尺和三角板过已知直线l 外一点p 作直线l 平行线的方法,其理由是三、解答题1.(2017重庆A 卷第19题)如图,AB ∥CD ,点E 是CD 上一点,∠AEC=42°,EF 平分∠AED 交AB 于点F ,求∠AFE 的度数.2.(2017广西贵港第20题)尺规作图(不写作法,保留作图痕迹): 已知线段a 和AOB ∠,点M 在OB 上(如图所示).(1)在OA 边上作点P ,使2OP a = ; (2)作AOB ∠的平分线; (3)过点M 作OB 的垂线.。
2017版[中考15年]广东省2002-2016年中考数学试题分项解析专题08 平面几何基础和向量1. (2002年广东广州3分)如图,若C是线段AB的中点,D是线段AC上的任一点(端点除外),则【】A.AD·DB<AC·CBB.AD·DB=AC·CBC.AD·DB>AV·CBD.AD·DB与AC·CB大小关系不确定2. (2004年广东广州3分)下列图形中,不是中心对称图形是【】A.矩形 B.菱形 C.正五边形 D.正八边形3. (2006年广东广州3分)如图,AB∥CD,若∠2=135°,那么∠l的度数是【】.A.30°B.45°C.60°D.75°4. (2006年广东广州3分)已知四组线段的长分别如下,以各组线段为边,能组成三角形的是【】.A.l,2,3B.2,5,8C.3,4,5D.4,5,105. (2007年广东广州3分)下列立体图形中,是多面体的是【】A. B. C. D.6. (2007年广东广州3分)下列命题中,正确的是【】A.对顶角相等 B.同位角相等 C.内错角相等 D.同旁内角互补7. (2007年广东广州3分)下列各图中,是轴对称图案的是【】A. B. C. D.8. (2007年广东广州3分)小明由A点出发向正东方向走10米到达B点,再由B点向东南方向走10米到达C点,则正确的是【】A.∠ABC=22.5° B.∠ABC=45° C.∠ABC=67.5° D.∠ABC=135°9. (2008年广东广州3分)把下列每个字母都看成一个图形,那么中心对成图形有【】O L Y M P I CA.1个B.2个C.3个 D .4个10.(2009年广东广州3分)如图,AB∥CD,直线l分别与AB、CD相交,若∠1=130°,则∠2=【】A.40°B.50°C.130°D.140°11 .(2015年广东广州3分)图1所示几何体的左视图是()1.据统计,2015年广州地铁日均客运量约为6590000.将6590000用科学记数法表示为()A、6.59´104B、659´104C、65.9´105D、 6.59´1061. (2002年广东广州3分)如图,AB//CD,若∠ABE=120°,∠DCE=35°,则∠BEC= 。
专题08 平面解析几何(解答题)1.【2021·北京高考真题】已知椭圆2222:1(0)x y E a b a b+=>>过点(0,2)A -,以四个顶点围成的四边形面积为45. (1)求椭圆E 的标准方程;(2)过点P (0,-3)的直线l 斜率为k ,交椭圆E 于不同的两点B ,C ,直线AB ,AC 交y =-3于点M 、N ,直线AC 交y =-3于点N ,若|PM |+|PN |≤15,求k 的取值范围.【答案】(1)22154x y +=;(2)[3,1)(1,3]--⋃. 【分析】(1)根据椭圆所过的点及四个顶点围成的四边形的面积可求,a b ,从而可求椭圆的标准方程.(2)设()()1122,,,B x y C x y ,求出直线,AB AC 的方程后可得,M N 的横坐标,从而可得PM PN +,联立直线BC 的方程和椭圆的方程,结合韦达定理化简PM PN +,从而可求k 的范围,注意判别式的要求.【详解】(1)因为椭圆过()0,2A -,故2b =, 因为四个顶点围成的四边形的面积为45,故122452a b ⨯⨯=,即5a =, 故椭圆的标准方程为:22154x y +=.(2)设()()1122,,,B x y C x y ,因为直线BC 的斜率存在,故120x x ≠, 故直线112:2y AB y x x +=-,令3y =-,则112M x x y =-+,同理222N xx y =-+. 直线:3BC y kx =-,由2234520y kx x y =-⎧⎨+=⎩可得()224530250k x kx +-+=, 故()22900100450k k ∆=-+>,解得1k <-或1k >.又1212223025,4545k x x x x k k +==++,故120x x >,所以0M N x x > 又1212=22M N x xPM PN x x y y +=++++ ()()2212121222212121222503024545=5253011114545k kkx x x x x x k k k k k kx kx k x x k x x k k --++++===---++-+++故515k ≤即3k ≤,综上,31k -≤<-或13k <≤.2.【2021·全国高考真题】在平面直角坐标系xOy 中,已知点()1F、)2122F MF MF -=,,点M 的轨迹为C .(1)求C 的方程; (2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.【答案】(1)()221116y x x -=≥;(2)0. 【分析】(1)利用双曲线的定义可知轨迹C 是以点1F 、2F 为左、右焦点双曲线的右支,求出a 、b 的值,即可得出轨迹C 的方程;(2)设点1,2T t ⎛⎫⎪⎝⎭,设直线AB 的方程为112y t k x ⎛⎫-=-⎪⎝⎭,设点()11,A x y 、()22,B x y ,联立直线AB 与曲线C 的方程,列出韦达定理,求出TA TB ⋅的表达式,设直线PQ 的斜率为2k ,同理可得出TP TQ ⋅的表达式,由TA TB TP TQ ⋅=⋅化简可得12k k +的值.【详解】因为12122MF MF F F -=<=所以,轨迹C 是以点1F 、2F 为左、右焦点的双曲线的右支,设轨迹C 的方程为()222210,0x y a b a b -=>>,则22a =,可得1a =,4b ==,所以,轨迹C 的方程为()221116y x x -=≥;(2)设点1,2T t ⎛⎫ ⎪⎝⎭,若过点T 的直线的斜率不存在,此时该直线与曲线C 无公共点, 不妨直线AB 的方程为112y t k x ⎛⎫-=-⎪⎝⎭,即1112y k x t k =+-, 联立1122121616y k x t k x y ⎧=+-⎪⎨⎪-=⎩,消去y 并整理可得()()222111111621602k x k t k x t k ⎛⎫-+-+-+=⎪⎝⎭, 设点()11,A x y 、()22,B x y ,则112x >且212x >. 由韦达定理可得2111221216k k t x x k -+=-,211221116216t k x x k ⎛⎫-+ ⎪⎝⎭=-, 所以,()()()()22122121121122112111*********t k x x TA TB k x x k x x k +++⎛⎫⋅=+⋅-⋅-=+⋅-+= ⎪-⎝⎭, 设直线PQ 的斜率为2k ,同理可得()()2222212116t k TP TQ k ++⋅=-,因为TA TB TP TQ ⋅=⋅,即()()()()22221222121211211616t k t k k k ++++=--,整理可得2212k k =,即()()12120k k k k -+=,显然120k k -≠,故120k k +=. 因此,直线AB 与直线PQ 的斜率之和为0.【点睛】方法点睛:求定值问题常见的方法有两种: (1)从特殊入手,求出定值,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.3.【2021·浙江高考真题】如图,已知F 是抛物线()220y px p =>的焦点,M 是抛物线的准线与x 轴的交点,且2MF =,(1)求抛物线的方程;(2)设过点F 的直线交抛物线与A 、B 两点,斜率为2的直线l 与直线,,MA MB AB ,x 轴依次交于点P ,Q ,R ,N ,且2RNPN QN =⋅,求直线l 在x 轴上截距的范围.【答案】(1)24y x =;(2)()(),743743,11,⎡-∞---++∞⎣.【分析】(1)求出p 的值后可求抛物线的方程.(2)设:1AB x ty =+,()()1122,,,A x y B x y ,(),0N n ,联立直线AB 的方程和抛物线的方程后可得12124,4y y y y t =-+=,求出直线,MA MB 的方程,联立各直线方程可求出,,P Q R y y y ,根据题设条件可得()222134121n t n t ++⎛⎫= ⎪-⎝⎭-,从而可求n 的范围.【详解】(1)因为2MF =,故2p =,故抛物线的方程为:24y x =.(2)设:1AB x ty =+,()()1122,,,A x y B x y ,(),0N n , 所以直线:2y l x n =+,由题设可得1n ≠且12t ≠.由214x ty y x=+⎧⎨=⎩可得2440y ty --=,故12124,4y y y y t =-+=, 因为2RN PN QN =⋅,故2R P Q y ⎫=⎪⎪⎭,故2R P Q y y y =⋅. 又()11:11y MA y x x =++,由()11112y y x x y x n⎧=+⎪+⎪⎨⎪=+⎪⎩可得()1112122P n y y x y +=+-,同理()2222122Q n y y x y +=+-,由12x ty yx n =+⎧⎪⎨=+⎪⎩可得()2121R n y t -=-, 所以()()()2212211212121=212222n n y n y t x y x y -++⎡⎤⨯⎢⎥-+-+-⎣⎦, 整理得到()()()2212221112112222y y n t n x y x y -⎛⎫=- ⎪++-+-⎝⎭, ()22221214212222t y y y y -=⎛⎫⎛⎫+-+- ⎪⎪⎝⎭⎝⎭()()()()2222222121212112214212134+++2+442t t t y y y y y y y y y y y y --==+--⨯-+故()222134121n t n t ++⎛⎫= ⎪-⎝⎭-,令21s t =-,则12s t +=且0s ≠,故()22222234242411331+444421t s s s s s s t +++⎛⎫==+=++≥ ⎪⎝⎭-, 故213141n n n ⎧+⎛⎫≥⎪ ⎪-⎨⎝⎭⎪≠⎩即214101n n n ⎧++≥⎨≠⎩,解得7n ≤--71n -+≤<或1n >.故直线l 在x轴上的截距的范围为7n ≤--71n -+≤<或1n >.【点睛】方法点睛:直线与抛物线中的位置关系中的最值问题,往往需要根据问题的特征合理假设直线方程的形式,从而便于代数量的计算,对于构建出的函数关系式,注意利用换元法等把复杂函数的范围问题转化为常见函数的范围问题. 4.【2021·全国高考真题(理)】在直角坐标系xOy 中,C 的圆心为()2,1C ,半径为1.(1)写出C 的一个参数方程;(2)过点()4,1F 作C 的两条切线.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程. 【答案】(1)2cos 1sin x y αα=+⎧⎨=+⎩,(α为参数);(2)2cos()43πρθ+=-2cos()43πρθ-=+【分析】(1)直接利用圆心及半径可得的圆的参数方程;(2)先求得过(4,1)的圆的切线方程,再利用极坐标与直角坐标互化公式化简即可. 【详解】(1)由题意,C 的普通方程为22(2)(1)1x y -+-=,所以C 的参数方程为2cos 1sin x y αα=+⎧⎨=+⎩,(α为参数)(2)由题意,切线的斜率一定存在,设切线方程为1(4)y k x -=-,即140kx y k -+-=,由圆心到直线的距离等于11=,解得k =330y -+-=330y +--=,将cos x ρθ=,sin y ρθ=代入化简得2cos()43πρθ+=-2cos()43πρθ-=【点晴】本题主要考查直角坐标方程与极坐标方程的互化,涉及到直线与圆的位置关系,考查学生的数学运算能力,是一道基础题.5.【2021·全国高考真题(理)】已知抛物线()2:20C x py p =>的焦点为F ,且F 与圆22:(4)1M x y ++=上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,,PA PB 是C 的两条切线,,A B 是切点,求PAB △面积的最大值. 【答案】(1)2p =;(2)【分析】(1)根据圆的几何性质可得出关于p 的等式,即可解出p 的值;(2)设点()11,A x y 、()22,B x y 、()00,P x y ,利用导数求出直线PA 、PB ,进一步可求得直线AB 的方程,将直线AB 的方程与抛物线的方程联立,求出AB 以及点P 到直线AB 的距离,利用三角形的面积公式结合二次函数的基本性质可求得PAB △面积的最大值. 【详解】(1)抛物线C 的焦点为0,2p F ⎛⎫ ⎪⎝⎭,42pFM =+, 所以,F 与圆22:(4)1M x y ++=上点的距离的最小值为4142p+-=,解得2p =; (2)抛物线C 的方程为24x y =,即24x y =,对该函数求导得2x y '=,设点()11,A x y 、()22,B x y 、()00,P x y , 直线PA 的方程为()1112x y y x x -=-,即112x xy y =-,即11220x x y y --=, 同理可知,直线PB 的方程为22220x x y y --=,由于点P 为这两条直线的公共点,则10102020220220x x y y x x y y --=⎧⎨--=⎩,所以,点A 、B 的坐标满足方程00220x x y y --=,所以,直线AB 的方程为00220x x y y --=,联立0022204x x y y x y --=⎧⎪⎨=⎪⎩,可得200240x x x y -+=, 由韦达定理可得1202x x x +=,1204x x y =,所以,AB ===,点P 到直线AB的距离为d =所以,()3220011422PABS AB d x y =⋅==-△, ()()2222000000041441215621x y y y y y y -=-+-=---=-++,由已知可得053y -≤≤-,所以,当05y =-时,PAB△的面积取最大值321202⨯=【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种: 一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.6.【2020年高考全国Ⅰ卷理数】已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程; (2)证明:直线CD 过定点.【解析】(1)由题设得A (–a ,0),B (a ,0),G (0,1). 则(,1)AG a =,GB =(a ,–1).由AG GB ⋅=8得a 2–1=8,即a =3.所以E 的方程为29x +y 2=1.(2)设C (x 1,y 1),D (x 2,y 2),P (6,t ).若t ≠0,设直线CD 的方程为x =my +n ,由题意可知–3<n <3. 由于直线PA 的方程为y =9t (x +3),所以y 1=9t (x 1+3).直线PB 的方程为y =3t (x –3),所以y 2=3t(x 2–3).可得3y 1(x 2–3)=y 2(x 1+3).由于222219x y +=,故2222(3)(3)9x x y +-=-,可得121227(3)(3)y y x x =-++, 即221212(27)(3)()(3)0.m y y m n y y n ++++++=①将x my n =+代入2219xy +=得222(9)290.m y mny n +++-=所以12229mn y y m +=-+,212299n y y m -=+.代入①式得2222(27)(9)2(3)(3)(9)0.m n m n mn n m +--++++= 解得n =–3(含去),n =32.故直线CD 的方程为3=2x my +,即直线CD 过定点(32,0). 若t =0,则直线CD 的方程为y =0,过点(32,0).综上,直线CD 过定点(32,0).【点睛】本题主要考查了椭圆的简单性质及方程思想,还考查了计算能力及转化思想、推理论证能力,属于难题.7.【2020年高考全国Ⅱ卷理数】已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且43CD AB =. (1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【解析】(1)由已知可设2C 的方程为24y cx =,其中c不妨设,A C 在第一象限,由题设得,A B 的纵坐标分别为2b a ,2b a -;,C D 的纵坐标分别为2c ,2c -,故22||b AB a=,||4CD c =.由4||||3CD AB =得2843b c a=,即2322()c c a a ⨯=-,解得2c a =-(舍去),12c a =.所以1C 的离心率为12. (2)由(1)知2a c =,b =,故22122:143x y C c c+=,设00(,)M x y ,则220022143x y c c +=,2004y cx =,故20024143x x c c+=.①由于2C 的准线为x c =-,所以0||MF x c =+,而||5MF =,故05x c =-,代入①得22(5)4(5)143c c c c --+=,即2230c c --=,解得1c =-(舍去),3c =. 所以1C 的标准方程为2213627x y +=,2C 的标准方程为212y x =.8.【2020年高考全国Ⅲ卷理数】已知椭圆222:1(05)25x y C m m +=<<,A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ △的面积.【解析】(1=22516m =, 所以C 的方程为221252516x y +=. (2)设(,),(6,)P P Q P x y Q y ,根据对称性可设0Q y >,由题意知0P y >, 由已知可得(5,0)B ,直线BP 的方程为1(5)Qy x y =--,所以||BP y =,||BQ =, 因为||||BP BQ =,所以1P y =,将1P y =代入C 的方程,解得3P x =或3-. 由直线BP 的方程得2Q y =或8.所以点,P Q 的坐标分别为1122(3,1),(6,2);(3,1),(6,8)P Q P Q -.11||PQ 11PQ 的方程为13y x =,点(5,0)A -到直线11PQ的距离为2,故11APQ △的面积为15222⨯=. 22||PQ =22P Q 的方程为71093y x =+,点A 到直线22P Q故22AP Q △的面积为1522=. 综上,APQ △的面积为52. 【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于中档题.9.【2020年高考北京】已知椭圆2222:1x y C a b+=过点(2,1)A --,且2a b =.(Ⅰ)求椭圆C 的方程:(Ⅱ)过点(4,0)B -的直线l 交椭圆C 于点,M N ,直线,MA NA 分别交直线4x =-于点,P Q .求||||PB BQ 的值. 【解析】 (1)设椭圆方程为:()222210x y a b a b+=>>,由题意可得:224112a ba b⎧+=⎪⎨⎪=⎩,解得:2282a b ⎧=⎨=⎩, 故椭圆方程为:22182x y +=.(2)设()11,M x y ,()22,N x y ,直线MN 的方程为:()4y k x =+,与椭圆方程22182x y +=联立可得:()222448x k x ++=,即:()()222241326480k x k x k +++-=,则:2212122232648,4141k k x x x x k k --+==++. 直线MA 的方程为:()111122y y x x ++=++, 令4x =-可得:()()()1111111141214122122222P k x k x y x y x x x x ++-++++=-⨯-=-⨯-=++++, 同理可得:()()222142Q k x y x -++=+.很明显0P Q y y <,且:PQPB y PQy =,注意到: ()()()()()()()()122112121242424421212222P Q x x x x x x y y k k x x x x +++++⎛⎫+++=-++=-+⨯ ⎪++++⎝⎭,而:()()()()()122112124242238x x x x x x x x +++++=+++⎡⎤⎣⎦2222648322384141k k k k ⎡⎤⎛⎫--=+⨯+⎢⎥ ⎪++⎝⎭⎣⎦()()()22226483328412041k k k k -+⨯-++=⨯=+,故0,P Q P Q y y y y +==-.从而1PQPB y PQy ==. 【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.10.【2020年高考浙江】如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于点M (B ,M 不同于A ). (Ⅰ)若116p =,求抛物线2C 的焦点坐标; (Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.【解析】(Ⅰ)由116p =得2C 的焦点坐标是1(,0)32.(Ⅱ)由题意可设直线:(0,0)l x my t m t =+≠≠,点00(,)A x y .将直线l 的方程代入椭圆221:12x C y +=得222(2)220m y mty t +++-=,所以点M 的纵坐标22M mty m =-+.将直线l 的方程代入抛物线22:2C y px =得2220y pmy pt --=,所以02M y y pt =-,解得202(2)p m y m+=,因此22022(2)p m x m +=.由220012x y +=得2421224()2()160m m p m m =+++≥,所以当2m ,10t =时,p 10. 【点晴】本题主要考查直线与圆锥曲线的位置关系的综合应用,涉及到求函数的最值,考查学生的数学运算能力,是一道有一定难度的题.11.【2020年高考江苏】在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求12AF F △的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值;(3)设点M 在椭圆E 上,记OAB △与MAB △的面积分别为S 1,S 2,若213S S =,求点M 的坐标.【解析】(1)椭圆22:143x y E +=的长轴长为2a ,短轴长为2b ,焦距为2c ,则2224,3,1a b c ===.所以12AF F △的周长为226a c +=. (2)椭圆E 的右准线为4x =. 设(,0),(4,)P x Q y ,则(,0),(4,)OP x QP x y ==--, 2(4)(2)44,OP QP x x x ⋅=-=--≥-在2x =时取等号.所以OP QP ⋅的最小值为4-.(3)因为椭圆22:143x y E +=的左、右焦点分别为12,F F ,点A 在椭圆E 上且在第一象限内,212AF F F ⊥,则123(1,0),(1,0),(1,)2F F A -.所以直线:3430.AB x y -+=设(,)M x y ,因为213S S =,所以点M 到直线AB 距离等于点O 到直线AB 距离的3倍. 由此得|343||30403|355x y -+⨯-⨯+=⨯, 则34120x y -+=或3460x y --=.由2234120,143x y x y -+=⎧⎪⎨+=⎪⎩得2724320x x ++=,此方程无解;由223460,143x y x y --=⎧⎪⎨+=⎪⎩得271240x x --=,所以2x =或27x =-.代入直线:3460l x y --=,对应分别得0y =或127y =-. 因此点M 的坐标为(2,0)或212(,)77--.【点睛】本题考查了椭圆的定义,直线与椭圆相交问题、点到直线距离公式的运用,熟悉运用公式以及根据213S S =推出95d =是解答本题的关键. 12.【2020年新高考全国Ⅰ卷】已知椭圆C :22221(0)x y a b a b +=>>,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.【解析】(1)由题设得22411a b +=,22212a b a -=,解得26a =,23b =. 所以C 的方程为22163x y +=. (2)设11(,)M x y ,22(,)N x y .若直线MN 与x 轴不垂直,设直线MN 的方程为y kx m =+,代入22163x y +=得222(12)4260k x kmx m +++-=. 于是2121222426,1212km m x x x x k k-+=-=++.① 由AM AN ⊥知0AM AN ⋅=,故1212(2)(2)(1)(1)0x x y y --+--=, 可得221212(1)(2)()(1)40k x x km k x x m ++--++-+=.将①代入上式可得22222264(1)(2)(1)401212m kmk km k m k k-+---+-+=++. 整理得(231)(21)0k m k m +++-=.因为(2,1)A 不在直线MN 上,所以210k m +-≠,故2310k m ++=,1k ≠. 于是MN 的方程为21()(1)33y k x k =--≠.所以直线MN 过点21(,)33P -.若直线MN 与x 轴垂直,可得11(,)N x y -.由0AM AN ⋅=得1111(2)(2)(1)(1)0x x y y --+---=.又2211163x y +=,可得2113840x x -+=.解得12x =(舍去),123x =. 此时直线MN 过点21(,)33P -.令Q 为AP 的中点,即41(,)33Q .若D 与P 不重合,则由题设知AP 是Rt ADP △的斜边,故1||||2DQ AP ==. 若D 与P 重合,则1||||2DQ AP =. 综上,存在点41(,)33Q ,使得||DQ 为定值.【点睛】本题考查椭圆的标准方程和性质,圆锥曲线中的定点定值问题,关键是第二问中证明直线MN 经过定点,并求得定点的坐标,属综合题,难度较大.13.【2020年新高考全国Ⅱ卷】已知椭圆C :22221(0)x y a b a b+=>>过点M (2,3),点A为其左顶点,且AM 的斜率为12, (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.【解析】(1)由题意可知直线AM 的方程为:13(2)2y x -=-,即24-=-x y . 当y =0时,解得4x =-,所以a =4,椭圆()2222:10x y C a b a b+=>>过点M (2,3),可得249116b +=, 解得b 2=12.所以C 的方程:2211612x y +=.(2)设与直线AM 平行的直线方程为:2x y m -=,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程2x y m -=与椭圆方程2211612x y +=,可得:()2232448m y y ++=,化简可得:2216123480y my m ++-=,所以()221444163480m m ∆=-⨯-=,即m 2=64,解得m =±8, 与AM 距离比较远的直线方程:28x y -=, 直线AM 方程为:24-=-x y ,点N 到直线AM 的距离即两平行线之间的距离,利用平行线之间的距离公式可得:d==由两点之间距离公式可得||AM==.所以△AMN的面积的最大值:1182⨯=.【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.14.【2019年高考全国Ⅰ卷理数】已知抛物线C:y2=3x的焦点为F,斜率为32的直线l与C 的交点为A,B,与x轴的交点为P.(1)若|AF|+|BF|=4,求l的方程;(2)若3AP PB=,求|AB|.【答案】(1)3728y x=-;(2)3.【解析】设直线()()11223:,,,,2l y x t A x y B x y=+.(1)由题设得3,04F⎛⎫⎪⎝⎭,故123||||2AF BF x x+=++,由题设可得1252x x+=.由2323y x ty x⎧=+⎪⎨⎪=⎩,可得22912(1)40x t x t+-+=,则1212(1)9tx x-+=-.从而12(1)592t--=,得78t=-.所以l的方程为3728y x=-.(2)由3AP PB=可得123y y=-.由2323y x t y x⎧=+⎪⎨⎪=⎩,可得2220y y t -+=. 所以122y y +=.从而2232y y -+=,故211,3y y =-=. 代入C 的方程得1213,3x x ==.故||3AB =. 【名师点睛】本题考查抛物线的几何性质、直线与抛物线的综合应用问题,涉及平面向量、弦长的求解方法,解题关键是能够通过直线与抛物线方程的联立,利用根与系数的关系构造等量关系.15.【2019年高考全国Ⅱ卷理数】已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG △是直角三角形; (ii )求PQG △面积的最大值.【答案】(1)见解析;(2)(i )见解析;(ii )169. 【解析】(1)由题设得1222y y x x ⋅=-+-,化简得221(||2)42x y x +=≠,所以C 为中心在坐标原点,焦点在x 轴上的椭圆,不含左右顶点. (2)(i )设直线PQ 的斜率为k ,则其方程为(0)y kx k =>.由22142y kxx y =⎧⎪⎨+=⎪⎩得x =记u =,则(,),(,),(,0)P u uk Q u uk E u --.于是直线QG 的斜率为2k ,方程为()2ky x u =-. 由22(),2142k y x u x y ⎧=-⎪⎪⎨⎪+=⎪⎩得 22222(2)280k x uk x k u +-+-=.①设(,)G G G x y ,则u -和G x 是方程①的解,故22(32)2G u k x k +=+,由此得322G uky k=+. 从而直线PG 的斜率为322212(32)2uk uk k u k kuk -+=-+-+.所以PQ PG ⊥,即PQG △是直角三角形.(ii )由(i)得||2PQ =||PG =△PQG 的面积222218()18(1)||12(12)(2)12()k k k k S PQ PG k k k k++===++++‖. 设t =k +1k,则由k >0得t ≥2,当且仅当k =1时取等号. 因为2812tS t=+在[2,+∞)单调递减,所以当t =2,即k =1时,S 取得最大值,最大值为169. 因此,△PQG 面积的最大值为169. 【名师点睛】本题考查了求椭圆的标准方程,以及利用直线与椭圆的位置关系,判断三角形形状以及三角形面积最大值问题,考查了数学运算能力,考查了求函数最大值问题.16.【2019年高考全国Ⅲ卷理数】已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.【答案】(1)见详解;(2)3或【解析】(1)设()111,,,2D t A x y ⎛⎫- ⎪⎝⎭,则2112x y =.由于y'x =,所以切线DA 的斜率为1x ,故11112y x x t+=- .整理得112 2 +1=0. tx y -设()22,B x y ,同理可得222 2 +1=0tx y -. 故直线AB 的方程为2210tx y -+=. 所以直线AB 过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=. 于是()2121212122,1,121x x t x x y y t x x t +==-+=++=+,()212||21AB x t =-==+.设12,d d 分别为点D ,E 到直线AB的距离,则12d d ==因此,四边形ADBE 的面积()(2121||32S AB d d t =+=+设M 为线段AB 的中点,则21,2M t t ⎛⎫+⎪⎝⎭. 由于EM AB ⊥,而()2,2EM t t =-,AB 与向量(1, )t 平行,所以()220t t t +-=.解得t =0或1t =±.当t =0时,S =3;当1t =±时,S =因此,四边形ADBE 的面积为3或【名师点睛】此题第一问是圆锥曲线中的定点问题,第二问是求面积类型,属于常规题型,按部就班地求解就可以,思路较为清晰,但计算量不小.17.【2019年高考北京卷理数】已知抛物线C :x 2=−2py 经过点(2,−1).(1)求抛物线C 的方程及其准线方程;(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.【答案】(1)抛物线C 的方程为24x y =-,准线方程为1y =;(2)见解析.【解析】(1)由抛物线2:2C x py =-经过点(2,1)-,得2p =.所以抛物线C 的方程为24x y =-,其准线方程为1y =. (2)抛物线C 的焦点为(0,1)F -. 设直线l 的方程为1(0)y kx k =-≠.由21,4y kx x y=-⎧⎨=-⎩得2440x kx +-=. 设()()1122,,,M x y N x y ,则124x x =-. 直线OM 的方程为11y y x x =. 令1y =-,得点A 的横坐标11A x x y =-. 同理得点B 的横坐标22B x x y =-. 设点(0, )D n ,则1212,1,,1x x DA n DB n y y ⎛⎫⎛⎫=---=--- ⎪ ⎪⎝⎭⎝⎭, 21212(1)x x DA DB n y y ⋅=++2122212(1)44x x n x x =++⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭ 21216(1)n x x =++ 24(1)n =-++.令0DA DB ⋅=,即24(1)0n -++=,则1n =或3n =-. 综上,以AB 为直径的圆经过y 轴上的定点(0,1)和(0,3)-.【名师点睛】本题主要考查抛物线方程的求解与准线方程的确定,直线与抛物线的位置关系,圆的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.18.【2019年高考天津卷理数】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4(1)求椭圆的方程;(2)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若||||ON OF =(O 为原点),且OP MN ⊥,求直线PB 的斜率.【答案】(1)22154x y +=;(2或. 【解析】(1)设椭圆的半焦距为c,依题意,24,c b a ==222a b c =+,可得a =2,b =1c =.所以,椭圆的方程为22154x y +=.(2)由题意,设()()()0,,0P P p M P x y x M x ≠,.设直线PB 的斜率为()0k k ≠, 又()0,2B ,则直线PB 的方程为2y kx =+,与椭圆方程联立222,1,54y kx x y =+⎧⎪⎨+=⎪⎩整理得()2245200k x kx ++=,可得22045P k x k =-+,代入2y kx =+得2281045P k y k-=+, 进而直线OP 的斜率24510P p y k x k-=-. 在2y kx =+中,令0y =,得2M x k=-. 由题意得()0,1N -,所以直线MN 的斜率为2k -. 由OP MN ⊥,得2451102k k k-⎛⎫⋅-=- ⎪-⎝⎭,化简得2245k =,从而k =所以,直线PB或. 【名师点睛】本小题主要考查椭圆的标准方程和几何性质、直线方程等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想解决问题的能力.19.【2019年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1. 已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.【答案】(1)22143x y +=;(2)3(1,)2E --. 【解析】(1)设椭圆C 的焦距为2c . 因为F 1(−1,0),F 2(1,0),所以F 1F 2=2,c =1. 又因为DF 1=52,AF 2⊥x 轴,所以DF 2222211253()222DF F F -=-=, 因此2a =DF 1+DF 2=4,从而a =2. 由b 2=a 2−c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=.(2)解法一:由(1)知,椭圆C :22143x y +=,a =2,因为AF 2⊥x 轴,所以点A 的横坐标为1. 将x =1代入圆F 2的方程(x −1) 2+y 2=16,解得y =±4. 因为点A 在x 轴上方,所以A (1,4). 又F 1(−1,0),所以直线AF 1:y =2x +2.由22()22116y x x y =+-+=⎧⎨⎩,得256110x x +-=,解得1x =或115x =-. 将115x =-代入22y x =+,得 125y =-, 因此1112(,)55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-.由221433(1)4x y x y ⎧⎪⎪⎨⎪+=-⎩=⎪,得276130x x --=,解得1x =-或137x =. 又因为E 是线段BF 2与椭圆的交点,所以1x =-. 将1x =-代入3(1)4y x =-,得32y =-. 因此3(1,)2E --.解法二:由(1)知,椭圆C :22143x y +=.如图,连结EF 1.因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB , 从而∠BF 1E =∠B .因为F 2A =F 2B ,所以∠A =∠B , 所以∠A =∠BF 1E ,从而EF 1∥F 2A . 因为AF 2⊥x 轴,所以EF 1⊥x 轴.因为F 1(−1,0),由221431x x y ⎧⎪⎨+==-⎪⎩,得32y =±.又因为E 是线段BF 2与椭圆的交点,所以32y =-. 因此3(1,)2E --.【名师点睛】本小题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.20.【2019年高考浙江卷】如图,已知点(10)F ,为抛物线22(0)y px p =>的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记,AFG CQG △△的面积分别为12,S S . (1)求p 的值及抛物线的准线方程;(2)求12S S 的最小值及此时点G 的坐标.【答案】(1)p =2,准线方程为x =−1;(2)最小值为31,此时G (2,0). 【解析】(1)由题意得12p=,即p =2. 所以,抛物线的准线方程为x =−1.(2)设()()(),,,,,A A B B c c A x y B x y C x y ,重心(),G G G x y .令2,0A y t t =≠,则2A x t =.由于直线AB 过F ,故直线AB 方程为2112t x y t-=+,代入24y x =,得()222140t y y t---=,故24B ty =-,即2B y t =-,所以212,B tt ⎛⎫- ⎪⎝⎭.又由于()()11,33G A B c G A B c x x x x y y y y =++=++及重心G 在x 轴上,故220c t y t -+=,得242211222,2,,03t t C t t G t t t ⎛⎫⎛⎫-+⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 所以,直线AC 方程为()222y t t x t-=-,得()21,0Q t-.由于Q 在焦点F 的右侧,故22t >.从而4224221244242222211|2|||322221222211|||1||2|23A ct t t FG y t S t t t t t S t t QG y t t t t-+-⋅⋅--====--+--⋅--⋅-.令22m t =-,则m >0,1221222134342S m S m m m m m=-=--=+++++当m =时,12S S 取得最小值1G (2,0). 【名师点睛】本题主要考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,同时考查运算求解能力和综合应用能力.。
2017版[中考15年]河北省2002-2016年中考数学试题分项解析专题08 平面几何基础1. (2002年河北省2分)如图,△ABC中,已知∠B和∠C的平分线相交于点F,经过点F作DE∥BC,交AB于D,交AC于点E,若BD+CE=9,则线段DE的长为【】A、9B、8C、7D、62. (2003年河北省2分)某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是【】A.第一次左拐30°,第二次右拐30°B.第一次右拐50°,第二次左拐130°C.第一次右拐50°,第二次右拐130°D.第一次向左拐50°,第二次向左拐120°3. (2003年河北省2分)下列图形中,有且只有三条对称轴的是【】A.B.C.D.4. (2005年河北省大纲2分)在等边三角形、正方形、菱形和等腰梯形这四个图形中,是中心对称图形的个数为【】A.1个B.2个C.3个D.4个5. (2006年河北省大纲2分)下午2点30分时(如图),时钟的分针与时针所成角的度数为【】A.90°B.105°C.120°D.135°6. (2007年河北省2分)如图,直线a,b相交于点O,若∠1等于40°,则∠2等于【】A.50°B.60°C.140°D.160°7. (2007年河北省2分)用M,N,P,Q各代表四种简单几何图形(线段、正三角形、正方形、圆)中的一种.图1—图4是由M,N,P,Q中的两种图形组合而成的(组合用“&”表示).那么,下列组合图形中,表示P&Q的是【】A.B.C.D.8. (2010年河北省2分)如图,两个正六边形的边长均为1,其中一个正六边形的一边恰在另一个正六边形的对角线上,则这个图形(阴影部分)外轮廓线的周长是【】A.7 B.8 C.9 D.109. (2011年河北省2分)如图,∠1+∠2等于【】A.60°B.90°C.110°D.180°10. (2011年河北省3分)已知三角形三边长分别为2,x,13,若x为正整数,则这样的三角形个数为【】A.2 B.3 C.5 D.1311. (2012年河北省3分)如图,点C在∠AOB的OB边上,用尺规作出了CN∥OA,作图痕迹中,FG是【】A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧12.(2013年河北省2分)下列图形中,既是轴对称图形又是中心对称图形的是【】A.B.C.D.13.(2013年河北省3分)如图1,M是铁丝AD的中点,将该铁丝首尾相接折成△ABC,且∠B = 30°,∠C = 100°,如图2.则下列说法正确的是【】A.点M在AB上B.点M在BC的中点处C.点M在BC上,且距点B较近,距点C较远D.点M在BC上,且距点C较近,距点B较远14.【2014中考河北3分】如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是【】15.【2014中考河北3分】如图,边长为a的正六边形内有两个三角形,(数据如图),则SS阴影空白【】A、3B、4C、5D、616.【2015中考河北3分】如图,AB//EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120°B.130°C.140°D.150°17.【2015中考河北3分】已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是()A. B.C. D.18.【2015中考河北2分】如图,点A,B为定点,定直线l//AB,P是l上一动点.点M,N分别为PA,PB 的中点,对于下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤【2016中考河北3分】如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧○1;步骤2:以B为圆心,BA为半径画弧○2,将弧○1于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()第10题图A.BH垂直分分线段AD B.AC平分∠BADC.S△ABC=BC·AH D.AB=AD1. (2003年河北省)两根木棒的长分别为7cm和10cm,要选择第三根木棒,将它们钉成一个三角形框架,那么第三根木棒长xcm的范围是▲ .2. (2003年河北省2分)乘火车从A 站出发,沿途经过3个车站方可到达B 站,那么A ,B 两站之间需要安排▲ 种不同的车票.3. (2004年河北省大纲2分)已知:∠a=36°,则∠a 的余角等于 ▲ 度.4. (2005年河北省大纲2分)已知:如图,直线a ∥b ,直线c 与a ,b 相交,若∠2=115°,则∠1= ▲ 度.5. (2005年河北省大纲2分)将一个平角n 等分,每份是15°,那么n 等于 ▲ .6. (2006年河北省大纲2分)等腰三角形的两边长分别为4和9,则第三边长为 ▲ .7. (2008年河北省3分)如图,直线a b ∥,直线c 与a ,b相交.若170∠=︒,则 2∠= ▲ °.8. (2012年河北省3分)如图,AB 、CD 相交于点O ,AC ⊥CD 于点C ,若∠BOD=38°,则∠A= ▲ 。
专题08 平面几何基础一、选择题1.(2017年贵州省毕节地区第6题)如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=70°,则∠AED=()A.55° B.125°C.135°D.140°【答案】B.考点:平行线的性质2.(2017年湖北省十堰市第3题)如图,AB∥DE,FG⊥BC于F,∠CDE=40°,则∠FGB=()A.40° B.50° C.60° D.70°【答案】B.【解析】试题分析:由AB∥DE,∠CDE=40°,∴∠B=∠CDE=40°,又∵FG⊥B C,∴∠FGB=90°﹣∠B=50°,故选:B.考点:平行线的性质3.(2017年湖北省十堰市第6题)下列命题错误的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的平行四边形是矩形C.一条对角线平分一组对角的四边形是菱形D.对角线互相垂直的矩形是正方形【答案】C.考点:命题与定理4. (2017年湖北省荆州市第3题)一把直尺和一块三角板ABC(含30°、60°角)摆放位置如图所示,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点A,且∠CDE=40°,那么∠BAF的大小为()A.40°B.45°C.50°D.20°【答案】D【解析】试题分析:先根据∠CDE=40°,得出∠CED=50°,再根据DE∥AF,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF =60°﹣50°=10°,故选:D.考点:平行线的性质5.(2017年湖北省宜昌市第3题)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“爱”。
一、选择题
1.(2017四川省南充市)如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为()
A.30°B.32°C.42°D.58°
2.(2017四川省南充市)如图,在Rt△ABC中,AC=5cm,BC=12cm,∠ACB=90°,把Rt△ABC所在的直线旋转一周得到一个几何体,则这个几何体的侧面积为()
A.60πcm2B.65πcm2C.120πcm2D.130πcm2
3.(2017四川省绵阳市)“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB=8cm,圆柱体部分的高BC=6cm,圆锥体部分的高CD=3cm,则这个陀螺的表面积是()
A.68πcm2B.74πcm2C.84πcm2D.100πcm2
4.(2017四川省达州市)已知直线a∥b,一块含30°角的直角三角尺如图放置.若∠1=25°,则∠2等于()
A.50°B.55°C.60°D.65°
5.(2017四川省达州市)下列命题是真命题的是( )
A .若一组数据是1,2,3,4,5,则它的方差是3
B .若分式方程()()4
1111
m x x x -=+--有增根,则它的增根是1 C .对角线互相垂直的四边形,顺次连接它的四边中点所得四边形是菱形
D .若一个角的两边分别与另一个角的两边平行,则这两个角相等
6.(2017四川省达州市)如图,将矩形ABCD 绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续
绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB =4,AD =3,
则顶点A 在整个旋转过程中所经过的路径总长为( )
A .2017π
B .2034π
C .3024π
D .3026π
7.(2017山东省枣庄市)如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直
角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )
A .15°
B .22.5°
C .30°
D .45°
8.(2017山西省)如图,直线a ,b 被直线c 所截,下列条件不能判定直线a 与b 平行的是( )
A .∠1=∠3
B .∠2+∠4=180°
C .∠1=∠4
D .∠3=∠4
9.(2017山西省)2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域
连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上
石油资源总量的50%.数据186亿吨用科学记数法可表示为( )
A .818610⨯吨
B .918.610⨯吨
C .101.8610⨯吨
D .11
0.18610⨯吨
10.(2017广东省)已知∠A =70°,则∠A 的补角为( )
A .110°
B .70°
C .30°
D .20°
11.(2017广西四市)如图,△ABC 中,AB >AC ,∠CAD 为△ABC 的外角,观察图中尺规作图的痕迹,
则下列结论错误的是( )
A .∠DAE =∠
B B .∠EA
C =∠C C .AE ∥BC
D .∠DA
E =∠EAC
12.(2017河北省)用量角器测得∠MON 的度数,下列操作正确的是( )
A .
B .
C .
D .
13.(2017河北省)如图,码头A 在码头B 的正西方向,甲、乙两船分别从A ,B 同时出发,并以等速驶
向某海域,甲的航向是北偏东35°,为避免行进中甲、乙相撞,则乙的航向不能是( )
A.北偏东55°B.北偏西55°C.北偏东35°D.北偏西35°14.(2017湖北省襄阳市)如图,BD∥AC,BE平分∠ABD,交AC于点E.若∠A=50°,则∠1的度数为()
A.65°B.60°C.55°D.50°
二、填空题
15.(2017四川省广安市)如图,若∠1+∠2=180°,∠3=110°,则∠4= .
16.(2017山东省济宁市)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,
交y轴于点N,再分别以点M,N为圆心,大于1
2
MN的长为半径画弧,两弧在第二象限内交于点P(a,b),
则a与b的数量关系是.
17.(2017江苏省盐城市)如图,在边长为1的小正方形网格中,将△ABC绕某点旋转到△A'B'C'的位置,则点B运动的最短路径长为.
18.(2017浙江省台州市)如图,已知直线a∥b,∠1=70°,则∠2= .
三、解答题
19.(2017四川省达州市)如图,在△ABC中,点O是边AC上一个动点,过点O作直线EF∥BC分别交∠ACB、外角∠ACD的平分线于点E、F.
(1)若CE=8,CF=6,求OC的长;
(2)连接AE、AF.问:当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.
20.(2017江苏省盐城市)如图,△ABC是一块直角三角板,且∠C=90°,∠A=30°,现将圆心为点O的圆形纸片放置在三角板内部.
(1)如图①,当圆形纸片与两直角边AC、BC都相切时,试用直尺与圆规作出射线CO;(不写作法与证明,保留作图痕迹)
(2)如图②,将圆形纸片沿着三角板的内部边缘滚动1周,回到起点位置时停止,若BC=9,圆形纸片的半径为2,求圆心O运动的路径长.
21.(2017江苏省连云港市)如图,在平面直角坐标系xOy中,过点A(﹣2,0)的直线交y轴正半轴于点B,将直线AB绕着点顺时针旋转90°后,分别与x轴、y轴交于点D.C.
(1)若OB=4,求直线AB的函数关系式;
(2)连接BD,若△ABD的面积是5,求点B的运动路径长.
22.(2017重庆市B卷)如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠FAC=72°,∠ACD=58°,点D在GH上,求∠BDC的度数.。