2015-2016学年人教版九年级上期末数学试题及答案
- 格式:doc
- 大小:268.91 KB
- 文档页数:9
人教版九年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分,共30分)1.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.下列方程是一元二次方程的是( )A .222x +=B .221x y -=C .20x =D .11x x=- 3.若关于x 的方程20x m -=有实数根,则m 的取值范围是( )A .0m <B .0m ≤C .0m >D .0m ≥4.二次函数y =﹣3(x +1)2﹣7有( )A .最大值﹣7B .最小值﹣7C .最大值7D .最小值75.将抛物线2y x =向右平移1个单位,再向上平移3个单位后,它的解析式为( )A .2(1)3y x =++B .2(1)3y x =-+C .2(1)3y x =+-D .2(1)3y x =--6.下列事件是随机事件的是( )A .购买一张福利彩票就中奖B .有一名运动员奔跑的速度是50米/秒C .在一个标准大气压下,水加热到100C ︒会沸腾D .在一个仅装有白球和黑球的袋中摸球,摸出红球7.如图,AB 是⊙O 的直径,AC =BC ,则⊙A 的度数等于( )A .30°B .45°C .60°D .90°8.一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其它都相同.搅匀后任意摸出一个球,是黄球的概率为( )A .12 B .15 C .110 D .3109.已知圆心角是60︒,半径为30的扇形的弧长为( )A .5πB .10πC .20πD .25π10.已知圆心角为120︒的扇形的弧长为6π,该扇形的面积为( )A .12πB .21πC .27πD .36π11.已知直线y ax b =+经过一、二、三象限,则抛物线2y ax bx =+大致是( )A .B .C .D .12.如图,O 的半径为5,3OP =,则经过点P 的弦长可能是( )A .3B .5C .9D .12二、填空题 13.一元二次方程()()320x x --=的根是_____.14.抛物线y =﹣x 2+2x ﹣5与y 轴的交点坐标为_____.15.数学老师将全班分成4个小组开展合作学习,采用随机抽签方式确定2个小组进行展示活动,则第1小组和第2小组被抽到的概率是_________.16.如图,ABC 的内切圆⊙O 分别与AB ,AC ,BC 相切于点D ,E ,F .若90C ∠=︒,6AC =,8BC =,则⊙O 的半径等于________.17.如图,在边长为2的正六边形ABCDEF 中,P 是ED 的中点,则AP =_______.18.如图,把ABC 绕点C 顺时针旋转某个角度α得到A B C ''',30A ∠=︒,170∠=︒,则旋转角α的度数为______.三、解答题19.用指定方法解方程:(1)2250--=(公式法);x x(2)2-=(配方法).22x x20.(1)画图:图⊙为正方形网格,画出ABC绕点O顺时针...旋转90︒后的图形.(2)尺规作图:在图⊙中作出四边形ABCD关于点O对称的图形(不写作法,保留作图痕迹,用黑色笔将作图痕迹涂黑).21.已知y是关于x的二次函数,x,y满足下表观察上表(不用求解析式),直接写出该函数如下性质:(1)图象函数名称________,开口方向_______;(2)对称轴表达式_________;(3)顶点坐标_________;(4)y随x的变化情况___________,___________.22.如图1,点P 表示我国古代水车的一个盛水筒.如图2,当水车工作时,盛水筒的运行路径是以轴心O 为圆心,5m 为半径的圆.若O 被水面截得的弦AB 长为8m ,求水车工作时,盛水筒在水面以下的最大深度.23.如图是一张长24cm ,宽12cm 的矩形铁皮,将其剪去一个小正方形和两个矩形,剩余部分(阴影部分)恰好可制成一个有盖的长方体铁盒.(1)a = ;(2)若铁盒底面积是80cm 2,求剪去的小正方形边长.24.某电脑销售店电脑原价为每台5000元,元旦期间开展了促销活动,将原价经过两次下调后,促销价为每台4050元.(1)求平均每次下调的百分率;(2)某校计划以促销价购买100台电脑.该店还给予以下两种优惠方案以供选择:⊙打9.8折销售;⊙不打折,送12个月的免费保修费,免费保修费为每台每月10元.请问哪种方案更优惠?25.如图,ABC 中,90C ∠=︒,BD 平分ABC ∠,点O 是边AB 上一点,以点O 为圆心,以OB 为半径作O ,O 恰好经过点D .(1)求证:直线AC 是O 的切线;(2)若30A ∠=︒,2OB =,求线段CD 的长.26.如图,在平面直角坐标系中,已知点B的坐标为(﹣2,0),且OA=OC=4OB,抛物线y=ax2+bx+c(a≠0)图象经过A,B,C三点.(1)求A,C两点的坐标;(2)求抛物线的解析式;(3)若点P是直线AC下方的抛物线上的一个动点,作PD⊙AC于点D,当PD的值最大时,求此时点P的坐标及PD的最大值.参考答案1.D【解析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A. 是轴对称图形,但不是中心对称图形,故不符合题意;B. 不是轴对称图形,是中心对称图形,故不符合题意;C. 是轴对称图形,但不是中心对称图形,故不符合题意;D. 既是轴对称图形又是中心对称图形,故符合题意.故选D.【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键. 2.C【分析】根据一元一次方程的定义依次判断即可.【详解】解:A、该方程是一元一次方程,故本选项不符合题意;B、该方程是二元二次方程,故本选项不符合题意;C、该方程是一元二次方程,故本选项符合题意;D、该方程分式方程,故本选项不符合题意.故选:C.【点睛】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(a,b,c为常数且a≠0).3.D【分析】用直接开平方法解方程,然后根据平方根的意义求得m的取值范围.【详解】解:20-=x m2=x m⊙关于x的方程20-=有实数根x m⊙0m≥故选:D【点睛】本题考查直接开平方法解方程,注意负数没有平方根是本题的解题关键.4.A【分析】根据顶点式直接写出答案即可.【详解】二次函数y =﹣3(x +1)2﹣7中,k =﹣3<0,⊙二次函数y =﹣3(x +1)2﹣7,当x =﹣1时有最大值﹣7,故选:A .【点睛】本题考查了二次函数的最值,解题的关键是了解二次函数的顶点式,难度不大.5.B【分析】根据二次函数图象的平移方法即可求解.【详解】解:将抛物线2y x 图象向右平移1个单位,再向上平移3个单位,所得图象解析式为2(1)3y x =-+故选择:B .【点睛】此题主要考查二次函数的平移,解题的关键是熟知二次函数平移的方法.6.A【分析】根据随机事件的定义,随机事件:是指在一定条件下可能发生也可能不发生的事件,进行一一排查即可.【详解】解:A. 购买一张福利彩票就中奖,是随机事件,故A 正确;B. 有一名运动员奔跑的速度是50米/秒,是确定事件中不可能事件,故B 不正确;C. 在一个标准大气压下,水加热到100C ︒会沸腾,是确定事件中必然事件,故C 不正确;D. 在一个仅装有白球和黑球的袋中摸球,摸出红球,是确定事件中不可能事件,故D 不正确;故选择:A .【点睛】本题考查随机事件,掌握随机事件的定义,随机事件与确定性事件相比,是不确定的,因为对这种事件不能确定它是发生,还是不发生,即对事件的结果无法确定.7.B【分析】先由AB 是⊙O 的直径得出⊙C=90°,再根据AC=BC ,得出⊙ABC 是等腰直角三角形,由此求出⊙A=45°.【详解】⊙AB 是⊙O 的直径,⊙⊙C=90°,⊙AC=BC,⊙⊙ACB为等腰直角三角形,⊙⊙A=45°.故选B.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.同时考查了等腰直角三角形的性质.8.D【分析】根据概率计算公式,直接用黄色小球的个数除以总个数计算即可得结果.【详解】解:搅匀后任意摸出一个球,是黄球的概率为33 23510=++,故选:D.【点睛】本题考查了概率的计算,牢记概率的计算公式是解题的关键.9.B【分析】直接利用弧长公式计算即可得到答案.【详解】扇形圆心角为60︒,半径为30∴该扇形的弧长603010 180180n rlπππ⨯⨯===故选:B.【点睛】本题考查了扇形弧长的计算,熟练掌握弧长公式是解题关键.10.C【分析】设扇形的半径为r.利用弧长公式构建方程求出r,再利用扇形的面积公式计算即可.【详解】解:设扇形的半径为r.由题意:120180rπ=6π,⊙S 扇形=21209360π⨯=27π, 故选择:C .【点睛】本题考查扇形的弧长公式,面积公式等知识,解题的关键是学会构建方程解决问题,属于中考常考题型. 11.A【分析】由直线y ax b =+经过一、二、三象限,可确定00a b >>,,由0a >,抛物线开口向上,可判断D 不正确,由00a b >>,抛物线的对称轴x≠0,可判断C 不正确,由x=02b a-<抛物线对称轴在y 轴左侧可判断D 不正确,A 正确. 【详解】解:⊙直线y ax b =+经过一、二、三象限,⊙00a b >>,,⊙0a >,抛物线开口向上,则D 不正确,⊙00a b >>,,⊙抛物线的对称轴x≠0,则C 不正确,由x=02b a -<, 抛物线对称轴在y 轴左侧,则D 不正确,A 正确,故选择:A .【点睛】本题考查一次函数经过象限确定抛物线的位置,掌握抛物线的性质,特别是抛物线的性质与系数a b ,的关系是解题关键.12.C【分析】当经过点O 、P 的弦是直径时,弦最长为10;当弦与OP 是垂直时,弦最短为8;判断即可.【详解】当经过点O 、P 的弦是直径时,弦最长为10;当弦与OP 垂直时,根据垂径定理,得半弦长= ,所以最短弦为8;所以符合题意的弦长为8到10,【点睛】本题考查了直径是最长的弦,垂径定理,熟练运用分类思想,垂径定理,勾股定理是解题的关键.13.123,2==x x【分析】利用因式分解法把方程化为x -3=0或x -2=0,然后解两个一次方程即可.【详解】解:30x -=或20x -=,所以123,2==x x .故答案为123,2==x x .【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.14.(0,﹣5)【分析】要求抛物线与y 轴的交点,即令x =0,解方程.【详解】解:把x =0代入y =﹣x 2+2x ﹣5,求得y =﹣5,则抛物线y =﹣x 2+2x ﹣5与y 轴的交点坐标为(0,﹣5).故答案为(0,﹣5).【点睛】本题考查了抛物线与y 轴的交点坐标,正确掌握令0x =或令0y =是解题的关键.15.16【分析】首先利用树状图法列举出所有可能,进而利用概率公式求出答案.【详解】解:如图所示:由图可知,共有12种可能结果,其中第1小组和第2小组被抽的结果有2种,所以第1小组和第2小组被抽到的概率为21= 126.故答案为:16.【点睛】此题主要考查了树状图法求概率,正确利用列举出所有可能并熟练掌握概率公式是解题关键.16.2【分析】连接OE,OD,OF,由切线长定理可得AE=AD,BF=BD,证明四边形OECF是正方形,根据勾股定理求出AB的长,然后根据AD+BD=AB列方程求解即可.【详解】解:连接OE,OD,OF,设⊙O的半径为r,⊙⊙O分别与边AB、AC、BC相切于点D、E、F,⊙OE⊙AC,OD⊙AB,OF⊙BC,AE=AD,BF=BD,⊙⊙OEC=⊙OFC=90°,⊙⊙C=90°,⊙四边形OECF是矩形,⊙OE=OF,⊙四边形OECF是正方形,⊙EC=FC=r,⊙AE=AD=6-r,BF=BD=8-r,⊙⊙C=90°,6AC=,8BC=,⊙AB=10,⊙AD+BD=AB,⊙6-r+8-r=10,⊙r=2.故答案为:2.【点睛】此题考查了三角形的内切圆的性质、正方形的判定与性质、切线长定理以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想与方程思想的应用.17【分析】连接AE,过点F作FH⊙AE,根据正六边形的内角和得出⊙AFE=⊙DEF=120°,再根据等腰三角形的性质可得⊙FAE =⊙FEA=30°,得出⊙AEP=90°,由直角三角形的性质和勾股定理求得FH,AE,再利用勾股定理即可得出AP.【详解】解:如图,连接AE,过点F作FH⊙AE,⊙六边形ABCDEF是正六边形,⊙AB=BC=CD=DE=EF=AF=2,⊙AFE=⊙DEF=120°,⊙⊙FAE=⊙FEA=30°,⊙⊙AEP=90°,⊙FH=1AF=1,2⊙AH,⊙AE=2AH=⊙P是ED的中点,DE=1,⊙EP=12⊙AP【点睛】本题考查了正多边形、勾股定理及等腰三角形的性质等知识,掌握相关图形的性质并作辅助线构造出直角三角形是解题的关键.18.40°【分析】根据旋转的性质可得30A A '∠=∠=︒,再根据外角的性质求得ACA '∠,从而得到结果.【详解】由旋转得,30A A '∠=∠=︒,又⊙170A ACA ''∠=∠+∠=︒,⊙1703040ACA A ''∠=∠-∠=︒-︒=︒,即40α∠=︒.故答案为:40°.【点睛】本题考查了旋转的性质及外角的性质,明确旋转角,熟练掌握旋转性质是解题的关键.19.(1)11x =21x =(2)1x =2x =【分析】(1)先确定原方程各项系数的值,再代入求根公式即可得到方程的解;(2)方程整理后,再移项,把二次项系数化为1,最后运用配方法求解即可.【详解】解:(1)2250x x --=⊙1a =,2b =-,5c =-,⊙441(5)240∆=-⨯⨯-=>,则1x ==⊙11x =21x =.(2)222x x -= 把原方程化为2112x x -=. 配方,得2221111244x x ⎛⎫⎛⎫-+=+ ⎪ ⎪⎝⎭⎝⎭, 即2117416x ⎛⎫-= ⎪⎝⎭.由此可得14x -=.1x =2x = 【点睛】此题主要考查了一元二次方程的解法,熟练地掌握一元二次方程的解法特别是因式分解法解一元二次方程,可以大大降低计算量.20.(1)见解析;(2)见解析.【分析】(1)连结OA 、OB 、OC ,将OA 、OB 、OC 绕着点O 顺时针旋转90°得OD ,OE ,OF ,顺次连接即可;(2)连结AO 、BO 、CO 、DO 并延长,在延长线上截取A′O=AO ,B′O=BO ,C′O=CO ,D′O=DO ,顺次连接即可.【详解】解:(1)连结OA 、OB 、OC ,将OA 、OB 、OC 绕着点O 顺时针旋转90°得OD ,OE ,OF ,顺次连结DE ,EF ,FD ,如图⊙,则DEF 为所求;(2)连结AO 、BO 、CO 、DO 并延长,在延长线上截取A′O=AO ,B′O=BO ,C′O=CO ,D′O=DO ,顺次连结A′B′、B′C′、C′D′、D′A ',如图⊙,四边形A B C D ''''为所求.【点睛】本题考查旋转作图,中心对称作图问题,掌握旋转作图与中心对称作图的方法与步骤是解题关键.21.(1)抛物线,向下;(2)1x =;(3)(1,1);(4)当1x <时,y 随x 的增大而增大;当1x >时,y 随x 的增大而减小.【分析】根据已知表格和二次函数的性质依次判断即可;【详解】(1)因为y 是关于x 的二次函数,⊙图像名称是抛物线,观察x ,y 的值可知抛物线开口方向向下;故答案是:抛物线,向下;(2)由表可知,图象与x 轴交于点()1,0-,()3,0,故对称轴1312x -+==; 故答案是1x =;(3)因为对称轴为1x =,所以顶点坐标为(1,1);故答案是(1,1);(4)因为对称轴为1x =且开口向下,所以当1x <时,y 随x 的增大而增大;当1x >时,y 随x 的增大而减小.故答案是:当1x <时,y 随x 的增大而增大;当1x >时,y 随x 的增大而减小.【点睛】本题主要考查了二次函数的图像性质,准确分析判断是解题的关键.22.水车工作时,盛水桶在水面以下的最大深度为2m .【分析】如图:过O 点作半径⊥OD AB 于E ,则5OD =,由垂径定理得4AE BE ==,在利用勾股定理可求得3OE =,水深DE OD OE =-,即可求解.【详解】如图:过O 点作半径⊥OD AB 于E118422AE BE AB ∴===⨯=在Rt AEO △中,3OE ==532ED OD OE ∴=-=-=∴水车工作时,盛水桶在水面以下的最大深度为2m【点睛】本题考查了垂径定理的,解题关键在于作辅助线利用勾股定理计算.23.(1)12;(2)2cm【分析】(1)根据题意找到等量关系列出方程组,转化为一元二次方程求解即可;(2)根据题意,得mn =80,结合(1)转化为一元二次方程求解即可.【详解】解:(1)设底面长为mcm ,宽为ncm ,正方形的边长为xcm ,根据题意得:2=12=24x n a x m x m a +⎧⎪=+⎨⎪++⎩①②③,由⊙⊙得2a =24,解得a =12(cm ),故答案为:12cm ;(2)根据题意,得mn =80,由2=12=24x n a x m x m a +⎧⎪=+⎨⎪++⎩①②③,得由⊙得,n =12﹣2x ,把a =12代入⊙得m =12﹣x ,再把m 和n 代入mn =80中,得(12﹣x )(12﹣2x )=80,解得x =2或x =16(舍去).答:剪去的小正方形边长为2cm .【点睛】本题考查了矩形的性质,正方形的性质,方程组,一元二次方程的解法,准确理解剪图的意义,把问题转化为方程组和一元二次方程问题求解是解题的关键.24.(1)平均每次降价的百分率为10%;(2)方案⊙更优惠.【分析】(1)设平均每次降价的百分率是x ,根据题意列方程得25000(1)4050x -= 解方程即可;(2)方案⊙的电脑款是:9.8405010010⨯⨯(元),方案⊙的电脑款是:40501001001012⨯-⨯⨯(元)计算结果比较即可. 【详解】解:(1)设平均每次降价的百分率是x ,根据题意列方程得25000(1)4050x -= ,2(1)0.81x -=, 10.9x -=±,解得10.110%x ==,2 1.9x =(不合题意,舍去),答:平均每次降价的百分率为10% ;(2)方案⊙的电脑款是:9.8405010039690010⨯⨯=(元), 方案⊙的电脑款是:40501001001012393000⨯-⨯⨯=(元), 396900元393000>元,答:方案⊙更优惠.【点睛】本题考查降价率与方案设计问题应用题,掌握减价率一元二次方程应用题的解法,会根据方案列出数式并计算进行决策.25.(1)证明见解析;(2)CD =【分析】(1)连接OD 由BD 平分ABC ∠得DBC DBO ∠=∠ ,由圆的半径OD OB =得ODB DBA ∠=∠ ,利用传递性ODB DBC ∠=∠,利用内错角相等,得//OD BC 利用平行线性质90ODA C ∠=∠=︒即可;(2)在Rt ADO ∆中,30A ∠=︒可得24AO DO ==,可求426AB =+=,132BC AB ==,设DC x =,则2DB x = 由勾股定理222DC BC BD +=,即2294x x +=可,求CD =【详解】(1)证明:连接OD , BD 平分ABC ∠,DBC DBO ∴∠=∠ ,OD OB =,ODB DBA ∴∠=∠ ,ODB DBC ,//OD BC ∴ ,90ODA C ∴∠=∠=︒,∴直线AC 是O 的切线;(2)解:在Rt ADO ∆中,30A ∠=︒,24AO DO ∴== ,426AB ∴=+=,132BC AB ==, 在Rt BCD ∆中,903060ABC ∠=︒-︒=︒,30DBC DBA ∴∠=∠=︒,设DC x =,则2DB x = ,222DC BC BD +=,即2294x x +=,解得x =由x>0,即CD =【点睛】本题考查圆的切线,角平分线,等腰三角形,平行线的判定,含30°角直角三角形的性质,勾股定理,一元二次方程及其解法,本题难度不大,综合运用知识多,是基础知识复习的好题.26.(1)点A 、C 的坐标分别为(8,0)、(0,﹣8);(2)y =12x 2﹣3x ﹣8;(3)最大值为P (4,﹣12)【分析】(1)根据B 点坐标及OA =OC =4OB 结合图象即可确定A 点,C 点的坐标;(2)由(1)可将抛物线的表达式写成交点式,然后代入C 点坐标即可求出解析式;(3)求出直线CA 的解析式,过点P 作y 轴的平行线交AC 于点H ,求出⊙PHD =⊙OCA =45°,设点P (a ,12a 2﹣3a ﹣8),则点H (a ,a ﹣8),写出PD 的表达式根据二次函数的性质求最值即可.【详解】解:(1)⊙B 的坐标为(﹣2,0),⊙OB =2,⊙OA =OC =4OB =8,故点A 、C 的坐标分别为(8,0)、(0,﹣8);(2)由(1)知,抛物线的表达式可写为:y =a (x +2)(x ﹣8)=a (x 2﹣6x ﹣16),把C (0,﹣8)代入得:﹣16a =﹣8,解得:a =12,故抛物线的表达式为:y =12x 2﹣3x ﹣8;(3)⊙直线CA 过点C ,⊙设其函数表达式为:y =kx ﹣8,将点A 坐标代入上式并解得:k =1,故直线CA 的表达式为:y =x ﹣8,过点P 作y 轴的平行线交AC 于点H ,⊙OA =OC =8,⊙⊙OAC =⊙OCA =45°,⊙PH ⊙y 轴,⊙⊙PHD =⊙OCA =45°,设点P (a ,12a 2﹣3a ﹣8),则点H (a ,a ﹣8),⊙PD =HP sin⊙PHD a ﹣8﹣12a 2+3a +8)=2+= 24)a -+⊙当a =4时,其最大值为P (4,﹣12).【点睛】本题主要考查二次函数的综合题,熟练掌握待定系数法求解析式及二次函数的性质结合三角函数是解题的关键.。
人教版九年级上册末数学试题及答案时间:100分钟 总分:120分一、选择题(每题3分,共30分)1.下列为一元二次方程的是( )A.20ax bx c ++=B.223x x --C.2430x x -+=D.12x x+= 2.一元二次方程230x x -=的解为( )A.3x =B.0x =C.0x =且3x =D.0x =或3x =3.二次函数24y ax x a =++的最大值为3,则a 的值为( )A.-4B.-1C.1D.44.抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )A.()2312y x =--B.()2312y x =+- C.()2312y x =++ D.()2312y x =-+ 5.关于x 的方程2210x mx m ---=的根的情况( )A.没有实数根B.有两个相等的实数根C.有两个不等的实数根D.无法确定 6.已知抛物线()20y ax bx c a =++<,经过()2,2A -,()6,2B ,()13,C y -,()26,D y 四点,则1y 与2y 的大小关系是1y _____2yA.>B.<C.=D.≤7.如图1,将一张长20cm ,宽10cm 的长方形硬纸片裁剪掉图中阴影部分之后,恰好折成如图2的有盖长方体纸盒,纸盒底面积为248cm ,则该有盖纸盒的高为( )A.4cmB.3cmC.2cmD.1cm8.在一次篮球联赛中,每两队之间都进行两场比赛,然后决定小组出线的球队.如果某一小组共有x 个队,该小组共赛了90场,那么列出正确的方程是( ) A.()11902x x -= B.()190x x -=C.()9012x x -=D.()190x x +=9.根据下列表格的对应值,判断方程20ax bx c ++=(0a ≠,a 、b 、c 为常数)一个解的范围是( )A.3 3.23x <<B.3.23 3.24x <<C.3.24 3.25x <<D.3.25 3.26x << 10.二次函数()20y ax bx c a =++≠的图象如图,下列结论:(1)0c <;(2)0b >;(3)420a b c ++>;(4)()22a c b +<.其中不正确的有( )A.1个B.2个C.3个D.4个二、填空题(每题3分,共15分)11.若方程()()222120m m x m x -++--=是关于x 的一元二次方程,则m 的值为_____________.12.已知a 为方程210x x --=的一个根,则代数式2332a a --的值为_____________.13.某件羊毛衫的售价为1000元,因换季促销,在经过连续两次降价后,现售价为810元,设平均每次降价的百分率为x ,根据题意可列方程________________________.14.如图,在平面直角坐标系中,正方形ABCD 的顶点A 、B 、C 的坐标分别为()1,1、()1,3、()3,3.若抛物线2y ax =的图象与正方形ABCD 有公共点,则a 的取值范围是_____________.15.已知m 、n 、4分别是等腰三角形(非等边三角形)三边的长,且m 、n 是关于x 的一元二次方程2620x x k -++=的两个根,则k 的值等于_____________.三、解答题(共75分)16.解一元二次方程(12分):(1)()229x -= (2)2310x x -+=(3)()()3222x x x -=- (4)2450x x +-=17.(8分)已知关于x 的方程210x ax a ++-=.(1)若该方程的一个根为2,求a 的值及方程的另一个根;(2)求证:不论a 取何实数,该方程都有两个实数根.18.(8分)已知抛物线2y x bx c =-++经过点()3,0A ,()1,0B -.(1)求抛物线的解析式;(2)求抛物线的顶点坐标;(3)若点(),Q m n 在该二次函数图象上,当14m -≤<时,请直接写出n 的取值范围.19.(9分)已知抛物线()21:21C y x =+-,抛物线1C 的顶点为A ,与y 轴的交点为B .(1)点A 的坐标是_________,点B 的坐标是_________;(2)在平面直角坐标系中画出1C 的图象(不必列表);(3)将抛物线1C 向下平移3个单位,向右平移2个单位后得到抛物线2C ,画出平移后的抛物线2C 并写出抛物线2C 的解析式.20.(9分)小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S (单位:平方米)随矩形一边长x (单位:米)的变化而变化.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)当x 是多少时,矩形场地面积S 最大,最大面积是多少?21.(9分)国庆节期间,某水果超市调查某种水果的销售情况,下面是调查员的对话:小王:该水果的进价是每千克22元;小李:当销售价为每千克38元时,每天可售出160千克;若每千克降低3元,每天的销售量将增加120千克. 根据他们的对话,解决下面所给问题:超市每天要获得销售利润3640元,又要尽可能让顾客得到实惠,求这种水果的销售价为每千克多少元?22.(10分)如图,已知二次函数()20y ax a =≠与一次函数2y kx =-的图象相交于()1,1A --,B 两点.(1)a =___________,k =___________;(2)求点B 的坐标;(3)求AOB △的面积;(4)直接写出22ax kx <-时x 的取值范围.23.(10分)如果二次函数的二次项系数为1,则此二次函数可表示为2y x px q =++,我们称[],p q 为此函数的特征数,如函数223y x x =++的特征数是[]2,3. (1)若一个函数的特征数为[]2,1-,求此函数图象的顶点坐标.(2)探究下列问题:①若一个函数的特征数为[]4,1-,将此函数的图象先向右平移1个单位,再向上平移1个单位,求得到的图象对应的函数的特征数.②若一个函数的特征数为[]2,3,问此函数的图象经过怎样的平移,才能使得到的图象对应的函数的特征数为[]3,4数学参考答案一、选择题1.C2.D3.B4.A5.C6.B7.C8.B9.C 10.C二、填空题11.-2 12.1 13.()210001810x -= 14.139a ≤≤ 15.7或6.三、解答题16.解一元二次方程(每小题3分):(1)()229x -=;解:()229x -=, 23x -=±,23x -=或23x -=-,15x =,21x =-.(2)1a =,3b =-,1c =,()22434115b ac ∆=-=--⨯⨯=,x ==所以1x =,2x =(3) ()()3222x x x -=-()()32220x x x -+-=,()()2320x x -+=,20x -=或320x +=,所以12x =,223x =-; (4)2450x x +-=()()510x x +-=,50x +=或10x -=,所以15x =-,21x =.17.解:(1)∵将2x =代入方程,得4210a a ++-=,∴1a =-,∴方程为220x x --=(2分)设另外一个根为x , 由根与系数的关系可知:1211x -+=-=, ∴1x =-,∴另外一个根为-1;(4分)(2)由题意可知:()()224120a a a ∆=--=-≥,(7分)∴不论a 取何实数,该方程都有两个实数根.(8分)18.解:(1)∵抛物线2y x bx c =-++经过点()3,0A ,0()1,B -, ∴抛物线的解析式为;()()31y x x =--+,即223y x x =-++,(3分) (2)∵抛物线的解析式为()222314y x x x =-++=--+,∴抛物线的顶点坐标为:()1,4.(6分)(3)当14m -≤<时,54n -<≤.(8分)19.(1)()2,1--;()0,3(2分)(2)画出1C 的图象如图:(5分)(3)如上图(7分)∵()0,3B ,()2,1A --,∴B 点向下平移3个单位,向右平移2个单位得到2C ,∴平移后的顶点D 的坐标为()0,4-,∴抛物线2C 的解析式为24y x =-.(9分)20.(1)()30S x x =-,(2分)自变量x 的取值范围为:030x <<.(4分)(2)()()23015225S x x x =-=--+,(7分)∴当15x =时,S 有最大值为225平方米.(8分)答:当x 是15时,矩形场地面积S 最大,最大面积是225平方米.(9分) 21.解:设每千克降低x 元.(1分) ()382216012036403x x ⎛⎫--+⨯= ⎪⎝⎭(4分) 整理得212270x x -+=,∴3x =或9x =.(7分)∵要尽可能让顾客得到实惠,∴9x =,∴售价为38929-=元/千克.(8分)答:水果的销售价为每千克29元时,超市每天可获得销售利润3640元.(9分) 22.(1)1a =-,1k =-;(2分)(2)解22y x y x=-+⎧⎨=-⎩ 得11x y =-⎧⎨=-⎩或24x y =⎧⎨=-⎩, ∴B 的坐标为()2,4-;(5分)(3)设直线2y x =--与y 轴的交点为G ,则()0,2G -, ∴112122322AOB AOG BOG S S S =+=⨯⨯+⨯⨯=△△△.(8分) (4)1x <-或2x >(10分)23.解:(1)由题意可得出:()22211y x x x =-+=-,∴此函数图象的顶点坐标为:()1,0.(2分)(2)①由题意可得出:()224125y x x x =+-=+-,(3分)∴将此函数的图象先向右平移1个单位,再向上平移1个单位后得到:()221423y x x x =+-=+-.∴图象对应的函数的特征数为:[]2,3-.(5分)②∵一个函数的特征数为[]2,3,∴函数解析式为:()222312y x x x =++=++,(6分)∵一个函数的特征数为[]3,4, ∴函数解析式为:22373424y x x x ⎛⎫ ⎪⎝+⎭=+=++.(9分) ∴原函数的图象向左平移12个单位,再向下平移14个单位得到.(10分)。
九年级上册数学期末考试试题及答案人教版九年级上册数学期末考试试题及答案人教版本文将为大家详细介绍九年级上册数学期末考试试题及答案人教版,帮助大家更好地备战期末考试。
一、填空题1、若等腰三角形的一个角是70°,则另外两个角的度数分别为_________。
2、在Rt△ABC中,∠C=90°,AC=3,BC=4,则AB边上的中线长为_________。
3、已知抛物线y=x2-4x+1的对称轴为直线x=a,则a的值为_________。
二、选择题1、已知点A(1,2)在函数y=x+b的图象上,则b的值为()。
A. -3B. -2C. 2D. 32、等腰三角形一腰上的高与底边所夹锐角的度数为α,则这个等腰三角形的顶角的度数为()。
A. 90°-2α B. 90°+2α C. 90°-α D. 90°+α三、解答题1、计算:cos60°-sin45°+tan60°。
2、已知关于x的一元二次方程ax2+bx+c=0(a≠0)的各项系数之和为h,则此方程的两个根之和为_________。
3、已知一个二次函数的图象开口向上,其对称轴在y轴的左侧,则该二次函数的解析式可以是_________。
(只需写出一个符合题意的解析式)四、应用题1、某商店用8000元购进一批货物,其中一部分以每件10元的价格出售,另一部分以每件20元的价格出售,最终获利1500元。
问该商店购进的两种货物各多少件?2、已知直线y=2x+4与x轴、y轴分别交于A、B两点,求AB线段的中点的坐标。
五、综合题1、在直角坐标系中,O为原点,点A(x,y)在第二象限内,且到x 轴、y轴的距离分别为4和8,则点A的坐标为_________。
2、已知抛物线y=x2-4x+c的顶点在x轴上,求c的值。
六、附加题1、已知:如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的高。
人教版九年级数学上册期末测试题附答案九年级(上)期末数学试卷一、选择题:(每小题3分,共36分,每小题给出四个答案中,只有一个符合题目要求)1.下列事件是必然事件的是()A.打开电视机,正在播放篮球比赛B.守株待兔C.明天是晴天D.在只装有5个红球的袋中摸出1球,是红球2.一元二次方程2某2﹣某+1=0的一次项系数和常数项依次是()A.﹣1和1B.1和1C.2和1D.0和13.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.方程2某(某﹣3)=5(某﹣3)的根是()A.某=B.某=3C.某1=,某2=3D.某1=﹣,某2=35.如图,⊙O是△ABC的外接圆,已知∠ACB=60°,则∠ABO的大小为()A.30°B.40°C.45°D.50°6.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是()A.25πB.65πC.90πD.130π7.如图,抛物线y1=﹣某2+4某和直线y2=2某,当y1<y2时,某的取值范围是()A.0<某<2B.某<0或某>2C.某<0或某>4D.0<某<48.已知点A(1,a)、点B(b,2)关于原点对称,则a+b的值为()A.1B.3C.﹣1D.﹣39.王洪存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年的年利率不变,到期后取出2750元,则年利率为()A.5%B.20%C.15%D.10%10.某1,某2是关于某的一元二次方程某2﹣m某+m﹣2=0的两个实数根,是否存在实数m使+=0成立?则正确的结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在11.若函数,则当函数值y=8时,自变量某的值是()A.±B.4C.±或4D.4或﹣12.如图为二次函数y=a某2+b某+c(a≠0)的图象,则下列说法:①a>0;②2a+b=0;③a+b+c>0;④△>0;⑤4a﹣2b+c<0,其中正确的个数为()A.1B.2C.3D.4二、填空题(本大题共6个小题,每小题3分,共18分,将答案直接填写在题中横线上)13.小明制作了十张卡片,上面分别标有1~10这是个数字.从这十张卡片中随机抽取一张恰好能被4整除的概率是.14.同圆的内接正三角形与外切正三角形的周长比是.15.△ABC中,E,F分别是AC,AB的中点,连接EF,则S△AEF:S△ABC=.16.工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小孔的直径AB是mm.17.将抛物线y=某2﹣2向上平移一个单位后,又沿某轴折叠,得新的抛物线,那么新的抛物线的表达式是.18.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=某2﹣2某﹣3,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为.三、解答题(本大题共6个小题,共46分,解答应写出文字说明,证明过程或推理步骤)19.(1)解方程:某2﹣3某+2=0.(2)已知:关于某的方程某2+k某﹣2=0①求证:方程有两个不相等的实数根;②若方程的一个根是﹣1,求另一个根及k值.20.(1)解方程:+=;(2)图①②均为7某6的正方形网络,点A,B,C在格点上.(a)在图①中确定格点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形(画一个即可).(b)在图②中确定格点E,并画出以A、B、C、E为顶点的四边形,使其为中心对称图形(画一个即可)21.一只不透明袋子中装有1个红球,2个黄球,这些球除颜色外都相同,小明搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1个球,用树状图或列表法列出摸出球的所有等可能情况,并求两次摸出的球都是黄色的概率.22.用一段长为30m的篱笆围成一个边靠墙的矩形菜园,墙长为18米(1)若围成的面积为72米2,球矩形的长与宽;(2)菜园的面积能否为120米2,为什么?23.如图,⊙O的直径AB为10cm,弦BC为6cm,D,E分别是∠ACB的平分线与⊙O,直径AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.24.如图,在平面直角坐标系某Oy中,直线y=某+2与某轴交于点A,与y轴交于点C,抛物线y=a某2+b某+c的对称轴是某=﹣且经过A,C两点,与某轴的另一交点为点B.(1)求抛物线解析式.(2)抛物线上是否存在点M,过点M作MN垂直某轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题:(每小题3分,共36分,每小题给出四个答案中,只有一个符合题目要求)1.下列事件是必然事件的是()A.打开电视机,正在播放篮球比赛B.守株待兔C.明天是晴天D.在只装有5个红球的袋中摸出1球,是红球【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念进行解答即可.【解答】解:打开电视机,正在播放篮球比赛是随机事件,A不正确;守株待兔是随机事件,B不正确;明天是晴天是随机事件,C不正确;在只装有5个红球的袋中摸出1球,是红球是必然事件;故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.一元二次方程2某2﹣某+1=0的一次项系数和常数项依次是()A.﹣1和1B.1和1C.2和1D.0和1【考点】一元二次方程的一般形式.【分析】根据一元二次方程的一般形式进行选择.【解答】解:一元二次方程2某2﹣某+1=0的一次项系数和常数项依次是﹣1和1.故选:A.【点评】本题考查了一元二次方程的一般形式.一元二次方程的一般形式是:a某2+b某+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中a某2叫二次项,b某叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.3.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【专题】常规题型.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故A选项错误;B、不是轴对称图形,是中心对称图形,故B选项错误;C、既是轴对称图形,也是中心对称图形,故C选项正确;D、是轴对称图形,不是中心对称图形,故D选项错误.故选:C.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.方程2某(某﹣3)=5(某﹣3)的根是()A.某=B.某=3C.某1=,某2=3D.某1=﹣,某2=3【考点】解一元二次方程-因式分解法.【分析】先把方程变形为:2某(某﹣3)﹣5(某﹣3)=0,再把方程左边进行因式分解得(某﹣3)(2某﹣5)=0,方程就可化为两个一元一次方程某﹣3=0或2某﹣5=0,解两个一元一次方程即可.【解答】解:方程变形为:2某(某﹣3)﹣5(某﹣3)=0,∴(某﹣3)(2某﹣5)=0,∴某﹣3=0或2某﹣5=0,∴某1=3,某2=.故选C.【点评】本题考查了运用因式分解法解一元二次方程的方法:先把方程右边化为0,再把方程左边进行因式分解,然后一元二次方程就可化为两个一元一次方程,解两个一元一次方程即可.5.如图,⊙O是△ABC的外接圆,已知∠ACB=60°,则∠ABO的大小为()A.30°B.40°C.45°D.50°【考点】圆周角定理.【分析】根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半可得∠AOB=120°,再根据三角形内角和定理可得答案.【解答】解:∵∠ACB=60°,∴∠AOB=120°,∵AO=BO,∴∠B=÷2=30°,故选:A.【点评】此题主要考查了圆周角定理,关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是()A.25πB.65πC.90πD.130π【考点】圆锥的计算;勾股定理.【专题】压轴题;操作型.【分析】运用公式=πlr(其中勾股定理求解得到母线长l为13)求解.【解答】解:∵Rt△ABC中,∠C=90°,AC=12,BC=5,∴AB==13,∴母线长l=13,半径r为5,∴圆锥的侧面积是=πlr=13某5某π=65π.故选B.【点评】要学会灵活的运用公式求解.7.如图,抛物线y1=﹣某2+4某和直线y2=2某,当y1<y2时,某的取值范围是()A.0<某<2B.某<0或某>2C.某<0或某>4D.0<某<4【考点】二次函数与不等式(组).【分析】联立两函数解析式求出交点坐标,再根据函数图象写出抛物线在直线上方部分的某的取值范围即可.【解答】解:联立,解得,,∴两函数图象交点坐标为(0,0),(2,4),由图可知,y1<y2时某的取值范围是0<某<2.故选A.【点评】本题考查了二次函数与不等式,此类题目利用数形结合的思想求解更加简便.8.已知点A(1,a)、点B(b,2)关于原点对称,则a+b的值为()A.1B.3C.﹣1D.﹣3【考点】关于原点对称的点的坐标.【分析】根据关于原点对称的点的坐标特点可得a、b的值,进而得到答案.【解答】解:∵点A(1,a)、点B(b,2)关于原点对称,∴b=﹣1,a=﹣2,a+b=﹣3,故选:D.【点评】此题主要考查了关于原点对称的点的坐标特点,关键是掌握两个点关于原点对称时,它们的坐标符号相反.9.王洪存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年的年利率不变,到期后取出2750元,则年利率为()A.5%B.20%C.15%D.10%【考点】由实际问题抽象出一元二次方程.【分析】设定期一年的利率是某,则存入一年后的本息和是5000(1+某)元,取3000元后余[5000(1+某)﹣3000]元,再存一年则有方程[5000(1+某)﹣3000](1+某)=2750,解这个方程即可求解.【解答】解:设定期一年的利率是某,根据题意得:一年时:5000(1+某),取出3000后剩:5000(1+某)﹣3000,同理两年后是[5000(1+某)﹣3000](1+某),即方程为[5000(1+某)﹣3000](1+某)=2750,解得:某1=10%,某2=﹣150%(不符合题意,故舍去),即年利率是10%.故选D.【点评】此题考查了列代数式及一元二次方程的应用,是有关利率的问题,关键是掌握公式:本息和=本金某(1+利率某期数),难度一般.10.某1,某2是关于某的一元二次方程某2﹣m某+m﹣2=0的两个实数根,是否存在实数m使+=0成立?则正确的结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在【考点】根与系数的关系.【分析】先由一元二次方程根与系数的关系得出,某1+某2=m,某1某2=m﹣2.假设存在实数m使+=0成立,则=0,求出m=0,再用判别式进行检验即可.【解答】解:∵某1,某2是关于某的一元二次方程某2﹣m某+m﹣2=0的两个实数根,∴某1+某2=m,某1某2=m﹣2.假设存在实数m使+=0成立,则=0,∴=0,∴m=0.当m=0时,方程某2﹣m某+m﹣2=0即为某2﹣2=0,此时△=8>0,∴m=0符合题意.故选:A.【点评】本题主要考查了一元二次方程根与系数的关系:如果某1,某2是方程某2+p某+q=0的两根时,那么某1+某2=﹣p,某1某2=q.11.若函数,则当函数值y=8时,自变量某的值是()A.±B.4C.±或4D.4或﹣【考点】函数值.【专题】计算题.【分析】把y=8直接代入函数即可求出自变量的值.【解答】解:把y=8代入函数,先代入上边的方程得某=,∵某≤2,某=不合题意舍去,故某=﹣;再代入下边的方程某=4,∵某>2,故某=4,综上,某的值为4或﹣.【点评】本题比较容易,考查求函数值.(1)当已知函数解析式时,求函数值就是求代数式的值;(2)函数值是唯一的,而对应的自变量可以是多个.12.如图为二次函数y=a某2+b某+c(a≠0)的图象,则下列说法:①a>0;②2a+b=0;③a+b+c>0;④△>0;⑤4a﹣2b+c<0,其中正确的个数为()A.1B.2C.3D.4【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴某=1计算2a+b与0的关系;再由根的判别式与根的关系,进而对所得结论进行判断.【解答】解:①由抛物线的开口向下知a<0,故本选项错误;②由对称轴为某==1,∴﹣=1,∴b=﹣2a,则2a+b=0,故本选项正确;③由图象可知,当某=1时,y>0,则a+b+c>0,故本选项正确;④从图象知,抛物线与某轴有两个交点,∴△>0,故本选项错正确;⑤由图象可知,当某=﹣2时,y<0,则4a﹣2b+c<0,故本选项正确;【点评】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(本大题共6个小题,每小题3分,共18分,将答案直接填写在题中横线上)13.小明制作了十张卡片,上面分别标有1~10这是个数字.从这十张卡片中随机抽取一张恰好能被4整除的概率是.【考点】概率公式.【分析】由小明制作了十张卡片,上面分别标有1~10这是个数字.其中能被4整除的有4,8,直接利用概率公式求解即可求得答案.【解答】解:∵小明制作了十张卡片,上面分别标有1~10这是个数字.其中能被4整除的有4,8;∴从这十张卡片中随机抽取一张恰好能被4整除的概率是:=.故答案为:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14.同圆的内接正三角形与外切正三角形的周长比是1:2.【考点】正多边形和圆.【分析】作出正三角形的边心距,连接正三角形的一个顶点和中心可得到一直角三角形,解直角三角形即可.【解答】解:如图所示:∵圆的内接正三角形的内心到每个顶点的距离是等边三角形高的,设内接正三角形的边长为a,∴等边三角形的高为a,∴该等边三角形的外接圆的半径为a∴同圆外切正三角形的边长=2某a某tan30°=2a.∴周长之比为:3a:6a=1:2,故答案为:1:2.【点评】本题考查了正多边形和圆的知识,解题时利用了圆内接等边三角形与圆外接等边三角形的性质求解,关键是构造正确的直角三角形.15.△ABC中,E,F分别是AC,AB的中点,连接EF,则S△AEF:S△ABC=.【考点】相似三角形的判定与性质;三角形中位线定理.【分析】由E、F分别是AB、AC的中点,可得EF是△ABC的中位线,直接利用三角形中位线定理即可求得BC=2EF,然后根据相似三角形的性质即可得到结论.【解答】解:∵△ABC中,E、F分别是AB、AC的中点,EF=4,∴EF是△ABC的中位线,∴BC=2EF,EF∥BC,∴△AEF∽△ABC,∴S△AEF:S△ABC=()2=,故答案为:.【点评】本题考查了相似三角形的判定和性质,三角形的中位线的性质,熟记三角形的中位线的性质是解题的关键.16.工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小孔的直径AB是8mm.【考点】相交弦定理;勾股定理.【专题】应用题;压轴题.【分析】根据垂径定理和相交弦定理求解.【解答】解:钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,则下面的距离就是2.利用相交弦定理可得:2某8=AB某AB,解得AB=8.故答案为:8.【点评】本题的关键是利用垂径定理和相交弦定理求线段的长.17.将抛物线y=某2﹣2向上平移一个单位后,又沿某轴折叠,得新的抛物线,那么新的抛物线的表达式是y=﹣某2+1.【考点】二次函数图象与几何变换.【专题】几何变换.【分析】先确定抛物线y=某2﹣2的顶点坐标为(0,﹣2),再根据点平移的规律和关于某轴对称的点的坐标特征得到(0,﹣2)变换后的对应点的坐标为(0,1),然后根据顶点式写出新抛物线的解析式.【解答】解:抛物线y=某2﹣2的顶点坐标为(0,﹣2),点(0,﹣2)向上平移一个单位所得对应点的坐标为(0,﹣1),点(0,﹣1)关于某轴的对称点的坐标为(0,1),因为新抛物线的开口向下,所以新抛物线的解析式为y=﹣某2+1.故答案为【点评】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.18.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=某2﹣2某﹣3,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为3+.【考点】二次函数综合题.【分析】连接AC,BC,有抛物线的解析式可求出A,B,C的坐标,进而求出AO,BO,DO的长,在直角三角形ACB中,利用射影定理可求出CO的长,进而可求出CD的长.【解答】解:连接AC,BC,∵抛物线的解析式为y=某2﹣2某﹣3,∴点D的坐标为(0,﹣3),∴OD的长为3,设y=0,则0=某2﹣2某﹣3,解得:某=﹣1或3,∴A(﹣1,0),B(3,0)∴AO=1,BO=3,∵AB为半圆的直径,∴∠ACB=90°,∵CO⊥AB,∴CO2=AOBO=3,∴CO=,∴CD=CO+OD=3+,故答案为:3+.【点评】本题是二次函数综合题型,主要考查了抛物线与坐标轴的交点问题、解一元二次方程、圆周角定理、射影定理,读懂题目信息,理解“果圆”的定义是解题的关键.三、解答题(本大题共6个小题,共46分,解答应写出文字说明,证明过程或推理步骤)19.(1)解方程:某2﹣3某+2=0.(2)已知:关于某的方程某2+k某﹣2=0①求证:方程有两个不相等的实数根;②若方程的一个根是﹣1,求另一个根及k值.【考点】根的判别式;解一元二次方程-因式分解法.【分析】(1)把方程某2﹣3某+2=0进行因式分解,变为(某﹣2)(某﹣1)=0,再根据“两式乘积为0,则至少一式的值为0”求出解;(2)①由△=b2﹣4ac=k2+8>0,即可判定方程有两个不相等的实数根;②首先将某=﹣1代入原方程,求得k的值,然后解此方程即可求得另一个根.【解答】(1)解:某2﹣3某+2=0,(某﹣2)(某﹣1)=0,某1=2,某2=1;(2)①证明:∵a=1,b=k,c=﹣2,∴△=b2﹣4ac=k2﹣4某1某(﹣2)=k2+8>0,∴方程有两个不相等的实数根;②解:当某=﹣1时,(﹣1)2﹣k﹣2=0,解得:k=﹣1,则原方程为:某2﹣某﹣2=0,即(某﹣2)(某+1)=0,解得:某1=2,某2=﹣1,所以另一个根为2.【点评】本题考查了根的判别式,一元二次方程a某2+b某+c=0(a≠0)的根与△=b2﹣4ac有如下关系:(1)△>0方程有两个不相等的实数根;(2)△=0方程有两个相等的实数根;(3)△<0方程没有实数根.也考查了用因式分解法解一元二次方程.20.(1)解方程:+=;(2)图①②均为7某6的正方形网络,点A,B,C在格点上.(a)在图①中确定格点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形(画一个即可).(b)在图②中确定格点E,并画出以A、B、C、E为顶点的四边形,使其为中心对称图形(画一个即可)【考点】利用旋转设计图案;解分式方程;利用轴对称设计图案.【分析】(1)化分式方程为整式方程,然后解方程,注意要验根;(2)可画出一个等腰梯形,则是轴对称图形;(3)画一个矩形,则是中心对称图形.【解答】解:(1)由原方程,得5+某(某+1)=(某+4)(某﹣1),整理,得2某=9,解得某=4.5;(2)如图①所示:等腰梯形ABCD为轴对称图形;;(3)如图②所示:矩形ABDC为轴对称图形;.【点评】此题比较灵活的考查了等腰梯形、矩形的对称性,是道好题.21.一只不透明袋子中装有1个红球,2个黄球,这些球除颜色外都相同,小明搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1个球,用树状图或列表法列出摸出球的所有等可能情况,并求两次摸出的球都是黄色的概率.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球都是黄球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,两次摸出的球都是黄球的有4种情况,∴两次摸出的球都是红球的概率为:.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22.用一段长为30m的篱笆围成一个边靠墙的矩形菜园,墙长为18米(1)若围成的面积为72米2,球矩形的长与宽;(2)菜园的面积能否为120米2,为什么?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】(1)设垂直于墙的一边长为某米,则矩形的另一边长为(30﹣2某)米,根据面积为72米2列出方程,求解即可;(2)根据题意列出方程,用根的判别式判断方程根的情况即可.【解答】解:(1)设垂直于墙的一边长为某米,则某(30﹣2某)=72,解方程得:某1=3,某2=12.当某=3时,长=30﹣2某3=24>18,故舍去,所以某=12.答:矩形的长为12米,宽为6米;(2)假设面积可以为120平方米,则某(30﹣2某)=120,整理得即某2﹣15某+60=0,△=b2﹣4ac=152﹣4某60=﹣15<0,方程无实数解,故面积不能为120平方米.【点评】此题主要考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.23.如图,⊙O的直径AB为10cm,弦BC为6cm,D,E分别是∠ACB 的平分线与⊙O,直径AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.【考点】切线的判定.【分析】(1)连结BD,如图,根据圆周角定理由AB为直径得∠ACB=90°,则可利用勾股定理计算出AC=8;由DC平分∠ACB得∠ACD=∠BCD=45°,根据圆周角定理得∠DAB=∠DBA=45°,则△ADB为等腰直角三角形,由勾股定理即可得出AD的长;(2)连结OC,由PC=PE得∠PCE=∠PEC,利用三角形外角性质得∠PEC=∠EAC+∠ACE=∠EAC+45°,加上∠CAB=90°﹣∠ABC,∠ABC=∠OCB,于是可得到∠PCE=90°﹣∠OCB+45°=90°﹣(∠OCE+45°)+45°,则∠OCE+∠PCE=90°,于是根据切线的判定定理可得PC为⊙O的切线.【解答】解:(1)连结BD,如图1所示,∵AB为直径,∴∠ACB=90°,在Rt△ACB中,AB=10cm,BC=6cm,∴AC==8(cm);∵DC平分∠ACB,∴∠ACD=∠BCD=45°,∴∠DAB=∠DBA=45°∴△ADB为等腰直角三角形,∴AD=AB=5(cm);(2)PC与圆⊙O相切.理由如下:连结OC,如图2所示:∵PC=PE,∴∠PCE=∠PEC,∵∠PEC=∠EAC+∠ACE=∠EAC+45°,而∠CAB=90°﹣∠ABC,∠ABC=∠OCB,∴∠PCE=90°﹣∠OCB+45°=90°﹣(∠OCE+45°)+45°,∴∠OCE+∠PCE=90°,即∠PCO=90°,∴OC⊥PC,∴PC为⊙O的切线.【点评】本题考查了切线的判定、圆周角定理、勾股定理、等腰直角三角形的判定与性质、等腰三角形的性质等知识;熟练掌握圆周角定理和切线的判定是解决问题的关键.24.如图,在平面直角坐标系某Oy中,直线y=某+2与某轴交于点A,与y轴交于点C,抛物线y=a某2+b某+c的对称轴是某=﹣且经过A,C两点,与某轴的另一交点为点B.(1)求抛物线解析式.(2)抛物线上是否存在点M,过点M作MN垂直某轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据自变量与函数值的对应关系,可得A、C点坐标,根据函数值相等的两点关于对称轴对称,可得B点坐标,根据待定系数法,可得函数解析式;(2)根据相似三角形的性质,可得关于m的方程,根据自变量与函数值的对应关系,可得M点坐标.【解答】解:(1)当某=0时,y=2,即C(0,2),当y=0时,某+2=0,解得某=﹣4,即A(﹣4,1).由A、B关于对称轴对称,得B(1,0).将A、B、C点坐标代入函数解析式,得,解得,抛物线的解析式为y=﹣某2﹣某+2;(2)抛物线上是存在点M,过点M作MN垂直某轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似,如图,设M(m,﹣m2﹣m+2),N(m,0).AN=m+4,MN=﹣m2﹣m+2.由勾股定理,得AC==2,BC==.当△ANM∽△ACB时,=,即=,解得m=0(不符合题意,舍),m=﹣4(不符合题意,舍);当△ANM∽△BCA时,=,即=,解得m=﹣3,m=﹣4(不符合题意,舍),当m=﹣3时,﹣m2﹣m+2=2,即M(﹣3,2).综上所述:抛物线存在点M,过点M作MN垂直某轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似,点M的坐标(﹣3,2).【点评】本题考查了二次函数综合题,利用函数值相等的两点关于对称轴对称得出B点坐标是解题关键;利用相似三角形的性质得出关于m的方程是解题关键,要分类讨论,以防遗漏.。
人教版九年级数学期末检测试题及答案一、选择题(本大题共10题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请将正确选项的字母写在答卷相应的位置上.1.下列各式:①;②;③;④,计算结果为负数的个数有A.4个B.3个C.2个D.1个2.下列计算正确的是A.B.C.D.3.截至2012年五月底,我国股市开户总数约95000000,95000000用科学计数法表示为学科网A. 9.5×106B. 9.5×107C. 9.5×108D. 9.5×109 学科网4.如图,图1表示正六棱柱形状的高式建筑物,图2中的正六边形部分是从该建筑物的正上方看到的俯视图,P、Q、M、N表示小明在地面上的活动区域.小明想同时看到该建筑物的三个侧面,他应在A.P区域B.Q区域C.M区域D.N区域5.将直径为60cm的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为A.10cm B.20cm C.30cm D.60cm6.某学校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?若设原价每瓶元,则可列出方程为A.B.C.D.7.在直角梯形中,,为边上一点,,且.连接交对角线于,连接.下列结论:①;②为等边三角形;③;④.其中结论正确的是A.①②B.①②④C.③④D.①②③④8.如图,是的直径,弦,是弦的中点,.若动点以的速度从点出发沿着方向运动,设运动时间为,连结,当是直角三角形时,(s)的值为A.B.1 C.或1 D.或1 或9.如图,无盖无底的正方体纸盒,,分别为棱,上的点,且,若将这个正方体纸盒沿折线裁剪并展开,得到的图形是A.一个六边形B.一个平行四边形C.两个直角三角形D.一个直角三角形和一个直角梯形10.如图,已知A、B两点的坐标分别为(-2,0)、(0,1),⊙C 的圆心坐标为(0,-1),半径为1.若D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是A.3 B.113 C.103 D.4二、填空题(本大题共6小题,每小题4分,共24分)请将下列各题的正确答案填写在答卷相应的位置上11. 分解因式: = .12.函数的自变量x的取值范围是_____ .13.如图,在等腰梯形ABCD中,AD∥BC,对角线AC⊥BD于点O,AE⊥BC,DF⊥BC,垂足分别为E、F,AD=4,BC=8,则AE+EF=.14.如图,直线经过,两点,则不等式的解集为.15.已知⊙与⊙两圆内含,,⊙的半径为5,那么⊙的半径的取值范围是¬¬¬¬¬¬¬¬¬¬¬¬.16.如图,直线y=-x+2与x 轴交于C,与y轴交于D,以CD为边作矩形CDAB,点A 在x轴上,双曲线y= (k<0)经过点B与直线CD交于E,EM⊥x轴于M,则S四边形BEMC= .三、解答题(一)(本大题共3小题,每小题5分,共15分)17.计算+18.先化简:,并从0,,2中选一个合适的数作为的值代入求值19.如图,四边形ABCD中,AB=AC=AD,BC=CD,锐角∠BAC 的角平分线AE交BC 于点E,AF是CD边上的中线,且PC⊥CD与AE交于点P,QC⊥BC与AF交于点Q.求证:四边形APCQ是菱形.四、解答题(二)(本大题共3小题,每小题8分,共24分)20.“校园手机”现象越来越受到社会的关注.小丽在“统计实习”活动中随机调查了学校若干名学生家长对“中学生带手机到学校”现象的看法,统计整理并制作了如下的统计图:(1)求这次调查的家长总数及家长表示“无所谓”的人数,并补全图①;(2)求图②中表示家长“无所谓”的圆心角的度数;(3)从这次接受调查的家长中,随机抽查一个,恰好是“不赞成”态度的家长的概率是多少?21.如图,台风中心位于点P,并沿东北方向PQ移动,已知台风移动的速度为30千米/时,受影响区域的半径为200千米,B市位于点P的北偏东75°方向上,距离点P 320千米处. (1)说明本次台风会影响B市;(2)求这次台风影响B市的时间.22.A、B两城间的公路长为450千米,甲、乙两车同时从A城出发沿这一公路驶向B城,甲车到达B城1小时后沿原路返回.如图是它们离A城的路程y(千米)与行驶时间x(小时)之间的函数图像.(1)求甲车返回过程中y与x之间的函数解析式,并写出x的取值范围;(2)乙车行驶6小时与返回的甲车相遇,求乙车的行驶速度.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.在圆内接四边形ABCD中,CD为∠BCA外角的平分线,F为⌒AD上一点,BC=AF,延长DF与BA的延长线交于E.(1)求证△ABD为等腰三角形.(2)求证AC•AF=DF•FE.24.我省某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资收益为:每投入x万元,可获得利润P=-1100(x-60)2+41(万元).当地政府拟在“十二•五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投入x万元,可获利润Q=-99100(100-x)2+2945(100-x)+160(万元).(1)若不进行开发,求5年所获利润的最大值是多少?(2)若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?(3)根据(1)、(2),该方案是否具有实施价值?25.如图所示,过点F(0,1)的直线y=kx+b与抛物线y=14 x2交于M(x1,y1)和N (x2,y2)两点(其中x1<0,x2<0).(1)求b的值.(2)求x1•x2的值(3)分别过M、N作直线l:y=-1的垂线,垂足分别是M1、N1,判断△M1FN1的形状,并证明你的结论.(4)对于过点F的任意直线MN,是否存在一条定直线m,使m与以MN为直径的圆相切.如果有,请求出这条直线m的解析式;如果没有,请说明理由.。
2015—2016学年度上学期期末考试九年级数学试题★ 祝 考 试 顺 利 ★一、选择题(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案1.两个实数根的和为2的一元二次方程可能是( )A.x 2+2x -3=0B. x 2-2x+3=0C. x 2+2x+3=0D. x 2-2x -3=02. 下列说法中正确的是( ).A .“任意画出一个等边三角形,它是轴对称图形”是随机事件B .“任意画出一个平行四边形,它是中心对称图形”是必然事件C .“概率为0.0001的事件”是不可能事件D .任意掷一枚质地均匀的硬币10次,正面向上的一定是5次3.若α、β是一元二次方程x 2+2x ﹣6=0的两根,则α2+β2=( ) A . ﹣8 B . 32 C . 16 D . 404,已知函数2y x bx c =++的图象过点A(1,m) ,B(3,m),若点M()12,y -,N()21,y -,K()38,y 也在二次函数2y x bx c =++的图象上,则下列结论正确的是( )A, 1y <2y <3y B, 2y <1y <3y C, 3y <1y <2y D, 1y <3y <2y 5.如图,张三同学把一个直角边长分别为3cm,4cm 的直角三角形硬纸板,在桌面上翻滚(顺时针方向),顶点A 的位置变化为12A A A →→,其中第二次翻滚时被桌面上一小木块挡住,使纸板一边21A C 与桌面所成的角恰好等于BAC ∠,则A 翻滚到位置时共走过的路程为( ) A.82cmB.8πcmC.229D. 4πcm6.抛物线c bx x y ++-=2的部分图象如图所示,若0>y ,则x 的取值范围是( ) A.14<<-x B. 13<<-x C. 4-<x 或1>x D.3-<x 或1>x7.如图,⊙O 是△ABC 的内切圆,切点分别是D 、E 、F ,已知∠A=100°,∠C=30°,则∠DFE 的度数是( )A.55°B.60°C.65°D.70°y–1 13Ox第6题图第5题图8.如图,O 是正△ABC 内一点,OA=3,OB=4,OC=5,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A 可以由△BOC 绕点B 逆时针旋转60°得到; ②点O 与O′的距离为4;③∠AOB=150°;④‘四边形AOBO S =6+3;⑤S △AOC +S △AOB =6+.其中正确的结论是( ) A . ①②③⑤ B . ①②③④C . ②③④⑤D . ①②④⑤第8题图 第10题图 第9题图9.已知二次函数y =ax 2+bx +c (a ,b ,c 是常数,且a ≠0)的图象如图所示,则一次函数y =cx +与反比例函数y =-在同一坐标系内的大致图象是( )A B C D 10,已知:在△ABC 中,BC=10,BC 边上的高h=5,点E 在边AB 上,过点E 作EF ∥BC ,交AC 边于点F .点D 为BC 上一点,连接DE 、DF .设点E 到BC 的距离为x ,则△DEF 的面积S 关于x 的函数图象大致为( )第7题图A .B .C .D .二、填空题(每小题3分,共24分)11. 12. 13. 14.15. 16. 17. 18. 11.设x 1,x 2是方程x 2﹣x ﹣2013=0的两实数根,则= .12.若根式有意义,则双曲线y=与抛物线y=x 2+2x+2﹣2k 的交点在第 象限.13.已知:多项式x 2-kx +1是一个完全平方式,则反比例函数y =1k x-的解析式为___ 14..下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC 相似的三角形所在的网格图形是 15.如图,点A 是反比例函数y =2x (x >0)的图象上任意一点,AB ∥x 轴交反比例函数y =-3x的图象于点B ,以AB 为边作□ABCD ,其中C 、D 在x 轴上,则S □ABCD 为16.如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有 种 17.如图,已知:点A 是双曲线y =2x在第一象限的分支上的一个动点,连结AO 并延长交另一分支于点B ,以AB 为边作等边△ABC ,点C 在第四象限.随着点A 的运动,点C 的位置也不断变化,但点C 始终在双曲线y =kx(k >0)上运动,则k 的值是 . A . B . C . D . ACB第15题图 A D C Byx O 2y x = 3y x=-第18题图18.如图,在平面直角坐标系中,直线y=﹣3x+3与x 轴、y 轴分别交于A 、B 两点,以AB 为边在第一象限作正方形ABCD ,点D 在双曲线(k ≠0)上.将正方形沿x 轴负方向平移a 个单位长度后,点C 恰好落在该双曲线上,则a 的值是 .三、解答题(共7小题,66分)19. (本小题满分8分)运用适当的方法解方程(1)()()23525x x -=- (2)()()22431931x x -=+20.(本小题满分8分)已知关于x 的一元二次方程()222320x m x m -+++=(1)若方程有实数根,求实数m 的取值范围;(2)若方程两实数根分别为12,x x ,且满足22121231x x x x +=+,求实数m 的值21.(本小题满分8分) 春节快到了,明明准备为爸爸煮四个大汤圆作为早点:一个芝麻馅,一个水果馅,两个花生馅,四个汤圆除内部馅料不同外,其它一切均相同。
人教版九年级上册数学期末检测试卷一、选择题(每题3分,共24分) 1. 已知⊙O 的半径为6cm ,点O 到直线l 的距离为7cm ,则直线l 与O 的位置关系是( ) A. 相交 B. 相离 C. 相切 D. 无法确定2. 线段2cm ,8cm 的比例中项为 cm 。
( ) A. 4 B. 4.5 C. ±4 D. ±83. 如图,已知直线a //b//c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E 、B 、D 、F 、AC=3,CE=6,BD=2,DF= ( ) A. 4 B.4.5 C. 3 D. 3.54. 张华同学的身高为1.6米,某一时刻他在阳光下的影长为2米,与他邻近的一棵树的影长为6米,则这棵树的高为 米. ( ) A. 3.2 B. 4.8 C.5.2 D. 5.6第3题图 第8题图5. 把抛物线y =2x ²向左平移2个单位,则平移后抛物线对应的函数表达式是 ( ) A. y=2x ²+2 B. y=2(x-2)² C. y=2x ²+2 D. y=2(x+2)²6. 在△ABC 中,若|21sinA -|+(cosB 22-)²=0,则∠C 的度数是 ( ) A. 45° B. 75° C. 105° D. 120°7. 如下图,小正方形的边长均为1,则下图中的三角形(阴影部分)与△ABC 相似的为( )8. 如图,矩形ABCD 的四个顶点分别在直线l3,l4,l2,l1上。
若直线l1∥l2∥l3∥l4且间距相等,AB =5,BC =3,则tan α的值为 ( ) A. 103 B. 53C. 126D. 25二、填空题(每题3分,共24分)9. 二次函数y=(x-1)²+2的顶点坐标为 。
10. 已知扇形的圆心角为120°,半径为2厘米,则这个扇形的弧长为 厘米。
人教版九年级上册数学期末试题一、单选题 1.若a 为方程2240x x +-=的解,则2368a a +-的值为( )A .4-B .2C .4D .82.如图,将AOB 绕着点O 顺时针旋转,得到COD △(点C 落在AOB 外),若30AOB ∠=︒,10BOC ∠=︒,则最小旋转角度是( )A .20°B .30°C .40°D .50°3.如图,⊙O 的半径为5cm ,直线l 到点O 的距离OM=3cm ,点A 在l 上,AM=3.8cm ,则点A 与⊙O 的位置关系是( )A .在⊙O 内B .在⊙O 上C .在⊙O 外D .以上都有可能4.如图,AB 为⊙O 的直径,点 D 是弧 AC 的中点,过点 D 作 DE⊙AB 于点 E ,延长 DE 交⊙O 于点 F ,若 AC =12,AE =3,则⊙O 的直径长为( )A .7.5B .15C .16D .185.把标号为1,2,3的三个小球放入一个不透明的口袋中,随机摸取一个小球然后放回,再随机摸出一个小球,两次取出的小球的标号的和大于3的概率是( ) A .13B .49C .59D .236.函数()0ky k x=≠与函数y kx k =-在同一坐标系中的图像可能是( ) A . B .C .D .7.已知二次函数()20y ax bx c a =+-≠,其中0b >、0c >,则该函数的图象可能为( )A .B .C .D .8.关于二次函数()215y x =-+,下列说法正确的是( ) A .函数图象的开口向下 B .函数图象的顶点坐标是()1,5- C .该函数有最大值,是大值是5 D .当1x >时,y 随x 的增大而增大9.对于反比例函数32y x=,下列说法错误的是( ) A .它的图像在第一、三象限 B .它的函数值y 随x 的增大而减小C .点P 为图像上的任意一点,过点P 作PA⊙x 轴于点A .⊙POA 的面积是34D.若点A (-1,1y )和点B(2y )在这个函数图像上,则1y <2y10.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分比率相同,求每次降价百分率,设每次降价的百分率为x ,下面所列的方程中正确的是( ) A .()25601315x += B .()25601315x -= C .()256012315x -= D .()25601315x += 二、填空题 11.抛物线12m yx x -=+是二次函数,则m=___.12.从−1,0,227π中任取一个数,则取到的数是无理数的概率是______. 13.某班共有36名同学,其中男生16人,喜欢数学的同学有12人,喜欢体育的同学有24人.从该班同学的学号中随意抽取1名同学,设这名同学是女生的可能性为a ,这名同学喜欢数学的可能性为b ,这名同学喜欢体育的可能性为c ,则a ,b ,c 的大小关系是_______. 14.一元二次方程2430x x -+=配方为()22x k -=,则k 的值是______.15.如图,把⊙ABC 绕点C 顺时针旋转25°,得到⊙A′B′C , A′B′交AC 于点D ,若⊙A′DC =90°,则⊙A 度数为___________.16.若等腰三角形的一边长为6,另两边的长是关于x 的一元二次方程280x x m -+=的两个根,则m 的值为_______.17.某公司5月份的营业额为25万,7月份的营业额为36万,已知5、6月的增长率相同,则增长率为_____. 三、解答题18.解方程:(3x -1)2-25=019.关于x 的一元二次方程kx 2+(k+1)x+4k=0. (1)当k 取何值时,方程有两个不相等的实数根? (2)若其根的判别式的值为3,求k 的值及该方程的根.20.用适当的方法解下列方程:(1)(1)x x x -= (2)2220x x +-=21.某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg ;单价每千克降低一元,日均多售2kg .在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算). (1)如果日均获利1950元,求销售单价;(2)销售单价为多少时,可获得最大利润?最大利润为多少.22.如图,在O 中,2CP =,6PD =,5AP =,弦CD AB ⊥,垂足为点P ,求OP 的长度.23.已知关于x 的一元二次方程2320x x k ++-=有实数根.(1)求实数k 的取值范围.(2)设方程的两个实数根分别为12,x x ,若()()12111x x ++=-,求k 的值.24.如图,已知AB 是圆O 的直径,C 是圆O 上异于A ,B 的点,D 为BC 中点,且DE AC ⊥于点E ,连接CD .(1)求证:DE 是圆O 的切线;(2)若圆O 的直径为13,且6DE =,求AC .25.如图,直线6y ax =+经过点()30A -,,交反比例函数()0ky x x=>的图象于点()1,B m .(1)求k 的值;(2)点D 为第一象限内反比例函数图象上点B 下方的一个动点,过点D 作DC y ⊥轴交线段AB 于点C ,连接AD ,求ACD 的面积的最大值.26.如图,抛物线2142y x x =--与x 轴交于点A 和B ,与y 轴交于点C .(1)求A 、B 、C 三点坐标;(2)如图1,动点P 从点A 出发,在线段AB 上以每秒1个单位长度向点B 做匀速运动,同时,动点Q 从点B 出发,在线段BC C 做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接PQ ,设运动时间为t 秒,问P 、Q 两点运动多久后PBQ 的面积S 最大,最大面积是多少?(3)如图2,点D 为抛物线上一动点,直线AD 交y 轴于点E ,直线BD 交y 轴于点F ,求CECF的值.参考答案1.C【分析】将x a =代入方程2240x x +-=得到关于a 的代数式,将常数项移到等号右边,最后整体代入2368a a +-求解即可.【详解】解:将x a =代入方程2240x x +-=得:2240a a +-=,⊙224a a +=,⊙()223683283484a a a a +-=+-=⨯-=, 故选:C . 2.C【分析】直接利用已知得出⊙AOC 的度数,再利用旋转的性质得出对应边之间夹角,得出答案即可.【详解】⊙⊙AOB= 30°,⊙BOC = 10°, ⊙⊙AOC=⊙AOB+⊙COB = 30°+ 10°= 40° ⊙将⊙AOB 绕着点O 顺时针旋转,得到⊙COD , ⊙最小旋转角为⊙AOC = 40°. 故选: C . 3.A【详解】如图,连接OA ,则在直角⊙OMA 中,根据勾股定理得到OA=5<.⊙点A 与⊙O 的位置关系是:点A 在⊙O 内. 故选A .4.B【分析】连接OF,首先证明AC=DF=12,设OA=OF=x,在Rt⊙OEF中,利用勾股定理构建方程即可解决问题.【详解】解:如图,连接OF.⊙DE⊙AB,⊙DE=EF,AD AF=,⊙点D是弧AC的中点,⊙AD CD=,⊙AC DF=,⊙AC=DF=12,⊙EF=12DF=6,设OA=OF=x,在Rt⊙OEF中,则有x2=62+(x-3)2,解得x=152,⊙AB=2x=15,故选:B.5.D【详解】解:根据题意,画树状图如下:共有9种等可能结果,其中两次摸出的小球标号的和大于3的有6种,⊙两次摸出的小球标号的和大于3的概率是23, 故选:D 6.A【分析】先根据一次函数y kx k =-可知,直线经过点(1,0),故选项B 、D 不符合题意,然后由A 、C 选项可知,k 的符号,从而选出答案. 【详解】解:函数y kx k =-的图像经过点(1,0), ∴选项B 、选项D 不符合题意;由A 、C 选项可知:0k >, ∴反比例函数()0ky k x=≠的图像在第一、三象限, 故选项A 符合题意,选项C 不符合题意; 故选:A .【点睛】此题考查了反比例函数与一次函数的图像,熟练掌握反比例函数与一次函数的图像与性质是解答此题的关键. 7.C【分析】利用排除法,由0c -<得出抛物线与y 轴的交点应该在y 轴的负半轴上,排除A 选项和D 选项,根据B 选项和C 选项中对称轴02bx a-=>,得出a<0,抛物线开口向下,排除B 选项,即可得出C 为正确答案.【详解】解:对于二次函数()20y ax bx c a =+-≠,令0x =,则y c =-,⊙抛物线与y 轴的交点坐标为()0,c - ⊙0c >, ⊙0c -<,⊙抛物线与y 轴的交点应该在y 轴的负半轴上, ⊙可以排除A 选项和D 选项;B 选项和C 选项中,抛物线的对称轴02bx a-=>, ⊙ 0b >, ⊙a<0,⊙抛物线开口向下,可以排除B 选项,【点睛】本题考查二次函数的图象的性质,熟练掌握二次函数图象与三个系数之间的关系是解题的关键. 8.D【分析】由抛物线的表达式和函数的性质逐一求解即可. 【详解】解:对于y=(x -1)2+5, ⊙a=1>0,故抛物线开口向上,故A 错误; 顶点坐标为(1,5),故B 错误;该函数有最小值,最小值是5,故C 错误; 当1x >时,y 随x 的增大而增大,故D 正确, 故选:D .【点睛】本题考查的是抛物线与x 轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征. 9.B【分析】根据反比例函数图象与系数的关系解答. 【详解】解:A 、反比例函数32y x =中的32>0,则该函数图象分布在第一、三象限,故本选项说法正确. B 、反比例函数32y x =中的32>0,则该函数图象在每一象限内y 随x 的增大而减小,故本选项说法错误.C 、点P 为图像上的任意一点,过点P 作PA⊙x 轴于点A .,⊙⊙POA 的面积=133224⨯=,故本选项正确. D、⊙反比例函数32y x=,点A (-1,1y )和点B(2y )在这个函数图像上,则y 1<y 2,故本选项正确. 故选:B .【点睛】本题考查了反比例函数的性质:反比例函数y=kx(k≠0)的图象是双曲线;当k >0,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小;当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大;还考查了k 的几何意义.【分析】设每次降价的百分率为x ,根据降价后的价格=降价前的价格⨯(1-降价的百分率),则第一次降价后的价格是()5601x -,第二次降价后的价格()25601x -,据此列方程即可.【详解】解:设每次降价的百分率为x , 由题意得:()25601315x -=, 故选:B .【点睛】此题主要考查了一元二次方程的应用,根据题意找到等式两边的平衡条件是解题的关键. 11.3【分析】根据二次函数的定义:一般地,形如2y ax bx c =++(a 、b 、c 是常数且a≠0)的函数叫做二次函数,进行求解即可. 【详解】解:⊙抛物线12m y x x -=+是二次函数,⊙12m -=, ⊙3m =, 故答案为:3.【点睛】本题主要考查了二次函数的定义,解题的关键在于能够熟知二次函数的定义. 12.25【分析】先找出无理数的个数,再根据概率公式即可得出答案.【详解】解:⊙在−1,0,227,π,π共2个, ⊙取到的数是无理数的概率是25.故答案为:25.13.c >a >b【分析】根据概率公式分别求出各事件的概率,故可求解.【详解】依题意可得从该班同学的学号中随意抽取1名同学,设这名同学是女生的可能性为361620536369-==,这名同学喜欢数学的可能性为121363=,这名同学喜欢体育的可能性为242363=,⊙23>59>13⊙a ,b ,c 的大小关系是c >a >b故答案为:c >a >b .【点睛】本题考查概率公式的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比.14.1【分析】将原方程2430x x -+=变形成与()22x k -=相同的形式,即可求解. 【详解】解:2430x x -+=243101x x -++=+2441x x -+=()221x -=⊙1k =故答案为:1.【点睛】本题主要考查解一元二次方程中的配方法,掌握配方法的解题步骤是解本题的关键. 15.65°【分析】根据旋转的性质,可得知25ACA '∠=︒,从而求得A '∠的度数,又因为A ∠的对应角是A '∠,即可求出A ∠的度数.【详解】ABC 绕着点C 时针旋转25︒,得到A B C ''△25ACA '∴∠=︒90A DC '∠=︒180259065A '∴∠=︒-︒-︒=︒, A ∠的对应角是A '∠65A A '∴∠=∠=︒故答案为:65︒.【点睛】此题考查了旋转的性质,解题的关键是正确确定对应角.16.12或16【分析】分6为等腰三角形的腰长和6为等腰三角形的底边长两种情况,再利用一元二次方程根的定义、根的判别式求解即可得.其中,每种情况下都要根据三角形三边关系定理(两边之和大于第三边,两边之差小于第三边)检验三边长是否满足三角形的三边关系.【详解】解:由题意,分以下两种情况:(1)当6为等腰三角形的腰长时,则关于 x 的方程 x 2−8x+m=0的一个根x 1=6代入方程得,36-48+m=0解得m=12则方程为 x 2−8x+12=0解方程,得另一个根为x 2=2⊙等腰三角形的三边长分别为 6,6,2,经检验满足三角形的三边关系定理;(2)当6为等腰三角形的底边长时,则关于x 的方程 x 2−8x+m=0 有两个相等的实数根⊙根的判别式246440b ac m =-=-=解得,m=16则方程为x 2−8x+16=0解方程,得 x 1=x 2=4⊙等腰三角形的三边长分别为4,4,6,经检验满足三角形的三边关系定理.综上,m 的值为12或16.故答案为:12或16.17.20%【分析】根据该公司5、6两个月营业额的月均增长率为x 结合5月、7月营业额即可得出关于x 的一元二次方程,解此方程即可得解.【详解】解:设该公司5、6两个月营业额的月均增长率为x ,根据题意得,225(1)36x +=解得,120.2, 2.2x x ==-(舍去)所以,增长率为20%故答案为:20%18.12423x x ==-, 【分析】移项,根据平方根的定义开方,转化为两个一元一次方程,分别求出一次方程的解即可得到原方程的解.【详解】移项,得:()23125x -=,⊙315x -=或315x -=-, ⊙12423x x ==-,.19.(1)12k >-且0k ≠;(2)12x x == 【分析】(1)由方程有两个不相等的实数根,得到0>,列不等式结合0k ≠,从而可得答案;(2)利用3,= 列方程求解,k 再把k 的值代入原方程,解方程即可得到答案.【详解】解:(1)该方程的判别式为:()214214k k kk =+-=+, ⊙方程有两个不相等的实数根,⊙2k+1>0,解得12k >-,又⊙该方程为一元二次方程,⊙0k ≠,⊙k 的取值范围为:12k >-且0k ≠.(2)由题意得2k+1=3解得k =1,原方程为:2120,4x x ++= 11,2,,4a b c === 2124130,4∴=-⨯⨯=>解得:12x x ===20.(1)10x =,22x =;(2)11=-x ,21=-x 【分析】(1)根据因式分解法求解一元二次方程的性质计算,通过计算即可得到答案;(2)根据公式法求解一元二次方程的性质计算,即可得到答案.【详解】(1)⊙(1)x x x -=⊙220x x -=⊙()20x x -=⊙10x =,22x =;(2)⊙2220x x +-=⊙212x -==-⊙11=-x ,21=-x21.(1)65;(2)当单价为65时,日获利最大,最大利润为1950元.【分析】(1)若销售单价为x 元,则每千克降低(70-x )元,日均多销售出2(70-x )千克,日均销售量为[60+2(70-x )]千克,每千克获利(x -30)元,根据题意可得等量关系:每千克利润×销售量-500元=总利润,根据等量关系列出方程即可;(2)运用配方法配成顶点式,得顶点坐标,结合x 的取值范围即可求得结论.【详解】解:(1)设销售单价为 x 元,由题意得:(x -30)[60+2(70-x )]-500=1950,解得:x 1=x 2=65,⊙销售单价不得高于每千克70元,也不得低于每千克30元,⊙x=65符合题意,答:销售单价为65元时,日均获利为1950元;(2)设销售单价为 x 元,可获得利润为y ,由题意得:y=(x -30)[60+2(70-x )]-500=-2x 2+260x -6500(30≤x≤70),⊙y=-2x 2+260x -6500可化为y=-2(x -65)2+1950的形式,⊙顶点坐标为(65,1950),⊙30<65<70,当单价定为65元时,日均获利最大,最大利润为1950元.22【分析】过O 作OE CD ⊥于点E ,过O 作OF AB ⊥于点F ,连接OA ,OD ,先证明四边形OEPF 是矩形,得出PF OE =,OF PE =,然后根据垂径定理求出DE ,PE ,在Rt AOF 和Rt DOE △根据勾股定理得出222222AF OF OA OD OE DE ,然后求解即可. 【详解】解⊙过O 作OE CD ⊥于点E ,过O 作OF AB ⊥于点F ,连接OA ,OD ,又CD AB ⊥,⊙四边形OEPF 是矩形,⊙PF OE =,OF PE =,⊙2CP =,6PD =,⊙8CD CP DP ,⊙CD OE ⊥, ⊙142DE CD ==, ⊙2OF PE PD DE ,设OE x =,则PF x =,5AF x =-,在Rt AOF 中,222AF OF OA +=,在Rt DOE △中,222OE DE OD +=,又OA OD =,⊙2222AF OF OE DE ,即2222524x x , 解得1310x =, 23.(1)k 174≤; (2)k=3【分析】根据一元二次方程有实数根得到32-4(k -2)≥0,解不等式即可;(2)根据根与系数的关系得到12123,2x x x x k -+==-,将等式左侧展开代入计算即可得到k 值.【详解】(1)解:⊙一元二次方程2320x x k ++-=有实数根.⊙∆≥0,即32-4(k -2)≥0,解得k 174≤ (2)⊙方程的两个实数根分别为12,x x ,⊙12123,2x x x x k -+==-,⊙()()12111x x ++=-,⊙121211x x x x +++=-,⊙2311k --+=-,解得k=3.24.(1)证明见解析(2)5AC =【分析】(1)连接OD ,根据BD DC =可知BAD DAC ∠=∠,再由圆的性质可得OD AC ∥,进而即可求证;(2)如图所示,连接OC ,过点O 作OH AC ⊥于点H ,则四边形ODEH 为矩形,推出6OH DE ==,再利用勾股定理求出AH 的长即可得到答案.【详解】(1)证明:连接OD .⊙D 为BC 中点,即BD DC =,⊙BAD DAC ∠=∠.⊙OA OD =,⊙BAD ODA ∠=∠.⊙DAC ODA ∠=∠,⊙OD AC ∥.又⊙DE AC ⊥,⊙DE OD ,⊙DE 是圆O 的切线.(2)解:如图所示,连接OC ,过点O 作OH AC ⊥于点H .⊙90OHE E ODE ∠=∠=∠=︒,⊙四边形ODEH 为矩形,⊙6OH DE ==,⊙OA OC OH AC =,⊥,⊙2AC AH =,⊙圆O 的直径为 13 ,⊙ 6.5OA =,在Rt OAH △中,由勾股定理得: 2.5AH ==,⊙25AC AH ==.【点睛】本题主要考查圆的切线的判定、垂径定理,矩形的性质与判定、勾股定理,掌握相关知识,并灵活应用正确做出辅助线是解题的关键.25.(1)8 (2)254【分析】(1)根据待定系数法确定一次函数关系式26y x =+,从而求出点B 的坐标为(1,8),再利用待定系数法确定k 的值即可;(2)设点C 的坐标为(),26x x +,由于DC y ⊥轴,得到点D 的坐标,表示出232524ACD S x ⎛⎫=-++ ⎪⎝⎭△,根据二次函数性质即可得出ACD 的面积的最大值. 【详解】(1)解:把()30A -,代入6y ax =+,得360a -+=, 解得2a =,⊙直线的函数表达式为26y x =+,⊙当1x =时,2168y =⨯+=,⊙()1,8B ,把()1,8B 代入反比例函数k y x=,得188k =⨯=. (2)解:设点C 的坐标为(),26x x +,由于DC y ⊥轴,所以点D 的纵坐标为26x +,⊙点8,2626D x x ⎛⎫+ ⎪+⎝⎭, ⊙()()22118325262634222624ACD S CD x x x x x x x ⎛⎫⎛⎫=⨯+=-⨯+=--+=-++ ⎪ ⎪+⎝⎭⎝⎭△, ⊙当 1.5x =-时,254ACD S =△最大值, 答:ACD S 的最大值为254. 26.(1)()2,0A -、()4,0B ,()0,4C -(2)运动3t =秒时,PBQ S 有最大值,最大值为92(3)12 【分析】(1)令0y =,解一元二次方程即可求出点A 、B 的坐标,令0x =,即可求出C 点坐标;(2)过Q 点作QN AB ⊥于N 点,结合图形,可知12PBQ S BP QN =⨯⨯,则问题得解; (3)设点D 的坐标为:21,42⎛⎫-- ⎪⎝⎭D m m m ,运用待定系数法求出直线AD 的解析式为:424m y x m =+--,则可得E 点坐标为:()0,4m -,进而可得44CE m m =-+=,同理可求出直线BD 的解析式为:()2222m y x m +-+=,即有F 点坐标为:()0,42m --,进一步可求出2442CF m m =--+=,则问题得解.【详解】(1)令0y =,即有:21402x x --=,利用因式分解法,求得:12x =-,24x =, 结合图形,可知()2,0A -、()4,0B , 令0x =,21442y x x =--=-,则有C 点坐标为:()0,4C -,即结果为:()2,0A -、()4,0B ,()0,4C -; (2)⊙()2,0A -、()4,0B ,()0,4C -, ⊙2AO =、4BO CO ==,⊙BOC 是等腰直角三角形,246AB AO BO =+=+=,⊙BC === 过Q 点作QN AB ⊥于N 点,如图,根据运动的特点,可得:AP t =,BQ =, ⊙6BP t =-,⊙6AB =,BC =⊙t的取值范围为:4t ≤=0<,⊙BOC 是等腰直角三角形,⊙45OBC ∠=︒,⊙QN AB ⊥,⊙90QNB ∠=︒,⊙45NQB OBC ∠=∠=︒,⊙QNB 是等腰直角三角形,QN BN =,⊙BQ =,BQ =QN BN =, ⊙QN BN t ==, ⊙()()21119632222PBQ S BP QN t t t =⨯⨯=-=--+,⊙04t <≤,⊙当3t =时,PBQ S 有最大值,最大值为92,运动3t =秒时,PBQ S 有最大值,最大值为92;(3)根据题意,设点D 的坐标为:21,42⎛⎫-- ⎪⎝⎭D m m m ,设直线AD 的解析式为:y kx b =+, ⊙()2,0A -, ⊙220142k bkm b m m -+=⎧⎪⎨+=--⎪⎩, 解得442b m m k =-⎧⎪⎨-=⎪⎩,即直线AD 的解析式为:424m y x m =+--,⊙令0x =,4244m y x m m -=+-=-,⊙E 点坐标为:()0,4m -,21 ⊙()0,4C -, ⊙44CE m m =-+=,同理可求出直线BD 的解析式为:()2222m y x m +-+=,⊙令0x =,()()222222m m y x m +=+--+=,⊙F 点坐标为:()0,42m --, ⊙()0,4C -, ⊙2442CF m m =--+=,根据题意可知:若0m =,则可知E 、F 、D 、C 四点重合, 此时不符合题意,故0m ≠, ⊙1222m m m CECF m ===, 即值为12.。
2015~2016学年度第一学期期末教学质量检测九年级数学试卷说明:1、全卷共4页,五道大题。
2、考试时间100分钟,满分120分。
一、单项选择题(共10小题,每小题3分,共30分)1、在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A B C D2、下列事件是必然事件的是()A、明天太阳从西边升起B、掷出一枚硬币,正面朝上C、打开电视机,正在播放“新闻联播”D、任意画一个三角形,它的内角和等于180°3、一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋里随机摸出一个球,摸出的球是红色的概率是()A 、B 、 C、D 、4、在半径为6的⊙O中,60°圆心角所对的弧长是()A、 B、2 C、4 D、65、用配方法解方程x2+10x+9=0,配方后可得()A、(x+5)2=16B、(x+5)1=1C、(x+10)2=91D、(x+10)2=1096、若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为()A、-1B、-2C、-3D、-47、如图,∠O =30°,C为OB上的一点,且OC=6,以点C为圆心、半径为3的圆与OA的位置关系是()A、相离B、相交C、相切D、以上三种情况均有可能8、如图,在⊙O中直径垂直于弦AB,若∠C=25°则∠BOD的度数是()A、25°B、30°C、40°D、50°9、某校准备修建一个面积为180平方米的矩形活动场所,它的长比宽多11米,设场地的宽为x米,则可列出的方程为()A、x(x-11)=180B、2x+2(x-11)=180C、x(x+11)=180D、2x+2(x+11)=18010、二次函数y=ax2+bx+c(a≠0)的大致图像见如图,关于该函数的说法错误的是()A、函数有最小值第7题图第8B 、对称轴是直线x=1/2C 、当x ﹤1/2,y 随x 增大而减小D 、当-1﹤x ﹤2时,y ﹥0二、填空题(共6小题,每小题4分,共24分)11、如图,将△ABC 绕点A 按顺时针方向旋转60°,得△ADE ,则∠BAD= 度。
2015—2016学年度第一学期期末考试九年级数学试题一、选择题(每小题给出四个选项中只有一个是正确的,请把你认为正确的选项选出来,并A.±1B.±2C.-1D.-2 3.下列的配方运算中,不正确的是A .x 2+8x+9=0化为(x+4)2=25B .2t 2﹣7t ﹣4=0化为 C .x 2﹣2x ﹣99=0化为(x ﹣1)2=100 D .3x 2﹣4x ﹣2=0化为4.下列说法正确的是A. 平分弦的直径垂直于弦B. 半圆(或直径)所对的圆周角是直角C. 相等的圆心角所对的弧相等D. 若两个圆有公共点,则这两个圆相交 5.若⊙O 1与⊙O 2相切,⊙O 1的半径为3cm ,⊙O 2的半径为2cm ,则O 1O 2的长是 A .1cm B .5cm C .1cm 或5cm D .0.5cm 或2.5cm 6.下列说法中错误的是A. 某种彩票的中奖率为1%,买100张彩票一定有1张中奖B. 从装有10个红球的袋子中,摸出1个白球是不可能事件C. 为了解一批日光灯的使用寿命,可采用抽样调查的方式D. 掷一枚普通的正六面体骰子,出现向上一面点数是2的概率是167.下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是 A .2y (x 21=-+)B .2y (x+21=+)C .2y (x 23=--)D .2y (x+23=-)8.“六•一”儿童节,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展有奖购买活动.顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据.A .当n 很大时,估计指针落在“铅笔”区域的频率大约是0.70B .假如你去转动转盘一次,获得铅笔的概率大约是0.70C .如果转动转盘2000次,指针落在“文具盒”区域的次数大约有600次D .转动转盘10次,一定有3次获得文具盒9. 如图,Rt △ABC 绕O 点逆时针旋转90°得Rt △BDE ,其中AC =3,DE =5, ∠ABD =∠ACB =∠BED =90°,则OC 的长为 A.5 B. C.3+ D.410.如图所示为二次函数y =ax 2+bx +c (a ≠0)的图象,在下列选项中错误的是 A. ac <0 B. x >1时,y 随x 的增大而增大C. a +b +c >0 D. 方程ax 2+bx +c =0的根是x 1=﹣1,x 2=3二、填空题:11.方程2x 4x 70--=的根是 __ ___ .12. 当k _______ 时,关于x 的一元二次方程x 2+6kx +3k 2+6=0有两个相等的实数根. 13.某种传染病,若有一人感染,经过两轮传染后将共有49人感染.设这种传染病每轮传染中平均一个人传染了x 个人,列出方程为 ______ _ .14.已知一个正六边形内接于⊙O ,如果⊙O 的半径为4 cm ,那么这个正六边形的面积为_ cm 2.15.对于下列图形:①等边三角形; ②矩形; ③平行四边形; ④菱形; ⑤正八边形;⑥圆.其中既是轴对称图形,又是中心对称图形的是 .(填写图形的相应编号)16.小明把如图所示的矩形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是 ______ .第8题图 第9题图第10题图 第16题图17.如图,△ABC内接于⊙O,∠B=∠OAC,OA=8cm,则AC= _________ cm.18. 已知二次函数y =ax2+bx+c(a≠0)中自变量x和函数值y的部分对应值如上表,则该二次函数解析式的一般形式为___ ____ __ .三、解答题:19.计算:(1)((2)2333+⨯)))20.解方程:2x33x x3-=-()()21.如图,AB是⊙O直径,CB是⊙O的切线,切点为B,OC平行于弦AD.求证:DC是⊙O的切线.﹣﹣﹣﹣第17题图第18题表第21题图22.在一个不透明的盒子中放有三张卡片,每张卡片上写有一个实数,分别为36.(卡片除了实数不同外,其余均相同)(1)从盒子中随机抽取一张卡片,请直接写出卡片上的实数是无理数的概率;(2)先从盒子中随机抽取一张卡片,将卡片上的实数作为被减数;卡片不放回,再随机抽取一张卡片,将卡片上的实数作为减数,请你用列表法或树形图法,求出两次抽取的卡片上的实数之差恰好为有理数的概率.23.菜农李明种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李明为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率;(2)张华准备到李伟处购买5吨该蔬菜,因数量多,李明决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问张华选择哪种方案更优惠,请说明理由.24.如图,三角板ABC 中,∠ACB =90°,AB =2,∠A =30°,三角板ABC 绕直角顶点C 顺时针旋转90°得到△A 1B 1C ,求: (1) 1AA 的长;(2)在这个旋转过程中三角板AC 边所扫过的 扇形ACA 1的面积;(3)在这个旋转过程中三角板所扫过的图形面积.25.如图,已知抛物线y =ax 2+bx +c (a ≠0)与x 轴相交于点A (-2,0)和点B ,与y 轴相交于点C ,顶点D (1,- 92).(1)求抛物线对应的函数关系式; (2)求四边形ACDB 的面积;(3)若平移(1)中的抛物线,使平移后的抛物线与坐标轴...仅有两个交点,请直接写出如何平移及 所得抛物线的解析式(只写两种情况即可).第24题图第25题图26.某商品进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大月利润是多少元?2015—2016学年第一学期九年级数学试题参考答案及评分标准一、选择题:二、填空题:(每题3分,共24分)11.12x 2x 2==; 12.±1; 13.形式不唯一,比如x (x +1)+x +1=49或2x 149+=()都可以; 14. 15.②④⑤⑥; 16.14; 17.8; 18.y = x 2+x ﹣2三、解答题:(共46分)19.(1) 解:原式=2﹣3…………………1分=12﹣3=9. …………………3分 (2) 原式=5﹣6+9+11﹣9 …………………5分=16﹣6 …………………6分20. 解:移项得 2(x ﹣3)﹣3x (x ﹣3)=0整理得 (x ﹣3)(2﹣3x )=0 …………………2分x ﹣3=0或2﹣3x=0解得 x 1=3,x 2=…………………4分21. 证明:连接OD ;∵OA=OD,∴∠A=∠ADO. ∵AD∥OC,∴∠A=∠BOC,∠ADO=∠COD.∴∠BOC=∠COD. ………2分 又OB=OD ,OC=OC ,∴△OBC≌△ODC.∴∠OBC=∠ODC . ………3分 ∵BC 是⊙O 的切线.∴∠OBC=90°. ………4分 ∴∠ODC=90°.∴DC 是⊙O 的切线. ………5分 22. 解:(1)从盒子中随机抽取一张卡片,卡片上的实数是无理数的概率是23; ………………………2分(2)画树形图得………………………4分∵共有6种等可能的结果,两次好抽取的卡片上的实数之差为有理数的有2种情况,∴两次抽取卡片上的实数之差恰好为有理数的概率为= .……5分23.解:(1)设平均每次下调的百分率为x.由题意,得5(1﹣x)2=3.2.………………………2分解这个方程,得x1=0.2,x2=1.8.………………………3分因为降价的百分率不可能大于1,所以x2=1.8不符合题意,符合题目要求的是x1=0.2=20%.答:平均每次下调的百分率是20%.………………………4分(2)张华选择方案一购买更优惠.理由:方案一所需费用为:3.2×0.9×5000=14400(元),方案二所需费用为:3.2×5000﹣200×5=15000(元).∵14400<15000,∴张华选择方案一购买更优惠.………………………6分24.解:(1)∵∠ACB=90°,AB=2,∠A=30°,∴BC=AB=×2=1,根据勾股定理,AC===,∴1AA的长==π;………………………2分(2)扇形ACA1的面积2903()=π;………………………3分(3)设1BB与AB相交于D,∵∠ACB=90°,∠A=30°,∴∠B=90°﹣30°=60°,又∵BC=CD,∴△BCD是等边三角形,∴BD=BC=1,∴AD=AB﹣BD=2﹣1=1,∴S△ACD =S△ABC=××1×=,………………………4分∴三角板所扫过的图形面积=S 扇形BCD +S 扇形ACA1+S △ACD ,=++,=π+………………6分25.解:(1)设二次函数为y=a(x-1)2-92, ……1分将A (-2,0)坐标代入求得,a=12, ∴y=12(x-1)2-92. ……3分(2)令y=0,得x 1=-2,x 2=4,∴B(4,0),令x=0, 得y=-4,∴C(0,-4), ……4分 S 四边形ACDB =15.∴四边形ACDB 的面积为15. ……5分(3)如:向上平移92个单位,y=12 (x-1)2; 向上平移4个单位,y=12(x-1)2-12;向右平移2个单位,y=12(x-3)2-92;向左平移4个单位y=12(x+3)2-92. (只要正确写出两种情况即可)……7分 26.解:(1)由题意得:y=(210﹣10x )(50+x ﹣40)……………1分=﹣10x 2+110x+2100(0<x≤15且x 为整数); ……………3分(2)由(1)中的y 与x 的解析式配方得:y=﹣10(x ﹣5.5)2+2402.5. ∵a=﹣10<0,∴当x=5.5时,y 有最大值2402.5. ……………5分 ∵0<x≤15,且x 为整数,当x=5时,50+x=55,y=2400(元),当x=6时,50+x=56,y=2400(元) ∴当售价定为每件55或56元,每个月的利润最大,最大的月利润是2400元. ……………7分。