2008—2009学年一次函数与平行四边形(六)10
- 格式:doc
- 大小:119.50 KB
- 文档页数:2
一次函数与四边形教学目标:知识与技能:1.利用一次函数比例系数k 值特征证明直线位置关系与四边形的形状;2.利用平行四边形的性质,求一次函数解析式.过程与方法:通过一次函数与四边形的想和转换,感受数形结合的思想方法. 情感态度与价值观:通过思考,让学生体会学习数学方法对于学习数学的重要性.教学重难点:教学重点:一次函数比例系数k 值与平行四边形的性质与判定的相互转换. 教学难点:利用数形结合思想解决函数与几何问题.教学过程:课前一练:1.若一次函数的图像经过点),(01A 和点),(22-B ,则这个一次函数的解析式为 .2.已知直线b kx y l +=11:与直线x y l 2:22=相互平行,且经过点)(1,2,则直线1l 的函数解析式为 .知识回顾:问题1:平面直角坐标系中求一次函数解析式的方法? 问题2:待定系数法求一次函数解析式的两种常见类型?一、利用一次函数证明四边形的形状例1:如图,直线b kx y +=经过),(3203-A 、),(45-B 两点,过点A 作x AD ⊥轴点D ,过点B 作y BC ⊥轴于点C ,AB 与x 轴相交于点E .(1)求点E 坐标;(2)证明:AB CD ∥;(3)判断四边形BCDE 的形状.二、利用特殊四边形的性质求一次函数解析式例2:如图,一次函数4y的图象与x、y轴=x2+分别相交于点A、B,以AB为边在直线AB右侧作正方形四边形ABCD.(1)求点A、B、D的坐标;(2)求直线BD的函数解析式;(3)求直线AC的函数解析式.例3:如图所示,矩形ABCD中,5AD,==AB,3点A的坐标为)=:.l+(1,2,作直线bykx(1)当3k时,若直线l与矩形ABCD相交,求-=b的取值范围;(2)在(1)的条件下,若直线l平分矩形ABCD 面积,求直线l的解析式;(3)当2b时,若直线l平分矩形ABCD面积,=-求直线l的解析式;(4)在(3)的条件下,若直线l与矩形ABCD相交,求k的取值范围.。
2008-2009学年度上学期期末数学复习题(一)班级: 姓名:一、选择题(每小题只有一个正确的选项,每小题3分,共30分)1. 在实数722-、0、3-、506、π、..101.0中,无理数的个数是( )A .2个B .3个C .4个D .5个2.下列图形既是轴对称又是中心对称图形的是( )A .平行四边形B .正三角形C .矩形D .等腰梯形3.在平行四边形、矩形、菱形、正方形、等腰梯形中,对角线相等的有( )A .1个B .2个C .3个D .4个 4.一次函数b kx y +=的图象如右图所示,则k 、b 的值为( )A .k >0, b >0B .k >0, b <0C .k <0, b >0D .k <0, b <05.若532+y x ba 与x yb a2425-是同类项,则( ) A .12x y =⎧⎨=⎩ B .21x y =⎧⎨=-⎩ C .02x y =⎧⎨=⎩D .31x y =⎧⎨=⎩6.计算28-的结果是( ) A .6 B .2 C .2 D .1.47A .19,20B .19,19C .19,20.5D .20,198.如图,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D ′处,那么A D ′为( ) A .10 B .22 C .7 D .32 9(0)a ≠10.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( )A .1、2、3B .2、3、4C .3、4、5D .4、5、6 二、填空题(每小题3分,共30分)11.= . 12.3(2)--的立方根是 .13.比较大小: 14.一个多边形的外角都等于60°,这个多边形是 边形.15.菱形ABCD 的边长为5cm ,其中一条对角线长为6cm ,则菱形ABCD 的面积为 cm 2. 16.如图,△ABC 向右平移5cm 之后得到△DEF 如果EC =3cm ,则EF = cm . 17.点P (4,-3)关于y 轴对称的点的坐标是 .18.从双柏到楚雄的距离为60千米,一辆摩托车以平均每小时35千米的速度从双柏出发到楚雄,则摩托车距双柏的距离y (千米)与行驶时间t (时)的函数表达式为 . 19.如图,是由16个边长为1的正方形拼成的,任意连接这些小格点的若干个顶点可得到一些线段,则线段AB 、CD 中,长度是有理 数的线段是 .20.如图所示,阴影部分表示的四边形是 .B E三、解答能手——看谁写得既全面又整洁(共60分) 21.计算:(本小题10分,每小题5分) (15- (222.(本小题5分)解方程组:257231x y x y -=⎧⎨+=-⎩23.(本小题6分)已知:一次函数42-=x y .(1)在直角坐标系内画出一次函数42-=x y 的图象. (2)求函数42-=x y 的图象与坐标轴围成的三角形面积. (3)当x 取何值时,y>0.24.(本题共6分)如图,矩形ABCD 的对角线相交于点O ,AB=OA=4cm ,求BD 与AD 的长.25.(本小题5分)如图,按要求画出图形.(1)将△ABC 向下平移五格后的△111A B C .(2)再画出△ABC 绕点O 旋转180º的△222A B C .A DB OC x26.BD上两点,并且BE=DF,则四边形AECF为平行四边形,请说明理由.27、(6分)(本大题满分10分)某商场正在热销2008年北京奥运会吉祥物“福娃”玩具和徽章两种奥运商品,根据下图提供的信息,求一盒“福娃”玩具和一枚徽章的价格各是多少元?A D共计145元共计280元27、(6分)在学校组织的“喜迎奥运,知荣明耻,文明出行”的知识竞赛中,每班参加比赛的人数相同,成绩分为A B C D ,,,四个等级,其中相应等级的得分依次记为100分,90分,80分,70分,学校将某年级的一班和二班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题: (1)此次竞赛中二班成绩在C 级以上(包括C 级)的人数为 ; (2)请你将表格补充完整:28.(本小题10分)我边防局接到情报,近海处有一可疑船只A 正向公海方向行驶.边防局迅速派出快艇B 追赶(如图1),图2中l 1,l 2分别表示两船相对于海岸的距离s (海里)与追赶时间t (分)之间的关系.根据图像回答下列问题:(1)那条线表示B 到海岸的距离与追赶时间之间的关系? (2)A 、B 哪个速度快? (3)15分钟内B 能否追上A ? (4)如果一直追下去,那么B 能否追上A ?(5)当A 逃到离海岸12海里的公海时,B 将无法对其进行检查,照此速度,B 能否在A逃入公海前将其拦截?图海公 第6题图 一班竞赛成绩统计图 二班竞赛成绩统计图1(1)该班学生考试成绩的众数是 .(2)该班学生考试成绩的中位数是 .(3)该班张华同学在这次考试中的成绩是83分,能不能说张华同学的成绩处于全班中游偏上水平?试说明理由.2.2008年5月12日,四川汶川发生了里氏8.0级大地震,给当地人民造成了巨大的损失.“一方有难,八方支援”,我市锦华中学全体师生积极捐款,其中九年级的3个班学生的捐款金额如下表:吴老师统计时不小心把墨水滴到了其中两个班级的捐款金额上,但他知道下面三条信息: 信息一:这三个班的捐款总金额是7700元;信息二:(2)班的捐款金额比(3)班的捐款金额多300元; 信息三:(1)班学生平均每人捐款的金额大于..48元,小于..51元.请根据以上信息,帮助吴老师解决下列问题:(1)求出(2)班与(3)班的捐款金额各是多少元;(2)求出(1)班的学生人数.3、如图,在平面直角坐标系xoy 中,(15)A -,, (10)B -,,(43)C -,.①求出ABC △的面积 ②在图中作出ABC △关于y 轴的对称图形111A B C △.③写出点111A B C ,,的坐标.4、.如图,在梯形ABCD 中,AD BC ∥,CA 平分BCD ∠,DE AC ∥,交BC 的延长线于点E ,2B E =∠∠.(1)求证:AB DC =; (2)若过点A 作AN ⊥BE 于N 且2=BNAN,AB=BC 的长.5、如图,在△ABC 中,D 为BC 边的中点,过D 点分别作DE ∥AB 交AC 于点E ,DF ∥AC 交AB 于点F .(1)证明:△BDF ≌△DCE ;(2)如果给△ABC 添加一个条件,使四边形AFDE 成为菱形,则该条是 ; 如果给△ABC 添加一个条件,使四边形AFDE 成为矩形,则该条件是 . (均不再增添辅助线) 请选择一个结论进行证明.AB D F EC (第22题图)6、在学校组织的“喜迎奥运,知荣明耻,文明出行”的知识竞赛中,每班参加比赛的人数相同,成绩分为A B C D ,,,四个等级,其中相应等级的得分依次记为100分,90分,80分,70分,学校将某年级的一班和二班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)此次竞赛中二班成绩在C 级以上(包括C 级)的人数为 ; (2(3)请从下列不同角度对这次竞赛成绩的结果进行分析:①从平均数和中位数的角度来比较一班和二班的成绩; ②从平均数和众数的角度来比较一班和二班的成绩;③从B 级以上(包括B 级)的人数的角度来比较一班和二班的成绩.20. 21.(本大题满分10分)△ABC 在平面直角坐标系中的位置如图9(1)作出△ABC 关于y 轴对称的△A 1B 1C 1,并 写出△A 1B 1C 1各顶点的坐标;(2)将△ABC 向右平移6个单位,作出平移后的△A 2B 2C 2,并写出△A 2B 2C 2各顶点的坐标; (3)观察△A 1B 1C 1和△A 2B 2C 2,它们是否关于某直线对称?若是,请在图上画出这条对称轴.第6题图一班竞赛成绩统计图 二班竞赛成绩统计图 图9双柏县2008-2009学年度上学期期末质量监控检测八年级数学试卷参考答案一、选择能手——看谁的命中率高(每小题只有一个正确的选项,每小题3分,共30分)1.B 2.C 3.C 4.A 5.B6.C 7.A 8.D 9.A 10.C二、填空能手——看谁填得既快又准确(每小题3分,共30分)11.-0.9 12.2 13.>14.六15.24 16.817.(-4,-3)18.y=60-35t 19.CD 20.正方形三、解答能手——看谁写得既全面又整洁(共60分)21.(本小题10分)22.(本小题6分)解方程组:5565110==-====解:原式解:原式25712312128811111x yx yyyy xxy-=⎧⎨+=-⎩--==-=-==⎧⎨=-⎩()()解:()()得得将代入(1)得所以23.(本小题8分)解:(1)略(2)4 (3)x>224.(本题共8分)解:因为矩形ABCD的对角线AC与BD互相平分且相等,所以BD=AC=2AB=8cm在Rt△BAD中,==25.(本小题8分)略26.(本小题8分)解:连接AC交BD于点O,因为ABCD是平行四边形,所以OA=OC,OB=OD,又知BE=DF,所以,OE=OF,因此,根据对角线互相平分的四边形是平行四边形可知AECF是平行四边形。
蚌埠市2008-2009学年度第一学期期末教学质量监测九 年 级 数 学(沪科版)一、选择题:(本大题共10小题,每小题4分,共40分,在 每小题给出的四个选项中,只有一项是符合题意的,请将正 确答案的字母代号填在题后的括内)1.在△ABC 中,∠C=90°,AC=3,BC=4,则sinA 的值是 ( )A.34 B.54 C.43 D.532.在Rt △ABC 中,∠C=90°,下列各式中正确的是 ( ) A. sinA=sinB B. tanA=tanB C. sinA=cosB D. cosA=cosB3.某闭合电路中,电源电压为定值,电流I (A )与电阻R (Ω)成反比例,图1表示的是该电路中电流I 与电阻R 之间函数关系的图象,则用电阻R 表示电流I 的函数解析式为 ( )A. I R=6 B. RI 6-= C. I R=3 D. I R=2(图1) (图2)4.如图2, 已知在Rt △ABC 中,∠ACB=90˚, CD ⊥AB 于D ,DE ⊥BC 于E ,则图中相似的三角形共有 ( )A.6B.8对C.9对D.10对5.化简 ︳sin20o -cos20o ︳+ ︳cos20o -1 ︳ 的结果是 ( )A.sin20o +1-2cos20oB.1-sin20oC.2cos20o -sin20o -1D.1+sin20o6.下列说法正确的是 ( )A .位似图形的面积之比等于相似比B .位似图形的周长之比等于相似比的平方C .位似图形每对对应顶点的连线交于同一点D .分别在△ABC 的边AB 、AC 的反向延长线上取点D 、E ,使DE ∥BC ,则△ADE•是△ABC 放大后的图形7. 二次函数y=x 2-2x+1与x轴的交点个数是( ) A .3 B .2 C .1 D .0 8. 在函数y k x=(k>0) 的图象上有三个点),(111y x A ,A x y 222(),,A x y 333(),,已知x x x 1230<<<,则下列各式中,正确的是 ( )A. y 1 <y 2 <y 3B. y 3 <y 2 <y 1C. y 3 <y 1 <y 2D. y 2 <y 1 <y 39. 已知反比例函数y k x=的图象如图3,则二次函数y kx x k =-+222 的图象大致为( )(图3)10. 老师出示了如图4小黑板后,小华说过点(3,0);小彬说过点(4,3);小明说a =1;小颖说抛物线被x 轴截得的线段长为2,你认为四人的说法中正确的有 ( ) A. 4个 B. 3个 C. 2个 D.1个二、填空题:(本大题共5个小题,每小题4分,共20分,请将答案直接填在题中的横线上)。
一次函数与四边形存在性【学习目标】1.熟练运用一次函数解决特殊四边形存在问题;2.体会数形结合的思想方法;体会一次函数与几何图形的内在联系.平行四边形问题:(注意点的顺序)1.给三点,先连接三点构成三角形;然后以每边为对角线构造平行四边形;以中点公式或者平移法求点坐标。
2.给两点,分为边和对角线讨论,充分利用平行四边形对边平行且相等,对角线平分两个全等三角形来做。
1.在平面直角坐标系中,以任意两点P(x1,y1)、Q(x2,y2)为端点的线段中点坐标为.(1)如图,矩形ONEF的对角线相交于点M,ON、OF分别在x轴和y轴上,O为坐标原点,点E的坐标为(4,3),则点M的坐标为.(2)在直角坐标系中,有A(﹣1,2),B(3,1),C(1,4)三点,另有一点D与点A、B、C构成平行四边形的顶点,求点D的坐标.2.已知点A、B、C、D可以构成平行四边形,且点A(-1,0),点B(0,3),点C(3,0),则第四个顶点D的坐标为_________________________;xy BCA O举一反三:1.如图,在平面直角坐标系xOy 中,直线交y 轴于点A ,交x 轴于点B ,以线段AB 为边作菱形ABCD (点C 、D 在第一象限),且点D 的纵坐标为9. (1)求点A 、点B 的坐标; (2)求直线DC 的解析式;(3)除点C 外,在平面直角坐标系xOy 中是否还存在点P ,使点A 、B 、D 、P 组成的四边形是平行四边形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.2.如图,在平面直角坐标系中,函数122+=x y 的图像分别交x 轴、y 轴于A 、B 两点.过点A 的直线交y 轴正半轴于点C ,且点C 为线段OB 的中点. (1)求直线AC 的表达式;(2)如果四边形ACPB 是平行四边形,求点P 的坐标.3. 如图10,直线102+-=x y 与x 轴交于点A ,又B 是该直线上一点,满足OA OB =, (1)求点B 的坐标;(2)若C 是直线上另外一点,满足AB=BC ,且四边形OBCD 是平行四边形,试画出符合要求的大致图形,并求出点D 的坐标.4.已知:如图,平面直角坐标系中有一个等腰梯形ABCD ,且AD ∥BC ,AB=CD ,点A 在y 轴正半轴上,点B 、C 在x 轴上(点B 在点C 的左侧),点D 在第一象限,AD=3,BC=11,梯形的高为2,双曲线y=经过点D ,直线y=kx +b 经过A 、B 两点.O BA x yD(1)求点A、B、C、D的坐标;(2)求双曲线y=和直线y=kx+b的解析式;(3)点M在双曲线上,点N在y轴上,如果四边形ABMN是平行四边形,求点N的坐标.5.如图1,在平面直角坐标系中,点A的坐标为(﹣4,4),点B的坐标为(0,2).(1)求直线AB的解析式;(2)以点A为直角顶点作∠CAD=90°,射线AC交x轴的负半轴于点C,射线AD交y轴的负半轴于点D.当∠CAD绕着点A旋转时,OC﹣OD的值是否发生变化?若不变,求出它的值;若变化,求出它的变化范围;(3)如图2,点M(﹣4,0)是x轴上的一个点,点P是坐标平面内一点.若A、B、M、P四点能构成平行四边形,请写出满足条件的所有点P的坐标(不要解题过程).菱形问题:(注意点的顺序)一般给两点,一动点在某直线上,另一点在平面直角坐标系中。
19.1.1 平行四边形及其性质(一)一、教学目的:1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会实行相关的论证.3.培养学生发现问题、解决问题的水平及逻辑推理水平.二、重点、难点1.重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.2.难点:使用平行四边形的性质实行相关的论证和计算.三、例题的意图分析例1是平行四边形性质的实际应用,题目比较简单,其目的就是让学生能使用平行四边形的性质实行相关的计算,讲课时,能够让学生来解答.例2是补充的一道几何证明题,即让学生学会使用平行四边形的性质实行相关的论证,又让学生从较简单的几何论证开始,提升学生的推理论证水平和逻辑思维水平,学会演绎几何论证的方法.此题应让学生自己实行推理论证.四、课堂引入1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?你能总结出平行四边形的定义吗?(1)定义:两组对边分别平行的四边形是平行四边形.(2)表示:平行四边形用符号“”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“ABCD”,读作“平行四边形ABCD”.①∵AB//DC ,AD//BC,∴四边形ABCD是平行四边形(判定);②∵四边形ABCD是平行四边形∴AB//DC, AD//BC(性质).注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.(教学时要结合图形,让学生理解清楚)2.【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.让学生根据平行四边形的定义画一个一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?(1)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.(相邻的角指四边形中有一条公共边的两个角.注意和第一章的邻角相区别.教学时结合图形使学生分辨清楚.)(2)猜想平行四边形的对边相等、对角相等.下面证明这个结论的准确性.已知:如图ABCD,求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.分析:作ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.(作对角线是解决四边形问题常用的辅助线,通过作对角线,能够把未知问题转化为已知的关于三角形的问题.)证明:连接AC,∵ AB∥CD,AD∥BC,∴∠1=∠3,∠2=∠4.又 AC=CA,∴△ABC≌△CDA (ASA).∴ AB=CD,CB=AD,∠B=∠D.又∠1+∠4=∠2+∠3,∴∠BAD=∠BCD.由此得到:平行四边形性质1 平行四边形的对边相等.平行四边形性质2 平行四边形的对角相等.五、例习题分析例1(见教材例1)例2(补充)如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.分析:要证AF=CE,需证△ADF≌△CBE,因为四边形ABCD是平行四边形,所以有∠D=∠B ,AD=BC,AB=CD,又AE=CF,根据等式性质,可得BE=DF.由“边角边”可得出所需要的结论.证明略.六、随堂练习18.1.1 平行四边形的性质(二)一、教学目的:1.理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.2.能综合使用平行四边形的性质解决平行四边形的相关计算问题,和简单的证明题.3.培养学生的推理论证水平和逻辑思维水平.二、重点、难点1.重点:平行四边形对角线互相平分的性质,以及性质的应用.2.难点:综合使用平行四边形的性质实行相关的论证和计算.三、例题的意图分析本节课安排了两个例题,例1是一道补充题,它是性质3的直接使用,然后对例1实行了引申,能够根据学生的实际情况选讲,并归纳结论:过平行四边形对角线的交点作直线交对边或对边的延长线,所得的对应线段相等.例1与后面的三个图形是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有协助的.例2是复习巩固小学学过的平行四边形面积计算.这个例题比小学计算平行四边形面积的题加深了一步,需要应用勾股定理,先求得平行四边形一边上的高,然后才能应用公式计算.在以后的解题中,还会遇到需要应用勾股定理来求高或底的问题,在教学中要注意使学生掌握其方法.四、课堂引入1.复习提问:(1)什么样的四边形是平行四边形?四边形与平行四边形的关系是:(2)平行四边形的性质:①具有一般四边形的性质(内角和360).是︒②角:平行四边形的对角相等,邻角互补.边:平行四边形的对边相等.2.【探究】:请学生在纸上画两个全等的ABCD和EFGH,并连接对角线AC、BD和EG、HF,设它们分别交于点O.把这两个平行四边形落在一起,在点O处钉一个图钉,将ABCD绕点O旋转180,观察它还和EFGH重合吗?你能从子中看出前面所得︒到的平行四边形的边、角关系吗?进一步,你还能发现平行四边形的什么性质吗?结论:(1)平行四边形是中心对称图形,两条对角线的交点是对称中心;(2)平行四边形的对角线互相平分.五、例习题分析例1(补充)已知:如图4-21,ABCD的对角线AC、BD相交于点O,EF过点O与AB、CD分别相交于点E、F.求证:OE=OF,AE=CF,BE=DF.证明:在ABCD中,AB∥CD,∴∠1=∠2.∠3=∠4.又 OA =OC(平行四边形的对角线互相平分),∴ △AOE ≌△COF (ASA ).∴ OE =OF ,AE=CF (全等三角形对应边相等).∵ ABCD ,∴ AB=CD (平行四边形对边相等).∴ AB —AE=CD —CF . 即 BE=FD .※【引申】若例1中的条件都不变,将EF 转动到图b 的位置,那么例1的结论是否成立?若将EF 向两方延长与平行四边形的两对边的延长线分别相交(图c 和图d ),例1的结论是否成立,说明你的理由.解略 例2已知四边形ABCD 是平行四边形,AB =10cm ,AD =8cm ,AC ⊥BC ,求BC 、CD 、AC 、OA 的长以及ABCD 的面积.分析:由平行四边形的对边相等,可得BC 、CD 的长,在Rt △ABC 中,由勾股定理可得AC 的长.再由平行四边形的对角线互相平分可求得OA 的长,根据平行四边形的面积计算公式:平行四边形的面积=底×高(高为此底上的高),可求得ABCD 的面积.(平行四边形的面积小学学过,再次强调“底”是对应着高说的,平行四边形中,任一边都能够作为“底”,“底”确定后,高也就随之确定了.)3.平行四边形的面积计算解略.六、随堂练习1.在平行四边形中,周长等于48,① 已知一边长12,求各边的长② 已知AB=2BC ,求各边的长③ 已知对角线AC 、BD 交于点O ,△AOD 与△AOB 的周长的差是10,求各边的长2.如图,ABCD 中,AE ⊥BD ,∠EAD=60°,AE=2cm ,AC+BD=14cm ,则△OBC 的周长是____ ___cm .3.ABCD 一内角的平分线与边相交并把这条边分成cm 5,cm 7的两条线段,则ABCD 的周长是__ ___cm .七、课后练习1.判断对错(1)在ABCD中,AC交BD于O,则AO=OB=OC=OD.()(2)平行四边形两条对角线的交点到一组对边的距离相等.()(3)平行四边形的两组对边分别平行且相等.()(4)平行四边形是轴对称图形.()2.在 ABCD中,AC=6、BD=4,则AB的范围是__ ______.3.在平行四边形ABCD中,已知AB、BC、CD三条边的长度分别为(x+3),(x-4)和16,则这个四边形的周长是.4.公园有一片绿地,它的形状是平行四边形,绿地上要修几条笔直的小路,如图,AB=15cm,AD=12cm,AC⊥BC,求小路BC,CD,OC的长,并算出绿地的面积.18.1.2(一)平行四边形的判定教案总序号:18 时间:2014年3月11日星期二一、教学目的:1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.2.会综合使用平行四边形的判定方法和性质来解决问题.3.培养用类比、逆向联想及运动的思维方法来研究问题.二、重点、难点3.重点:平行四边形的判定方法及应用.4.难点:平行四边形的判定定理与性质定理的灵活应用.三、例题的意图分析本节课安排了3个例题,例1是是平行四边形的性质与判定的综合使用,此题最好先让学生说出证明的思路,然后老师总结并指出其最佳方法.例2与例3都是补充的题目,其目的就是让学生能灵活和综合地使用平行四边形的判定方法和性质来解决问题.例3是一道拼图题,教学时,能够让学生动起来,边拼图边说明道理,即能够提升学生的动手水平和学生的思维水平,又能够提升学生的学习兴趣.如让学生再用四个不等边三角形拼一个如图的大三角形,让学生指出图中所有的平行四边形,并说明理由.四、课堂引入1.欣赏图片、提出问题.展示图片,提出问题,在刚才演示的图片中,有哪些是平行四边形?你是怎样判断的?2.【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?让学生利用手中的学具——硬纸板条通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?(2)你怎样验证你搭建的四边形一定是平行四边形?(3)你能说出你的做法及其道理吗?(4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?(5)你还能找出其他方法吗?从探究中得到:平行四边形判定方法1 两组对边分别相等的四边形是平行四边形。
2009——2010学年第一学期九年级数学备课组活动记录【1】2009——2010学年第一学期九年级数学备课组活动记录【4】TP自己的文件夹里。
(1)对重点、难点进行分析,对部分例题进行拓展。
(2)根据学生情况,分层布置作业。
(3)补充一些简单习题。
3、集体备课其它内容的记录。
(1)分析本周授课中存在的问题,讨论解决的办法。
(2)预测新授课中可能遇到的问题,研讨解决的办法。
(3)以新带旧,训练画图能力是突破口。
(4)对学生易错点、易混点,进行强调和强化训练。
4、下次集体备课分工情况:石秀坤15.3函数图像的画法赵桂英15.4一次函数和它的解析式周五上午集体备课的时候按照分工主讲自己的章节大家讨论。
回去形成自己的教案。
第2周集体备课记录集体备课活动记录活动日期:2009年2月 27日周次:2参加人:苏为民焦丽英赵桂英石秀坤缺勤:无集体备课内容:1、上次集体备课分工任务完成情况;电子教案打印下发情况;本周完成15.3—15.4 5个教案及课件上交和讲解TP自己的文件夹里。
(1)对重点、难点进行分析,对部分例题进行拓展。
(2)根据学生情况,分层布置作业。
(3)补充一些简单习题。
3、集体备课其它内容的记录。
(1)分析本周授课中存在的问题,讨论解决的办法。
(2)预测新授课中可能遇到的问题,研讨解决的办法。
(3)以新带旧,训练画图能力是突破口。
(4)对学生易错点、易混点,进行强调和强化训练。
4、下次集体备课分工情况:苏卫民15.5一次函数图像焦丽英15.6一次函数性质周五上午集体备课的时候按照分工主讲自己的章节大家讨论。
回去形成自己的教案。
第3周集体备课记录集体备课活动记录活动日期:2009年3月 6日周次:3参加人:苏为民焦丽英赵桂英石秀坤缺勤:无集体备课内容:1、上次集体备课分工任务完成情况;电子教案打印下发情况;本周完成15.5—15.6 5个教案及课件上交和讲解到FTP自己的文件夹里。
(1)对重点、难点进行分析,对部分例题进行拓展。
2022-2023学年初二数学第二学期培优专题10 一次函数与平行四边形 【例题讲解】如图,直线27y x =-+与x 轴、y 轴分别相交于点C 、B ,与直线32y x =相交于点A . (1)求A 点坐标;(2)在平面直角坐标系xOy 中,是否存在一点M ,使得以O ,A ,M ,C 为顶点的四边形是平行四边形?如果存在,试写出所有符合条件的点M 的坐标;如果不存在,请说明理由;【分析】分三种情况:①当AC 是对角线时,②当AO 是对角线时,③当CO 是对角线时,分别求解即可. 解:(1)解方程组:2732y x y x =-+⎧⎪⎨=⎪⎩得:23x y =⎧⎨=⎩,A ∴点坐标是(2,3); (2)存在;令y =0代入27y x =-+,得027x =-+,解得:x =72,∴C (72,0),设M (x ,y )如图所示:①当AC 是对角线时,x =2+72-0=72,y =3,∴点M 坐标是(5.5,3);②当AO 是对角线时,x =2+0-72=-1.5,y =3,∴点M 坐标是(-1.5,3);③当CO 是对角线时,x =0+72-2=1.5,y =-3,∴点M 坐标是(1.5,-3),综上所述:点M 坐标是(5.5,3),(-1.5,3),(1.5,-3).【综合演练】1.如图,直角坐标系中的网格由单位正方形构成,△ABC 中,A 点坐标为(2,3),B 点坐标为(﹣2,0),C 点坐标为(0,﹣1). (1)求证:AC ⊥BC ;(2)若以A 、B 、C 及点D 为顶点的四边形组成平行四边形,画出符合条件的所有平行四边形,并写出D 点的坐标 .2.如图,直线l 1:y =2x +2与x 轴交于点A ,与y 轴交于点C ;直线l 2:y =kx +b 与x 轴交于点B (3,0),与直线l 1交于点D ,且点D 的纵坐标为4.(1)不等式kx +b >2x +2的解集是 ;(2)求直线l 2的解析式及△CDE 的面积;(3)点P 在坐标平面内,若以A 、B 、D 、P 为顶点的四边形是平行四边形,求符合条件的所有点P 的坐标. 3.如图,在平面直角坐标系中.一次函数y =-2x + 12的图象分别交x 轴、y 轴于A 、B 两点,过点A 的直线交y 轴正半轴于点M .且点M 为线段OB 的中点.(1)求直线AM 的解析式;(2)在直线AM 上有一点P ,且ABP AOM S S ∆∆=,求点P 的坐标;(3)在坐标平面内是否存在点C ,使以A 、B 、M 、C 为顶点的四边形是平行四边形?若存在,请直接写出点C 的坐标;若不存在,请说明理由.4.如图1,在平面直角坐标系中,直线1:1l y x =+与y 轴交于点A ,过()6,1B 的直线2l 与直线1l 交于点(),5C m -.(1)求直线2l 的解析式;(2)若点D 是第一象限位于直线2l 上的一动点,过点D 作DH y ∥轴交1l 于点H .当10DH =时,试在x 轴上找一点E ,在直线1l 上找一点F ,使得DEF 的周长最小,求出周长的最小值;(3)如图2,直线2l 与x 轴交于点M ,与y 轴交于点N ,将直线2l 绕点O 逆时针旋转90︒得到直线3l ,点P 是直线3l 上一点,且横坐标为2-.在平面内是否存在一点Q ,使得以点M ,C ,P ,Q 为项点的四边形是平行四边形,若存在,请直接写出点Q 的坐标;若不存在,请说明理由.5.已知矩形ABCD ,6AB =,10BC =,以BC 所在直线为x 轴,AB 所在直线为y 轴,建立如图所示的平面直角坐标系,在CD 边上取一点E ,将ADE 沿AE 翻折,点D 恰好落在BC 边上的点F 处.(1)求线段EF 长;(2)如图1,点B 与点O 重合时,在平面内找一点G ,使得以A 、O 、F 、G 为顶点的四边形是平行四边形,请直接写出点G 的坐标;(3)如图2,将图1翻折后的矩形沿y 轴正半轴向上平移(0)m m >个单位,在平面内找一点G ,若以A 、O 、F、G为顶点的四边形为菱形,请求出m的值并写出点G的坐标.6.如图,在平面直角坐标系中,O为坐标原点,矩形OABC的顶点A(16,0)、C(0,12),将矩形OABC 的一个角沿直线BD折叠,使得点A落在对角线OB上的点E处,折痕与x轴交于点D.(1)线段OB的长度为______;(2)求直线BD所对应的函数表达式;(3)若点Q在线段BD上,在线段BC上是否存在点P,使以D,E,P,Q为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由.7.如图,在平面直角坐标系xOy中,直线y=52x+b交x轴负半轴于点A,交y轴正半轴于点B(0,5),点C在x轴正半轴上,OC=4.(1)求直线BC的解析式;(2)若P为线段BC上一点,且△ABP的面积等于△AOB的面积,求点P的坐标;(3)在(2)的条件下,E为直线AP上一动点,在x轴上是否存在点D,使以点D,E,B,C为顶点的四边形为平行四边形?若存在,请直接写出点D的坐标;若不存在,请说明理由.8.如图1,平面直角坐标系中,一次函数132y x=+的图象分别交x轴、y轴于点A,B,一次函数y x b=-+的图象经过点B,并与x轴交于点C,点P是直线AB上的一个动点.(1)直线BC 的表达式为___________,并直接写出点C 的坐标___________; (2)若点P 在x 轴上方,且ACP △的面积为18,求P 点坐标;(3)如图2,在(2)的条件下,过点P 作x 轴的垂线,交直线BC 于点Q .M 是x 轴上一点,在直线AB 上是否存在点N ,使以P 、Q 、M ,N 为顶点的四边形是以.PQ 为边..的平行四边形?若存在,直接写出点N 的坐标;若不存在,说明理由.9.如图,在平面直角坐标系中,直线1l :112y x =+与x 轴交于点B ,直线2l 与直线1l 、x 轴分别交于点31,2A ⎛⎫⎪⎝⎭、点()4,0C .(1)求直线2l 的解析式;(2)若点D 和点E 分别是直线2l 和y 轴上的动点,是否存在点D 、E ,使得以点A 、B 、D 、E 为顶点、AB 为一边的四边形是平行四边形?若存在,请求出点D 的坐标;若不存在,请说明理由. 10.如图,在平面直角坐标系中直线l 1:32y x m =+与直线l 2交于点A (﹣2,3),直线l 2与x 轴交于点C (4,0),与y 轴交于点B ,过BD 中点E 作直线l 3⊥y 轴.(1)求直线l 2的解析式和m 的值;(2)点P 在直线l 1上,当S △PBC =6时,求点P 坐标;(3)点P 是直线l 1上一动点,点Q 是直线l 3上一动点,当以P 、Q 、B 、C 为顶点的四边形是平行四边形时,求Q 点坐标.11.如图1,在平面直角坐标系中,直角梯形OABC 的顶点A 的坐标为()4,0,直线134=-+y x 经过顶点B ,与y 轴交于顶点C ,AB OC ∥.(1)求顶点B 的坐标.(2)如图2,直线l 经过点C ,与直线AB 交于点M ,点O '与点O 关于直线l 对称,连接'CO 并延长交直线AB 于第一象限的点D ,当5CD =时,求直线l 的解析式;(3)在(2)条件下,点P 在直线l 上运动,点Q 在直线OD 上运动,当四边形PBCQ 是平行四边形时,求点P 的坐标.12.如图,在平面直角坐标系xOy 中,直线1l 经过点()0,1A 、()2,2B .将直线1l 向下平移m 个单位得到直线2l ,已知直线2l 经过点()1,2--,且与x 轴交于点C .(1)求直线2l 的表达式及m 的值;(2)若点Q 是x 轴上一点,连接BQ ,当CBQ △面积等于4时,求点Q 的坐标; (3)点D 为直线2l 上一点,如果A 、B 、C 、D 四点能构成平行四边形,求点D 的坐标.13.如图,在平面直角坐标系中,过点(4,0)A -和(0,2)B 的直线与直线32y x =+相交于点C ,直线32y x =+与x轴相交于点D,点E在线段AB上,连接DE,CDE的面积为158.(1)求直线AB的解析式;(2)求点E的坐标;(3)点M是直线CD上的动点,点N在y轴上,是否存在点M、N,使得以点B、E、M、N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.答案与解析【例题讲解】如图,直线27y x =-+与x 轴、y 轴分别相交于点C 、B ,与直线32y x =相交于点A .(1)求A 点坐标; (2)在平面直角坐标系xOy 中,是否存在一点M ,使得以O ,A ,M ,C 为顶点的四边形是平行四边形?如果存在,试写出所有符合条件的点M 的坐标;如果不存在,请说明理由;【分析】分三种情况:①当AC 是对角线时,②当AO 是对角线时,③当CO 是对角线时,分别求解即可. 解:(1)解方程组:2732y x y x =-+⎧⎪⎨=⎪⎩得:23x y =⎧⎨=⎩,A ∴点坐标是(2,3); (2)存在;令y =0代入27y x =-+,得027x =-+,解得:x =72,∴C (72,0),设M (x ,y )如图所示:①当AC 是对角线时,x =2+72-0=72,y =3,∴点M 坐标是(5.5,3);②当AO 是对角线时,x =2+0-72=-1.5,y =3,∴点M 坐标是(-1.5,3);③当CO 是对角线时,x =0+72-2=1.5,y =-3,∴点M 坐标是(1.5,-3),综上所述:点M 坐标是(5.5,3),(-1.5,3),(1.5,-3).【综合演练】1.如图,直角坐标系中的网格由单位正方形构成,△ABC 中,A 点坐标为(2,3),B 点坐标为(﹣2,0),C 点坐标为(0,﹣1). (1)求证:AC ⊥BC ;(2)若以A 、B 、C 及点D 为顶点的四边形组成平行四边形,画出符合条件的所有平行四边形,并写出D 点的坐标 .【答案】(1)证明见解析;(2)作图见解析,点D 坐标为(0,4)或(4,2)或(-4,-4). 【分析】(1)根据勾股定理求出BC AB AC 、、,再根据勾股定理逆定理即可求证;(2)过A C 、、B 分别作BC AB AC 、、的平行线,分别相交于123D D D 、、,再根据平行四边形的性质即可求得D 点的坐标.【解答】解:(1)由勾股定理可得:22215BC =+=、22(22)35AB =++=、222425AC =+=, 又∵222(5)(25)5+=,即222AC BC AB +=, ∴ABC 为直角三角形,90ACB ∠=︒, ∴AC ⊥BC ;(2)过A C 、、B 分别作BC AB AC 、、的平行线,分别相交于123D D D 、、,如下图:①以AC BC 、为邻边时, 则//AC BD 、AC BD =又∵A 点坐标为(2,3),C 点坐标为(0,﹣1), C 点向右平移了2个单位,向上平移了4个单位,∴点D 可以由点B 右平移了2个单位,向上平移了4个单位得到, 又∵B 点坐标为(﹣2,0) 得到点D 坐标为(0,4); ②以AB BC 、为邻边时, 则//AB CD 、AB CD =又∵A 点坐标为(2,3),B 点坐标为(﹣2,0) B 点向右平移了4个单位,向上平移了3个单位∴点D 可以由点C 右平移了4个单位,向上平移了3个单位 又∵C 点坐标为(0,﹣1) 得到点D 坐标为 (4,2); ③以AB AC 、为邻边时, 则//AB CD 、AB CD =又∵A 点坐标为(2,3),B 点坐标为(﹣2,0) A 点向左平移了4个单位,向下平移了3个单位∴点D 可以由点C 左平移了4个单位,向下平移了3个单位 又∵C 点坐标为(0,﹣1)得到点D坐标为(-4,-4).综上所述,点D坐标为(0,4)或(4,2)或(-4,-4).【点评】此题主要考查了勾股定理以及逆定理的应用、平行四边形的性质,熟练掌握相关基本性质,利用平行四边形的性质求解点的坐标是解题的关键.2.如图,直线l1:y=2x+2与x轴交于点A,与y轴交于点C;直线l2:y=kx+b与x轴交于点B(3,0),与直线l1交于点D,且点D的纵坐标为4.(1)不等式kx+b>2x+2的解集是;(2)求直线l2的解析式及△CDE的面积;(3)点P在坐标平面内,若以A、B、D、P为顶点的四边形是平行四边形,求符合条件的所有点P的坐标.【答案】(1)x<1(2)2(3)P(-3,4)或(5,4)或(1,-4)【分析】(1)直线l1交于点D,且点D的纵坐标为4,则4=2x+2,解得:x=1,故点D(1,4),即可求解;(2)将点B、D的坐标代入y=kx+b,再求出点E,点C的坐标,再由三角形面积公式即可求解;(3)分AB是平行四边形的一条边、AB是平行四边形的对角线两种情况,分别求解.(1)对于直线l1:y=2x+2,交于点D,且点D的纵坐标为4,则4=2x+2,解得:x=1,故点D(1,4),从图象看,当x<1时,kx+b>2x+2,故答案为:x<1;(2)将点B (3,0)、D (1,4)代入y =kx +b 得:034k b k b +⎧⎨+⎩==, 解得:26k b -⎧⎨⎩==, 故直线l 2:y =-2x +6,当x =0时,y =6,(0,6)E对于直线l 1:y =2x +2,当x =0时,y =2,∴(0,2)C∴624EC =-=∴1141222CDE D S CE x ∆=⨯⨯=⨯⨯= (3)分别过点A 、B 作l 2、l 1的平行线交于点P ″,交过点D 作x 轴的平行线于点P 、P ′,对于直线l 1:y =2x +2,当y =0时,x =-1,∴(1,0)A -∵B (3,0)3(1)4AB =--=①当AB 是平行四边形的一条边时,此时符合条件的点为下图中点P 和P ′,则AB =4=P A =P ′D ,故点P 的坐标为(-3,4)或(5,4);②当AB 是平行四边形的对角线时,此时符合条件的点为图中点P ″,DA 平行且等于BP “,由平移可知,点P ″(1,-4);综上,点P (-3,4)或(5,4)或(1,-4).【点评】本题为一次函数综合运用题,涉及到平行四边形的基本性质、求解不等式等知识点,其中(3)要注意分类求解,避免遗漏.3.如图,在平面直角坐标系中.一次函数y =-2x + 12的图象分别交x 轴、y 轴于A 、B 两点,过点A 的直线交y 轴正半轴于点M .且点M 为线段OB 的中点.(1)求直线AM 的解析式;(2)在直线AM 上有一点P ,且ABP AOM S S ∆∆=,求点P 的坐标;(3)在坐标平面内是否存在点C ,使以A 、B 、M 、C 为顶点的四边形是平行四边形?若存在,请直接写出点C 的坐标;若不存在,请说明理由. 【答案】(1)6y x =-+(2)点P 的坐标为(0,6)或(12,-6)(3)存在,点C 的坐标为(6,-6)或(6,6)或(-6,18)【分析】(1)利用一次函数图象上点的坐标特征可求出点A ,B 的坐标,由点M 为线段OB 的中点可得出点M 的坐标,根据点A ,M 的坐标,利用待定系数法即可求出直线AM 的函数解析式;(2)分两种情况:①由点M 为线段OB 的中点.可得ABM AOM S S =△△,即可得出点P 于点M 重合,②根据ABP PBM ABM PBM AOM S S S S S =-=-,即可得答案;(3)存在点C ,使以A 、B 、M 、C 为顶点的四边形是平行四边形,分三种情况:①以AM ,BC 为对角线;②以AB ,CM 为对角线;③以AC ,BM 为对角线,根据平移的性质求解即可.(1)解:当x =0时,y =-2x +12=12,∴点B 的坐标为(0,12),当y =0时,-2x +12=0,解得:x =6,∴点A 的坐标为(6,0).∵点M 为线段OB 的中点,∴点M 的坐标为(0,6).设直线AM 的函数解析式为y =kx +b (k ≠0),将A (6,0),M (0,6)代入y =kx +b ,得606k b b +=⎧⎨=⎩,解得:16k b =-⎧⎨=⎩ ∴直线AM 的函数解析式为y =-x +6;(2)解:①∵点M 为线段OB 的中点.∴ABM AOM S S =△△,∴点P 于点M 重合,∴点P 的坐标为(0,6);②如图,∵点A 的坐标为(6,0).点M 的坐标为(0,6).∴12AOM S =△×6×6=18, ∵ABP AOM S S =△△,∴18ABP PBM ABM PBM AOM S S S S S =-=-=,设点P 的坐标为:(x , -x +6),∴12×6x -18=18,解得x =12, ∴点P 的坐标为(12,-6);∴点P 的坐标为(0,6)或(12,-6);(3)解:分三种情况考虑(如图所示):存在点C ,使以A 、B 、M 、C 为顶点的四边形是平行四边形,∵A (6,0),B (0,12),M (0,6),①以AM ,BC 为对角线,根据平移的性质,得点C (6,-6),②以AB ,CM 为对角线,根据平移的性质,得点C (6,6),③以AC ,BM 为对角线,根据平移的性质,得点C (-6,18),综上,点C 的坐标为(6,-6)或(6,6)或(-6,18).【点评】本题是一次函数综合题,考查了一次函数图象上点的坐标特征、待定系数法求一次函数解析式、三角形的面积以及平行四边形的性质,解题的关键是注意掌握辅助线的作法,注意掌握数形结合思想、分类讨论思想与方程思想的应用.4.如图1,在平面直角坐标系中,直线1:1l y x =+与y 轴交于点A ,过()6,1B 的直线2l 与直线1l 交于点(),5C m -.(1)求直线2l 的解析式;(2)若点D 是第一象限位于直线2l 上的一动点,过点D 作DH y ∥轴交1l 于点H .当10DH =时,试在x 轴上找一点E ,在直线1l 上找一点F ,使得DEF 的周长最小,求出周长的最小值;(3)如图2,直线2l 与x 轴交于点M ,与y 轴交于点N ,将直线2l 绕点O 逆时针旋转90︒得到直线3l ,点P 是直线3l 上一点,且横坐标为2-.在平面内是否存在一点Q ,使得以点M ,C ,P ,Q 为项点的四边形是平行四边形,若存在,请直接写出点Q 的坐标;若不存在,请说明理由. D ,关于1l D 的坐标和点,进而求得DEF 的最小值为(3)求出点旋转后的对应点的坐标,从而求出情况,结合根据平行四边形的性质,求得点)5-代入y =设点D 的坐标为1,22x x ⎛⎫- ⎪⎝⎭, ∵DH y ∥轴,∴点(),1H x x +,∵10DH =,∴()112102x x ⎛⎫+--= ⎪⎝⎭,解得:14x =, ∴()14,5D ,()14,15H ,作点D 关于x 轴的对称点()14,5D '-,关于1l 的对称点D '',连接D D ''',D H ''交x 轴于E ,交1l 于F ,则()4,15D '',,10AHD D HF D H DH ''''∠=∠==,DEF 的周长最小,最小值为∶ '"D D ,∵直线1:1l y x =+由直线y x =沿y 轴向上平移1个单位得到的,且直线y x =为第一三象限的角平分线, ∴直线1:1l y x =+与坐标的夹角都为45︒,∴45AHD D HF ''∠=∠=︒,∴90D HD ''∠=︒,∵DH y ∥轴,∴点D ''的横坐标为14104-=,∴点D ''的坐标为()4,15,∴()()22144155105D D '''=-++=,∴DEF 的周长最小值为∶105;(3)如图,∵点()()4,0,0,2M N -,∴点M 和点N 旋转后的对应点()()0,4,2,0M N '',∴直线3l 的解析式为∶24y x =-+,当2x =-时,()2248y =-⨯-+=,∴()2,8P -,当PCMQ 时,∵()()24610,80513⎡⎤⎡⎤-+--=+--=⎣⎦⎣⎦,∴()10,13Q ,当CMPQ 时,∵()21012,853--=--=,∴()12,3Q -,当PCQM 时,∵()46202---=,5021822-+-=-, ∴210,2Q ⎛⎫- ⎪⎝⎭, 综上所述∶点()10,13Q 或()12,3Q -或210,2Q ⎛⎫- ⎪⎝⎭. 【点评】本题考查了用待定系数法求一次函数的解析式,平行四边形的分类,勾股定理等知识,解决问题的关键是作对称,确定点E ,F 的位置.5.已知矩形ABCD ,6AB =,10BC =,以BC 所在直线为x 轴,AB 所在直线为y 轴,建立如图所示的平面直角坐标系,在CD 边上取一点E ,将ADE 沿AE 翻折,点D 恰好落在BC 边上的点F 处.(1)求线段EF 长;(2)如图1,点B 与点O 重合时,在平面内找一点G ,使得以A 、O 、F 、G 为顶点的四边形是平行四边形,请直接写出点G 的坐标;(3)如图2,将图1翻折后的矩形沿y 轴正半轴向上平移(0)m m >个单位,在平面内找一点G ,若以A 、O 、F 、G 为顶点的四边形为菱形,请求出m 的值并写出点G 的坐标. 【答案】(1)103EF = (2)点G 的坐标为()8,6-或()8,6或()8,6-(3)4m =,点G 的坐标为:()8,6-或73m =,点G 的坐标为328,3⎛⎫ ⎪⎝⎭或6m =,点G 的坐标为()8,6-【分析】(1)由矩形的性质得AD =BC =OC =10,CD =AB =OA =6,∠AOC =∠ECF =90°,由折叠性质得EF =DE ,AF =AD =10,则CE =6-EF ,由勾股定理求出BF =OF =8,则FC =OC -OF =2在Rt △ECF 中,由勾股定理得出方程,解方程即可;(2)分三种情况,当AB 为平行四边形的对角线时;当AF 为平行四边形的对角线时;当BF 为平行四边形的对角线时,分别去点G 的坐标即可;(3)分三种情况讨论,由菱形的性质得OA =AF =10,则矩形ABCD 平移距离m =OA -AB =4,即OB =4,设FG 交x 轴于H ,证出四边形OBFH 是矩形,得FH =OB =4,OH =BF =8,则HG =6,即可得出答案.(1)四边形ABCD 是矩形, 10AD BC OC ∴===,6CD AB OA ===,90AOC ECF ∠=∠=︒,由折叠性质得:EF DE =,10AF AD ==,6CE CD DE CD EF EF ∴=-=-=-,由勾股定理得:22100368BF OF AF OA ==-=-=,1082FC OC OF ∴=-=-=,在Rt ECF △中,由勾股定理得:222EF CE FC =+, 即:222(6)2EF EF =-+,解得:103EF =; (2)如图1所示:当AB 为平行四边形的对角线时,8AG BF ==,AG BF ∥, ∴点G 的坐标为:()8,6-;当AF 为平行四边形的对角线时,8AG BF ==,AG BF ∥, ∴点G 的坐标为:()8,6;当BF 为平行四边形的对角线时,6FG AB ==,FG AB ∥, ∴点G 的坐标为:()8,6-;综上所述,点G 的坐标为()8,6-或()8,6或()8,6-;(3)如图2,OA FG∥∴∠=FBO∴四边形∴=FH OB10∴=HG6.如图,在平面直角坐标系中,O为坐标原点,矩形OABC的顶点A(16,0)、C(0,12),将矩形OABC 的一个角沿直线BD折叠,使得点A落在对角线OB上的点E处,折痕与x轴交于点D.(1)线段OB 的长度为______;(2)求直线BD 所对应的函数表达式;(3)若点Q 在线段BD 上,在线段BC 上是否存在点P ,使以D ,E ,P ,Q 为顶点的四边形是平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由. 【答案】(1)20(2)直线BD 所对应的函数表达式为220y x =-(3)存在,满足条件的点P 的坐标是(10,12)【分析】(1)由矩形的性质可得出点B 的坐标及OA ,AB 的长,利用勾股定理可求出OB 的长;(2)设AD a =,则DE a =,8OD a =-,1064OE OB BE =-=-=,利用勾股定理可求出a 值,进而可得出点D 的坐标,再根据点B ,D 的坐标,利用待定系数法可求出直线BD 所对应的函数表达式; (3)过点E 作EF x ⊥轴于点F ,由90BED BAD ∠=∠=︒,可得出18090OED BED ∠=︒-∠=︒,利用面积法可求出EF 的长,在Rt ΔOEF 中,利用勾股定理可求出OF 的长,进而可得出点E 的坐标,根据PE BD ∥,求出直线PE 的解析式,根据点E 的纵坐标求出其横坐标即可.(1)解:由题意,得:点B 的坐标为(16,12),16OA =,12AB OC ==,2222161220OB OA AB ∴=+=+=,故答案为:20;(2)解:设AD a =,则DE a =,16OD a =-,20128OE OB BE =-=-=,222OD OE DE =+,即222(16)8a a -=+,6a ∴=,10OD ∴=,∴点D 的坐标为(10,0).设直线BD 所对应的函数表达式为(0)y kx b k =+≠,将(16,12)B ,(10,0)D 代入y kx b =+,得:1612100k b k b +=⎧⎨+=⎩, 解得:220k b =⎧⎨=-⎩, ∴直线BD 所对应的函数表达式为220y x =-;(3)解:存在,理由:过点E 作EF x ⊥轴于点F ,如图所示.90BED BAD ∠=∠=︒,18090OED BED ∴∠=︒-∠=︒1122ODE S OD EF OE DE ∆∴=⋅=⋅, 8624105OE DE EF OD ⋅⨯∴===, 在Rt ΔOEF 中,222224328()55OF OE EF =-=-=, ∴点E 的坐标为32(5,24)5, 由PE BD ∥,设直线PE 的解析式为:2y x b =+,把32(5E ,24)5代入得:2432255b =⨯+,解得:8b =-, ∴直线PE 的解析式为:28y x =-,令12y =,则1228x =-,解得:10x =,∴存在,点P 的坐标为(10,12).【点评】本题属于一次函数综合题,考查了矩形的性质、勾股定理、待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及平行四边形的性质,解题的关键是灵活运用性质解决问题.7.如图,在平面直角坐标系xOy 中,直线y =52x +b 交x 轴负半轴于点A ,交y 轴正半轴于点B (0,5),点C 在x 轴正半轴上,OC =4.(1)求直线BC的解析式;(2)若P为线段BC上一点,且△ABP的面积等于△AOB的面积,求点P的坐标;(3)在(2)的条件下,E为直线AP上一动点,在x轴上是否存在点D,使以点D,E,B,C为顶点的四边形为平行四边形?若存在,请直接写出点D的坐标;若不存在,请说明理由.【答案】(1)y=﹣54x+5(2)P(43,103)(3)D的坐标为(1,0)或(﹣11,0)或(7,0)【分析】(1)由点C在x轴正半轴上,OC=4,得C(4,0),用待定系数法即得直线BC的解析式;(2)过P作PH⊥AC于H,设P(n,﹣54n+5),PH=﹣54n+5,将B(0,5)代入y=52x+b可得y=52x+5,A(﹣2,0),根据△ABP的面积等于△AOB的面积,列方程计算即可;(3)由A(﹣2,0),P 410 33(,)代入得直线AP解析式为y=x+2,设E(p,p+2),D(q,0),又B(0,5),C(4,0),分3种情况:①若ED,BC为对角线,则ED,BC的中点重合,可得425p qp+=⎧⎨+=⎩,即可解得D(1,0);②若EB,DC为对角线,4250p qp=+⎧⎨++=⎩,D(﹣11,0);③若EC,DB为对角线,425p qp+=⎧⎨+=⎩,D(7,0).(1)∵点C在x轴正半轴上,OC=4,∴C(4,0),由B(0,5)设直线BC解析式为y=mx+5,将C(4,0)代入得:0=4m+5,解得m=﹣54,∴直线BC 的解析式为y =﹣54x +5; (2)过P 作PH ⊥AC 于H ,如图:设P (n ,﹣54n +5),则PH =﹣54n +5, 将B (0,5)代入y =52x +b 得: b =5,∴y =52x +5, 在y =52x +5中,令y =0得x =﹣2, ∴A (﹣2,0),∴AC =6,∴S △ABC =12AC •OB =12×6×5=15,S △APC =12AC •PH =12×6×(﹣54n +5)=﹣154n +15, ∵△ABP 的面积等于△AOB 的面积,∴15﹣(﹣154n +15)=12×2×5, 解得n =43, ∴P 41033(,);(3)存在点D ,使以点D ,E ,B ,C 为顶点的四边形为平行四边形,理由如下:设直线AP 解析式为y =kx +t ,将A (﹣2,0),P 41033(,)代入得: 2041033k t k t -+=⎧⎪⎨+=⎪⎩, 解得12k t =⎧⎨=⎩,∴直线AP 解析式为y =x +2, 设E (p ,p +2),D (q ,0),又B (0,5),C (4,0),①若ED ,BC 为对角线,则ED ,BC 的中点重合,如图:∴425p q p +=⎧⎨+=⎩, 解得31p q =⎧⎨=⎩, ∴D (1,0);②若EB ,DC 为对角线,同理可得:4250p q p =+⎧⎨++=⎩, 解得711p q =-⎧⎨=-⎩, ∴D (﹣11,0);③若EC ,DB 为对角线,∴425p q p +=⎧⎨+=⎩, 解得37p q =⎧⎨=⎩, ∴D (7,0),综上所述,D 的坐标为(1,0)或(﹣11,0)或(7,0).【点评】本题考查一次函数的综合应用,涉及待定系数法,三角形面积,平行四边形的性质及应用等知识,解题的关键是利用平行四边形对角线互相平分列方程解决问题.8.如图1,平面直角坐标系中,一次函数132y x =+的图象分别交x 轴、y 轴于点A ,B ,一次函数y x b =-+的图象经过点B ,并与x 轴交于点C ,点P 是直线AB 上的一个动点.(1)直线BC 的表达式为___________,并直接写出点C 的坐标___________;(2)若点P 在x 轴上方,且ACP △的面积为18,求P 点坐标;(3)如图2,在(2)的条件下,过点P 作x 轴的垂线,交直线BC 于点Q .M 是x 轴上一点,在直线AB 上是否存在点N ,使以P 、Q 、M ,N 为顶点的四边形是以.PQ 为边..的平行四边形?若存在,直接写出点N 的坐标;若不存在,说明理由. 【答案】(1)3y x =-+,(3,0);(2)P (2,4);(3)存在,点N 的坐标为(0,3)或(-12,-3).【分析】(1)求出x =0时,1332y x =+=可得点B 坐标,然后利用待定系数法求出直线BC 的表达式,令y =0,求出x 的值,即可得到点C 的坐标; (2)求出点A 坐标可得AC =9,设P (x ,132x +),根据ACP △的面积为18构建方程求出x 的值即可; (3)求出点Q 坐标,可得PQ =3,根据平行四边形的性质可得PQ MN ∥且PQ =MN =3,进而可得点N 的纵坐标为3或-3,然后代入直线BC 的解析式即可求出点N 的坐标.(1)解:在一次函数132y x =+中,当x =0时,y =3, ∴B (0,3),∵一次函数y x b =-+的图象经过点B ,并与x 轴交于点C ,∴3b =,∴直线BC 的表达式为3y x =-+,当y =0时,即03x =-+,解得:x =3,∴C (3,0),故答案为:3y x =-+,(3,0);(2)9.如图,在平面直角坐标系中,直线1l :112y x =+与x 轴交于点B ,直线2l 与直线1l 、x 轴分别交于点31,2A ⎛⎫ ⎪⎝⎭、点()4,0C .(1)求直线2l 的解析式;(2)若点D 和点E 分别是直线2l 和y 轴上的动点,是否存在点D 、E ,使得以点A 、B 、D 、E 为顶点、AB 为一边的四边形是平行四边形?若存在,请求出点D 的坐标;若不存在,请说明理由. 【答案】(1)122y x =-+ (2)存在,D 点坐标为73,2⎛⎫- ⎪⎝⎭或13,2⎛⎫ ⎪⎝⎭【分析】(1)由待定系数法求直线的解析式即可;(2)设1,22D t t ⎛⎫-+ ⎪⎝⎭,()0,E m ,再分两种情况讨论:当AD 为平行四边形对角线时;当AE 为平行四边形的对角线时;利用平行四边形对角线互相平分的性质求解即可.(1)解:设直线2l 的解析式为y kx b =+,直线2l 与直线1l 、x 轴分别交于点31,2A ⎛⎫ ⎪⎝⎭、点()4,0C , 3240k b k b ⎧+=⎪∴⎨⎪+=⎩,解得122k b ⎧=-⎪⎨⎪=⎩,直线2l 的解析式为122y x =-+; (2)解:存在,直线1l :112y x =+与x 轴交于点B , ()2,0B ∴-,设1,22D t t ⎛⎫-+ ⎪⎝⎭,()0,E m , 当AD 为平行四边形对角线时,31,2A ⎛⎫ ⎪⎝⎭,()2,0B -, 2012213202222t t m -++⎧=⎪⎪∴⎨-++⎪+=⎪⎩,解得35t m =-⎧⎨=⎩, 73,2D ⎛⎫∴- ⎪⎝⎭; ③当AE 为平行四边形的对角线时,31,2A ⎛⎫ ⎪⎝⎭,()2,0B -, 0122231202222t m t +-+⎧=⎪⎪∴⎨+-++⎪=⎪⎩,解得31t m =⎧⎨=-⎩, 13,2D ⎛⎫∴ ⎪⎝⎭; 综上所述:存在,73,2⎛⎫- ⎪⎝⎭或13,2⎛⎫ ⎪⎝⎭ . 【点评】本题是一次函数综合题,考查待定系数法求函数的解析式,一次函数的图象及性质,平行四边形的性质,分类讨论是解题的关键.10.如图,在平面直角坐标系中直线l 1:32y x m =+与直线l 2交于点A (﹣2,3),直线l 2与x 轴交于点C (4,0),与y 轴交于点B ,过BD 中点E 作直线l 3⊥y 轴.(1)求直线l2的解析式和m的值;(2)点P在直线l1上,当S△PBC=6时,求点P坐标;(3)点P是直线l1上一动点,点Q是直线l3上一动点,当以P、Q、B、C为顶点的四边形是平行四边形时,求Q点坐标.【答案】(1)y=12-x+2;m=6;(2)P点坐标为(12-,214)或(72-,34);(3)Q点坐标为(283,4)或(203-,4)或(4,4)【分析】(1)由待定系数法求直线的解析式即可;(2)分点P在线段F A上和在线段DA上时,两种情况讨论,利用分割法和三角形面积公式列方程,再分别求P点坐标即可;(3)设P(t,32t+6),Q(m,4),再分三种情况讨论:①当PQ为平行四边形的对角线时;②当PB为平行四边形对角线时;③当PC为平行四边形的对角线时;利用平行四边形对角线互相平分的性质求解即可.(1)解:∵A(-2,3)在y=32x+m上,∴-3+m=3,∴m=6,∴y=32x+6,设直线l2的解析式为y=kx+b,∴4023k bk b+=⎧⎨-+=⎩,解得122kb⎧=-⎪⎨⎪=⎩,∴直线l2的解析式为y=12-x+2;(2)解:由(1)可得B(0,2),D(0,6),F(-4,0),∵C(4,0),∴S△DBC=12×4×4=8>6,S△FBC=12×8×2=8>6,∴点P一定在线段FD上,当点P在线段F A上时,连接PO,设点P的坐标为(a,32a+6),S△PBC=S△POB+S△COB-S△POC=12×2a+12×2×4-12×4×362a+=6,整理得362a+=-12a-1,即362a+=-12a-1或362a+=12a+1,解得:a=-72或a=-5(舍去),∴点P的坐标为(-72,34);当点P 在线段DA 上时,连接PO ,设点P 的坐标为(a ,32a +6),S △PBC = S △POC -S △POB -S △COB =12×4×362a +-12×2a -12×2×4=6,整理得362a +=5-12a , 即362a +=5-12a 或362a +=12a -5, 解得:a =-12或a =-11(舍去),∴点P 的坐标为(-12,214);综上所述:P 点坐标为(-12,214)或(-72,34);(3)解:由(1)可得B (0,2),D (0,6), ∴E (0,4),∴直线l 3的解析式为y =4, 设P (t ,32t +6),Q (m ,4),①当PQ 为平行四边形的对角线时, 436422t m t +=⎧⎪⎨++=⎪⎩,解得163283t m ⎧=-⎪⎪⎨⎪=⎪⎩, ∴Q (283,4); ②当PB 为平行四边形对角线时, 436242t m t =+⎧⎪⎨++=⎪⎩,解得83203t m ⎧=-⎪⎪⎨⎪=-⎪⎩,∴Q (-203,4); ③当PC 为平行四边形的对角线时,43662t mt +=⎧⎪⎨+=⎪⎩,解得04t m =⎧⎨=⎩, ∴Q (4,4);综上所述:Q 点坐标为(283,4)或(-203,4)或(4,4). 【点评】本题考查一次函数的图象及性质、平行四边形的性质、坐标与图形,熟练掌握一次函数的图象及性质,平行四边形的性质,分类讨论是解题的关键.11.如图1,在平面直角坐标系中,直角梯形OABC 的顶点A 的坐标为()4,0,直线134=-+y x 经过顶点B ,与y 轴交于顶点C ,AB OC ∥.(1)求顶点B 的坐标.(2)如图2,直线l 经过点C ,与直线AB 交于点M ,点O '与点O 关于直线l 对称,连接'CO 并延长交直线AB 于第一象限的点D ,当5CD =时,求直线l 的解析式;(3)在(2)条件下,点P 在直线l 上运动,点Q 在直线OD 上运动,当四边形PBCQ 是平行四边形时,求点P 的坐标. 【答案】(1)()4,2B (2)132y x =-+(3)15,2⎛⎫⎪⎝⎭【分析】(1)根据AB OC ∥,可得点B 的横坐标为4,再代入134=-+y x ,即可求解;(2)过C 点作CN AB ⊥于N ,可得到DCM DMC ∠=∠,从而得到5CD MD ==,再求出3OC =,DN =3,从而得到532NM =-=,继而得到AM =1,可得到点()4,1M ,即可求解; (3)连接OD ,先求出D 点坐标为()4,6,可得直线OD 解析式为32y x =,设P 点坐标为1,32a a ⎛⎫-+ ⎪⎝⎭,Q点坐标为3,2b b ⎛⎫⎪⎝⎭,然后根据平行四边形对角线互相平分,即可求解.(1)解:∵()4,0A ,AB OC ∥, ∴点B 的横坐标为4,把4x =代入134=-+y x 中,得2y =,∴()4,2B . (2)解:如图,过C 点作CN AB ⊥于N ,∵AB OC ∥, ∴OCM DMC ∠=∠,∵点O '为点O 关于直线l 的对称点, ∴DCM OCM ∠=∠, ∴DCM DMC ∠=∠, ∴5CD MD ==, ∵134=-+y x ,当0x =时,3y =, ∴点C (0,3), ∴3OC =, ∵4CN OA ==,∴2222543DN CD CN =-=-=, ∴532NM =-=,∴321AM AN NM =-=-=, ∴()4,1M ,设直线l 解析式y kx b =+把()0,3C ,()4,1M 代入得: 341b k b =⎧⎨+=⎩,解得123k b ⎧=-⎪⎨⎪=⎩, ∴直线l 的解析式为:132y x =-+.(3)解:如图,连接OD ,∵156AD AM MD =+=+=,AD OC ∥,A 点坐标为()4,0, ∴D 点坐标为()4,6,设OD 直线解析式为y kx =,将()4,6代入可得46k =,解得32k , ∴直线OD 解析式为32y x =, ∵点P 在直线l 上运动,点Q 在直线OD 上运动,∴设P 点坐标为1,32a a ⎛⎫-+ ⎪⎝⎭,Q 点坐标为3,2b b ⎛⎫⎪⎝⎭,∵四边形PBCQ 是平行四边形, ∴平行四边形对角线互相平分, 4022312332222b a b a ++⎧=⎪⎪⎨+-++⎪=⎪⎩,解得51a b =⎧⎨=⎩, 当5a =时,111353222a -+=-⨯+=,∴P 点坐标为15,2⎛⎫⎪⎝⎭.【点评】本题主要考查了一次函数与四边形的综合题,熟练掌握一次函数的图象和性质,平行四边形的性质是解题的关键.12.如图,在平面直角坐标系xOy 中,直线1l 经过点()0,1A 、()2,2B .将直线1l 向下平移m 个单位得到直线2l ,已知直线2l 经过点()1,2--,且与x 轴交于点C .(1)求直线2l 的表达式及m 的值;(2)若点Q 是x 轴上一点,连接BQ ,当CBQ △面积等于4时,求点Q 的坐标; (3)点D 为直线2l 上一点,如果A 、B 、C 、D 四点能构成平行四边形,求点D 的坐标. 【答案】(1)52m =, 直线2l 为1322y x =- (2)()1,0Q -或()7,0.Q(3)点D 的坐标为(5,1)或(1,-1).【分析】(1)根据待定系数法先求解1l 的解析式,再写出2l 的解析式为112y x m =+-,再利用待定系数法即可得到答案;(2)由2l 的解析式,令y =0,即可求得C 的坐标,设(),0,Q x 由4,CBQS = 可得1324,2x -⨯= 再解方程可得答案;(3)分两种情况,根据平行四边形的性质以及平移的规律即可求得D 的坐标. (1)解:设直线1l 的表达式为y =kx +b , ∵直线1l 经过点A (0,1)、B (2,2),∴122b k b =⎧⎨+=⎩,解得121k b ⎧=⎪⎨⎪=⎩, ∴直线1l 的表达式为112y x =+; 将直线1l 向下平移m 个单位得到直线2l ,则直线2l 为112y x m =+-,∵直线2l 经过点(-1,-2),∴()12112m -=⨯-+-,解得52m =,∴直线2l 为1322y x =-, (2)令y =0,则130,22x -= 解得x =3,∴点C 的坐标为(3,0);设(),0,Q x ∵4,CBQS =∴1324,2x -⨯= 解得:=1x -或7,x = ∴()1,0Q -或()7,0.Q (3)由题意可知AB CD ∥,如图,当A 、B 、C 、D 四点构成平行四边形1ABD C 时,1AB CD =,。
专题09 一次函数与几何图形综合问题的五种类型类型一、面积问题例1.在平面直角坐标系xOy 中,已知直线AB 与x 轴交于A 点 (2,0)与y 轴交于点B (0,1). (1)求直线AB 的解析式;(2)点M (-1,y 1),N (3,y 2)在直线AB 上,比较y 1与y 2的大小. (3)若x 轴上有一点C ,且S △ABC =2,求点C 的坐标【变式训练1】已知一次函数12y kx =+的图象与x 轴交于点(2,0)B -,与正比例函数2y mx =的图象交于点(1,)A a .(1)分别求k ,m 的值;(2)点C 为x 轴上一动点,如果ABC 的面积是6,请求出点C 的坐标.【变式训练2】如图,在正方形ABCD 中,4AB =,点P 为线段DC 上的一个动点.设DP x =,由点,,,A B C P 首尾顺次相接形成图形的面积为y .(1)求y 关于x 的函数表达式及x 的取值范围;(2)设(1)中函数图象的两个端点分别为M N 、,且P 为第一象限内位于直线MN 右侧的一个动点,若MNP △正好构成一个等腰直角三角形,请求出满足条件的P 点坐标;(3)在(2)的条件下,若l 为经过(1,0)-且垂直于x 轴的直线,Q 为l 上的一个动点,使得MNQNMPS S=,请直接写出符合条件的点Q 的坐标.【变式训练3】如图,已知直线1:3l y x =+与过点A (3,0)的直线2l 交于点C (1,m ),且与x 轴交于点B ,与y 轴交于点D . (1)求直线2l 的解析式;(2)若点D 关于x 轴的对称点为P ,求△PBC 的面积.类型二、一次函数与平行四边形例1.如图,在平面直角坐标系中,直线AB 与x ,y 轴分别交于点(4,0)A ,(0,3)B ,点C 是直线554y x =-+上的一个动点,连接BC .(1)求直线AB 的函数解析式;(2)如图1,若//BC x 轴,求点C 到直线AB 的距离;(3)如图2,点(1,0)E ,点D 是直线AB 上的动点,试探索点C ,D 在运动过程中,是否存在以B ,C ,D ,E 为顶点的四边形是平行四边形,若存在,请直接写出点C ,D 的坐标;若不存在,请说明理由.【变式训练1】一次函数y = kx+1(k ≠ 0)的图象过点P (-3,2),与x 轴交于点A ,与y 轴交于点B .(1)求k 的值及点A 、B 的坐标;(2)已知点C (-1,0),若以A ,B ,C ,D 为顶点的四边形是平行四边形,请直接写出所有符合条件的点D 的坐标.【变式训练2】平面直角坐标系xOy 中,直线1l :2y x b =+与直线2l :12y x =交于点()2,P m . (1)求m ,b 的值;(2)直线()0x n n =≠与直线1l ,2l 分别交于M ,N 两点,当MN =3时,若以M ,N ,P ,Q 为顶点的四边形是平行四边形,请直接写出点Q 的坐标.类型三、一次函数与等腰三角形例1.一次函数的图像与x 轴、y 轴分别交于点A 0),B (0,1),以AB 为边在第一象限内做等边△ABC . (1)线段AB 的长是 ,△BAO = °,点C 的坐标是 ;(2)如果在第二象限内有一点P (a ,1),试用含a 的代数式表示四边形ABPO 的面积. (3)在y 轴上存在点M ,使△MAB 为等腰三角形,请直接写出点M 的坐标.【变式训练1】如图一,已知直线l :6y x =-+与x 轴交于点A ,与y 轴交于点B ,直线m 与v 轴交于点(0,2)C -,与直线l 交于点(,1)D t .(1)求直线m 的解析式;(2)如图二,点P 在直线l 上且在y 轴左侧,过点P 作//PQ y 轴交直线m 于点Q ,交x 轴于点G ,当2PCG QCG S S ∆∆=,求出P ,Q 两点的坐标;(3)将直线l :6y x =-+向左平移12个单位得到直线n 交x 轴于E 点,点F 是点C 关于原点对称点.过点F 作直线//k x 轴.点M 在直线k 上,写出以点C ,E ,M ,为顶点且CE 为腰的等腰三角形,并把求其中一个点M 的坐标的过程写出来.【变式训练2】在如图的平面直角坐标系中,直线n 过点A (0,﹣2),且与直线l 交于点B (3,2),直线l 与y 轴交于点C .(1)求直线n 的函数表达式;(2)若△ABC 的面积为9,求点C 的坐标;(3)若△ABC 是等腰三角形,求直线l 的函数表达式.【变式训练3】如图,直线1:l y ax a =-,1l 与x 轴交于点B ,直线2l 经过点(4,0)A ,直线1l ,2l 交于点(2,3)C -.(1)a =______;点B 的坐标为______. (2)求直线2l 的解析表达式; (3)求ABC 的面积;(4)在直线2l 上存在异于点C 的另一点P ,使得ABP △为等腰三角形,请直接写出P 点的横坐标?类型四、一次函数与直角三角形例1.如图,在平面直角坐标系中,函数y =-x +2的图象与x 轴,y 轴分别交于点A ,B ,与函数y =13x +b 的图象交于点C (-2,m ). (1)求m 和b 的值;(2)函数y =-x +b 的图象与x 轴交于点D ,点E 从点D 出发沿DA 向,以每秒2个单位长度匀速运动到点M (到A 停止运动),设点E 的运动时间为t 秒. ①当ΔACE 的面积为12时,求t 的值;②在点E 运动过程中,是否存在t 的值,使ΔACE 为直角三角形?若存在,请求出t 的值;若不存在,请说明理由.【变式训练1】如图1,在菱形ABCD 中,60ABC ∠=︒,对角线AC BD 、交于点,O P 从B 点出发,沿B DC →→方向匀速运动,P 点运动速度为1cm/s .图2是点P 运动时,APC △的面积2()cm y 随P 点运动时间()s x变化的函数图像.(1)AB =_______cm,a =_____;(2)P 点在BD 上运动时,x 为何值时,四边形ADCP ; (3)在P 点运动过程中,是否存在某一时刻使得APB △为直角三角形,若存在,求x 的值;若不存在,请说明理由.【变式训练2】在平面直角坐标系xOy 中,将直线2y x =向下平移2个单位后,与一次函数132y x =-+的图象相交于点A .(1)将直线2y x =向下平移2个单位后对应的解析式为 ; (2)求点A 的坐标;(3)若P 是x 轴上一点,且满足△OAP 是等腰直角三角形,直接写出点P 的坐标.类型五、最值问题例1.如图,将直线34y x=-向上平移后经过点()4,3A,分别交x轴y轴于点B、C.(1)求直线BC的函数表达式;(2)点P为直线BC上一动点,连接OP.问:线段OP的长是否存在最小值?若存在,求出线段OP的最小值,若不存在,请说明理由.【变式训练1】如图,四边形OABC是张放在平面直角坐标系中的正方形纸片,点O与坐标原点重合,点A在x轴正半轴上,点C在y轴正半轴上,5OC=,点E在边BC上.(1)若点N的坐标为(3,0),过点N且平行于y轴的直线MN与EB交于点M,将纸片沿直线OE折叠,顶点C恰好落在MN上,并与MN上的点G重合.①求点G、点E的坐标;②若直线:l y mx n=+平行于直线OE,且与长方形ABMN有公共点,请直接写出n的取值范围.(2)若点E为BC上的一动点,点C关于直线OE的对称点为G,连接BG,请求出线段BG的最小值.专题09 一次函数与几何图形综合问题的五种类型类型一、面积问题例1.在平面直角坐标系xOy 中,已知直线AB 与x 轴交于A 点 (2,0)与y 轴交于点B (0,1). (1)求直线AB 的解析式;(2)点M (-1,y 1),N (3,y 2)在直线AB 上,比较y 1与y 2的大小. (3)若x 轴上有一点C ,且S △ABC =2,求点C 的坐标 【答案】(1)112y x =-+;(2)y 1>y 2;(3)()6,0C 或()2,0-. 【解析】(1)解:设直线AB 的解析式为y kx b =+△A (2,0)B (0,1),△201k b b +=⎧⎨=⎩,解得:k =12-,b =12△直线AB 的解析式为112y x =-+ (2)△y =﹣12x +1中k =﹣12<0,△y 值随x 值的增大而减小, △﹣1<3,△y 1>y 2;(3)△x 轴上有一点C ,设点C (x ,0),△AC =|2﹣x |, △S △ABC =2,△12×|2﹣x |×1=2,△x =﹣2或x =6, △C (﹣2,0)或C (6,0). 故答案为:(1)112y x =-+;(2)y 1>y 2;(3)()6,0C 或()2,0-. 【变式训练1】已知一次函数12y kx =+的图象与x 轴交于点(2,0)B -,与正比例函数2y mx =的图象交于点(1,)A a .(1)分别求k ,m 的值;(2)点C 为x 轴上一动点,如果ABC 的面积是6,请求出点C 的坐标. 【答案】(1)1k =,3m =;(2)点C 的坐标为(2,0)或(6,0)- 【解析】(1)一次函数1=2y kx +的图象与x 轴交于点2,0B -(),220k ∴-+=1k ∴=12y x ∴=+一次函数12y x =+的图象与正比例函数2y mx =的图象交于点(1,)A a ,12a ∴=+,a m =,3m ∴=; (2)设点C 的坐标为(,0)n ,过点A 作AD x ⊥轴,垂足为点D .ABC 的面积是6,162BC AD ∴⋅=,1|(2)|362n ∴--⨯=,2n ∴=或6n =-∴点C 的坐标为(2,0)或(6,0)-,或过点A 作AD x ⊥轴,垂足为点D .ABC 的面积是6,162BC AD ∴⋅=,1362BC ∴⨯=,4BC ∴=,点B 的坐标为(2,0)-,∴点C 的坐标为(2)0,或(60)-,. 【变式训练2】如图,在正方形ABCD 中,4AB =,点P 为线段DC 上的一个动点.设DP x =,由点,,,A B C P 首尾顺次相接形成图形的面积为y .(1)求y 关于x 的函数表达式及x 的取值范围;(2)设(1)中函数图象的两个端点分别为M N 、,且P 为第一象限内位于直线MN 右侧的一个动点,若MNP △正好构成一个等腰直角三角形,请求出满足条件的P 点坐标;(3)在(2)的条件下,若l 为经过(1,0)-且垂直于x 轴的直线,Q 为l 上的一个动点,使得MNQNMPS S=,请直接写出符合条件的点Q 的坐标.【答案】(1)y =-2x +16,0<x <4;(2)(12,12)或(8,20)或(6,14);(3)(-1,-2)或(-1,8)或(-1,38)或(-1,28)【解析】(1)由线段的和差,得PC =(4-x ),由梯形的面积公式,得y =-2x +16, △四边形ABCD 是正方形,△AB =CD =4,△x 的取值范围是0<x <4; (2)设P 点坐标是(a ,b ),M (0,16),N (4,8),以MN 为边,在MN 右侧做正方形,MNAB ,正方形中心为H ,则易知A ,B ,H 即为所求P 的坐标;示意图如下求得A (12,12),B (8,20),O (6,14),故P 点可能的坐标为(12,12)或(8,20)或(6,14); (3)由S △MNQ =S △NMP ,设Q (-1,m ),QN 所在直线方程为y =kx +b , 把Q 和N 代入方程,求得b =845m +,则可求S △NMP =12|16-b |×[4-(-1)]=|36-2m |当P 为(12,12)时,S △MNQ =40,△|36-2m |=40;解得m =-2或38,当P (8,20),同理解得m =-2或38,当P (8,20),有S △MNQ =20,解得m =8或28, 综上,符合条件的Q 的坐标为(-1,-2)或(-1,8)或(-1,38)或(-1,28).【变式训练3】如图,已知直线1:3l y x =+与过点A (3,0)的直线2l 交于点C (1,m ),且与x 轴交于点B ,与y 轴交于点D . (1)求直线2l 的解析式;(2)若点D 关于x 轴的对称点为P ,求△PBC 的面积.【答案】(1)-26y x =+;(2)12.【解析】(1)把(1,)C m 代入y =x +3,得1+3=m ,△m =4,△(1,4)C设2l 的解析式为:y =kx +b (k ≠0),将点A ,C 的坐标代入,则430k b k b +=⎧⎨+=⎩ 解得26k b =-⎧⎨=⎩,△2l 的解析式为:-26y x =+(2)当y =0时,30x += ,△3x =-,△(3,0)B -, 当x =0时,y =3,△(0,3)D ,△点P 、D 关于x 轴对称,△(0,3)P - ,如图,连接BP ,PC ,设PC 与x 轴的交点为Q ,设直线PC 的解析式为(0)y kx b k =+≠,将点(1,4),(0,3)C P -代入:43k b b +=⎧⎨=-⎩,解得73k b =⎧⎨=-⎩,△直线PC 的解析式为:73y x =-,令y =0,解得37x =, △BPCBQP BQCSSS=+1122c BQ OP BQ y =+1124()712227c BQ OP y =+=⨯⨯=.类型二、一次函数与平行四边形例1.如图,在平面直角坐标系中,直线AB 与x ,y 轴分别交于点(4,0)A ,(0,3)B ,点C 是直线554y x =-+上的一个动点,连接BC .(1)求直线AB 的函数解析式;(2)如图1,若//BC x 轴,求点C 到直线AB 的距离;(3)如图2,点(1,0)E ,点D 是直线AB 上的动点,试探索点C ,D 在运动过程中,是否存在以B ,C ,D ,E 为顶点的四边形是平行四边形,若存在,请直接写出点C ,D 的坐标;若不存在,请说明理由.【答案】(1)334y x =-+;(2)2425;(3)17(2,45)8-、15(2-,69)8或1(2-,45)8、1(2,21)8或17(2,45)8-、15(2,21)8- 【解析】(1)设直线AB 的表达式为y kx b =+,则304b k b =⎧⎨=+⎩,解得343k b ⎧=-⎪⎨⎪=⎩,故AB 的表达式为334y x =-+;(2)//BC x 轴,故点C 的纵坐标为3,当3y =时,即5534y x =-+=,解得85x =,即点C 的坐标为8(5,3),则85BC =;由点A 、B的坐标得,5AB ==,过点C 作CH AB ⊥于点H ,在△ABC 中,S △ABC =1122BC OB AB CH ⨯⨯=⨯⨯,即18135252CH ⨯⨯=⨯⨯,解得:2425CH =,即点C 到直线AB 的距离为2425;(3)设点C 、D 的坐标分别为5(,5)4m m -+、3(,3)4n n -+,当EB 是对角线时,由中点坐标公式得:01m n +=+且53305344m n +=-+-+,解得172152m n ⎧=⎪⎪⎨⎪=-⎪⎩,故点C 、D 的坐标分别为17(2,45)8-、15(2-,69)8;当EC 是对角线时,同理可得:1m n +=且5353344m n -+=-++,解得,1212m n ⎧=-⎪⎪⎨⎪=⎪⎩故点C 、D 的坐标分别为1(2-,45)8、1(2,21)8;当ED 是对角线时,同理可得:1n m +=且35035344n m -+=-++,解得152172m n ⎧=⎪⎪⎨⎪=⎪⎩,故点C 、D 的坐标分别为17(2,45)8-、15(2,21)8-.综上,点C 、D 的坐标分别为17(2,45)8-、15(2-,69)8或1(2-,45)8、1(2,21)8或17(2,45)8-、15(2,21)8-.【变式训练1】一次函数y = kx+1(k ≠ 0)的图象过点P (-3,2),与x 轴交于点A ,与y 轴交于点B .(1)求k 的值及点A 、B 的坐标;(2)已知点C (-1,0),若以A ,B ,C ,D 为顶点的四边形是平行四边形,请直接写出所有符合条件的点D 的坐标.【答案】(1)13k =-,与x 轴交于点A (3,0),与y 轴交于点B (0,1);(2)D (4,1)或D (2,-1)或D (-4,1).【解析】(1)将P (-3,2)代入()10y kx k =+≠,得:13k =-函数表达式:113y x =-+,令y =0,x =3,令x =0,y =1,△与x 轴交于点A (3,0),与y 轴交于点B (0,1);(2)分三种情况:①BC 为对角线时,点D 的坐标为(-4,1);②AB 为对角线时,点D 的坐标为(4,1),③AC 为对角线时,点D 的坐标为(2,-1).综上所述,点D 的坐标是(4,1)或(-4,1)或(2,-1).【变式训练2】平面直角坐标系xOy 中,直线1l :2y x b =+与直线2l :12y x =交于点()2,P m . (1)求m ,b 的值;(2)直线()0x n n =≠与直线1l ,2l 分别交于M ,N 两点,当MN =3时,若以M ,N ,P ,Q 为顶点的四边形是平行四边形,请直接写出点Q 的坐标.【答案】(1)13m b ==-,;(2)点Q 的坐标为()2,4,()2,2-或()6,6 【解析】(1)△直线1l :2y x b =+与直线2l :12y x =交于点()2,P m ,△4122m b m =+⎧⎪⎨=⨯⎪⎩,△1 3.m b ==-, (2)依题意可得直线1l :23y x =-,△直线1l 与y 轴的交点为(0,-3) △直线()0x n n =≠与直线1l ,2l 分别交于M ,N 两点, MN =3, △M ,N 不是y 轴上的点,设M (x ,2x -3),则N (x ,12x ) 由MN =3,得(2x -3)-12x =3,解得x =4,△M (4,5),则N (4,2) △以M ,N ,P ,Q 为顶点的四边形是平行四边形,①当MN 为四边形MPNQ 的对角线时,MN 的中点坐标为(4,3.5) 故()2,1P 、Q 关于(4,3.5)对称,△点Q 的坐标为()6,6,②当MN 为四边形MNQP 的一边时,MN =PQ =3,且PQ 与y 轴平行,故点Q 的坐标为()2,4或()2,2- 综上,点Q 的坐标为()2,4,()2,2-或()6,6. 类型三、一次函数与等腰三角形例1.一次函数的图像与x 轴、y 轴分别交于点A0),B (0,1),以AB 为边在第一象限内做等边△ABC . (1)线段AB 的长是 ,△BAO = °,点C 的坐标是 ;(2)如果在第二象限内有一点P (a ,1),试用含a 的代数式表示四边形ABPO 的面积. (3)在y 轴上存在点M ,使△MAB 为等腰三角形,请直接写出点M 的坐标.【答案】(1)2,30,C2);(22a-;(3)(0,-1)或(0,3)【解析】(1)(3A ,0),(0,1)B ,在Rt AOB ∆中,2AB =,2OB =AB ,可30BAO ∴∠=︒,以AB 为边在第一象限内做等边ABC ∆,60ACB ∠=︒∴,AB AC =,90OAC ∴∠=︒,C ∴2),故答案为2,30,C 2);(2)四边形ABPO 的面积BAO =∆的面积OBP +∆的面积1111()222a a =+⨯⨯-=;(3)2AB =,30BAO ∠=︒,60OBA ∴∠=︒,①当AB BM =时,2BM =,(0,1)M -或(0,3)M ;②当AB AM =时,ABM ∆是等边三角形,M ∴与B 关于x 轴对称,(0,1)M ∴-; ③当BM AM =时,ABM ∆是等边三角形,M ∴与B 关于x 轴对称,(0,1)M ∴-; 综上所述:MAB ∆为等腰三角形时,M 点坐标为(0,1)-或(0,3).【变式训练1】如图一,已知直线l :6y x =-+与x 轴交于点A ,与y 轴交于点B ,直线m 与v 轴交于点(0,2)C -,与直线l 交于点(,1)D t .(1)求直线m 的解析式;(2)如图二,点P 在直线l 上且在y 轴左侧,过点P 作//PQ y 轴交直线m 于点Q ,交x 轴于点G ,当2PCG QCG S S ∆∆=,求出P ,Q 两点的坐标;(3)将直线l :6y x =-+向左平移12个单位得到直线n 交x 轴于E 点,点F 是点C 关于原点对称点.过点F 作直线//k x 轴.点M 在直线k 上,写出以点C ,E ,M ,为顶点且CE 为腰的等腰三角形,并把求其中一个点M 的坐标的过程写出来. 【答案】(1)直线m 的解析式为325y x =-;(2)P 点的坐标为(-10,16),Q 点坐标为(-10,-8);(3)当CE 为腰时,点M 的坐标为:M (2)或M (-2)或M (0,2).过程见解析. 【解析】(1)△D (t ,1)在直线l :y =-x +6上,△1=-t +6,△t =5,△D (5,1),设直线m 的解析式为y =kx +b ,将点C ,D 代入得,512k b b +=⎧⎨=-⎩,解得,352k b ⎧=⎪⎨⎪=-⎩,所以,直线m 的解析式为325y x =-; (2)设P (a ,6-a ),△点P 在x 轴的左侧,△0a < △PQ △轴,G (a ,0),Q (a ,325a -),如图,点P 、Q 在x 轴两侧,△S △PCG =12PG •(-a ),S △QCG =12GQ •(-a )且S △PCG =2S △QCG , △PG =2QG ,△6-a =2(2-35a ),解得:a =-10, △66(10)16a -=--=,332(10)2855a -=⨯--=-△P 点的坐标为(-10,16),Q 点坐标为(-10,-8);(3)对于直线l :y =-x +6,当x =0时,y =6;当y =0时,x =6.△A (6,0),B (0,6),△将直线l :y =-x +6向左平移12个单位得直线n 交x 轴于点E ,点F 是点C 关于原点的对称点.点C (0,-2), △E (-6,0),F (0,2), 如图,△将直线l :y =-x +6向左平移12个单位得直线n ,△直线n :y =-x -6, 又△F (0,2)△k 的解析式为:y =2,设M (a ,2),则MCME,CE ,当△MCE 为等腰三角形,且CE 为腰,有:①CE =MCa =a =-M (2).M (-2), ②ME =CE解得,a =0或a =-12(此时三点共线,不构成三角形,舍去),即M (0,2),综上,当CE 为腰时,点M 的坐标为:M (2)或M (-2)或M (0,2).【变式训练2】在如图的平面直角坐标系中,直线n 过点A (0,﹣2),且与直线l 交于点B (3,2),直线l 与y 轴交于点C .(1)求直线n 的函数表达式;(2)若△ABC 的面积为9,求点C 的坐标;(3)若△ABC 是等腰三角形,求直线l 的函数表达式.【答案】(1)y =43x ﹣2;(2)C (0,4)或(0,﹣8);(3)直线l 的解析式为:y =﹣13x +3或y =3x ﹣7或y =﹣43x +6或y =724x +98 【解析】(1)设直线n 的解析式为:y =kx +b ,△直线n :y =kx +b 过点A (0,﹣2)、点B (3,2),△232b k b =-⎧⎨+=⎩ ,解得:432k b ⎧=⎪⎨⎪=-⎩ ,△直线n 的函数表达式为:y =43x ﹣2; (2)△△ABC 的面积为9,△9=12•AC •3,△AC =6, △OA =2,△OC =6﹣2=4或OC =6+2=8,△C (0,4)或(0,﹣8); (3)分四种情况:①如图1,当AB =AC 时,△A (0,﹣2),B (3,2),△AB 22(22)=5,△AC =5,△OA =2,△OC =3,△C (0,3),设直线l 的解析式为:y =mx +n ,把B (3,2)和C (0,3)代入得:323m n n +=⎧⎨=⎩ ,解得:133m n ⎧=-⎪⎨⎪=⎩ ,△直线l 的函数表达式为:y =13-x +3; ②如图2,AB =AC =5,△C (0,﹣7),同理可得直线l 的解析式为:y =3x ﹣7; ③如图3,AB =BC ,过点B 作BD △y 轴于点D ,△CD =AD =4,△C (0,6),同理可得直线l 的解析式为:y =43-x +6; ④如图4,AC =BC ,过点B 作BD △y轴于D ,设AC =a ,则BC =a ,CD =4﹣a ,根据勾股定理得:BD 2+CD 2=BC 2,△32+(4﹣a )2=a 2,解得:a =258, △OC =258﹣2=98 ,△C (0,98),同理可得直线l 的解析式为:y =724x +98; 综上,直线l 的解析式为:y =13-x +3或y =3x ﹣7或y =43-x +6或y =724x +98. 【变式训练3】如图,直线1:l y ax a =-,1l 与x 轴交于点B ,直线2l 经过点(4,0)A ,直线1l ,2l 交于点(2,3)C -.(1)a =______;点B 的坐标为______. (2)求直线2l 的解析表达式; (3)求ABC 的面积;(4)在直线2l 上存在异于点C 的另一点P ,使得ABP △为等腰三角形,请直接写出P 点的横坐标?【答案】(1)3a =-,()10B ,;(2)362y x =-;(3)92;(4)52,2813【解析】(1)△直线1:l y ax a =-经过点(2,3)C -,32a a ∴-=-,解得:3a =-;即直线1:l y ax a =-的解析式为33y x =-+;当y =0时,-3x +3=0,解得1x =,则()10B ,;故答案为:-3,(1,0);(2)设直线2l 的解析式为:y kx b =+, △经过点()4,0A 和点(2,3)C -,△0432k b k b=+⎧⎨-=+⎩,解得:32k ,6b =-.△直线2l 的解析式为:362y x =-; (3)设ABC 的面积的面积为ABC S ;则413AB =-=,ABC 的高为3,则193322ABCS=⨯⨯=; (4)存在,设点P 的坐标为(x ,362x ),分三种情况: ①当AP=BP 时,点P 在线段AB 的垂直平分线上,△A (4,0),B (1,0),△点P 的横坐标为:41522+=; ②当AP=AB =3时,过点P 作PH △x 轴于点H ,△222PH AH AP +=,△2223(6)(4)32x x -+-=,解得x③当AB=BP =3时,作PM △x 轴于点M , △222PM BM BP +=,△2223(6)(1)32x x -+-=,解得x =2813或x =4(舍去);综上,符合条件的P 点的横坐标是52,2813,5213± 类型四、一次函数与直角三角形例1.如图,在平面直角坐标系中,函数y =-x +2的图象与x 轴,y 轴分别交于点A ,B ,与函数y =13x +b 的图象交于点C (-2,m ). (1)求m 和b 的值;(2)函数y =-x +b 的图象与x 轴交于点D ,点E 从点D 出发沿DA 向,以每秒2个单位长度匀速运动到点M (到A 停止运动),设点E 的运动时间为t 秒. ①当ΔACE 的面积为12时,求t 的值;②在点E 运动过程中,是否存在t 的值,使ΔACE 为直角三角形?若存在,请求出t 的值;若不存在,请说明理由.【答案】(1)m =4,b =143;(2)①t =5;②t =4或t =6 【解析】(1)△点C (−2,m )在直线y =−x +2上, △m =−(−2)+2=2+2=4,△点C (−2,4), △函数y =13x +b 的图象过点C (−2,4),△4=13×(−2)+b ,得b =143,即m 的值是4,b 的值是143; (2)①△函数y =−x +2的图象与x 轴,y 轴分别交于点A ,B ,△点A (2,0),点B (0,2), △函数y =13x +143的图象与x 轴交于点D ,△点D 的坐标为(−14,0),△AD =16, △△ACE 的面积为12,△(16−2t )×4÷2=12,解得,t =5.即当△ACE 的面积为12时,t 的值是5; ②当t =4或t =6时,△ACE 是直角三角形,理由:当△ACE =90°时,AC △CE , △点A (2,0),点B (0,2),点C (−2,4),点D (−14,0),△OA =OB ,AC =,△△BAO =45°,△△CAE =45°,△△CEA =45°,△CA =CE =,△AE =8, △AE =16−2t ,△8=16−2t ,解得,t =4;当△CEA =90°时,△AC =,△CAE =45°,△AE =4, △AE =16−2t ,△4=16−2t ,解得,t =6;由上可得,当t =4或t =6时,△ACE 是直角三角形.【变式训练1】如图1,在菱形ABCD 中,60ABC ∠=︒,对角线AC BD 、交于点,O P 从B 点出发,沿B DC →→方向匀速运动,P 点运动速度为1cm/s .图2是点P 运动时,APC △的面积2()cm y 随P 点运动时间()s x变化的函数图像.(1)AB =_______cm,a =_____;(2)P 点在BD 上运动时,x 为何值时,四边形ADCP; (3)在P 点运动过程中,是否存在某一时刻使得APB △为直角三角形,若存在,求x 的值;若不存在,请说明理由.【答案】(1)2;(2;(3或1【解析】(1)在菱形ABCD 中,60ABC ∠=︒,则ABC ∆、ACD ∆为全等的两个等边三角形,设ABC ∆的边长为a,则其面积为24a , 由图2知,当点P 在点A 时,y ABC =∆的面积2=,解得2a =(负值已舍去), 即菱形的边长为2,则2()AB cm =,由题意知,点P 与点O 重合时,对于图2的a 所在的位置,则1AO =,故a BO ====2(2)由(1)知点P 在BO 段运动时,对于图2第一段直线,而该直线过点、0),设其对应的函数表达式为y kx t =+,则0t t ⎧=⎪+=,解得1k t =-⎧⎪⎨=⎪⎩,故该段函数的表达式为=-+y x ,当点P 在BD 上运动时,四边形ADCP,则点P 只能在BO 上,则四边形ADCP 的面积ACD S y ∆=+=x x =;(3)存在,理由:由(1)知,菱形的边长为2,则BP =1AO =,过点A 作AP DC ''⊥于点P ''交BD 于点P ',ABC ∆、ACD ∆均为等边三角形,则30PAP DAP ∠'=∠''=︒,①当点P 和点O 重合时,APB ∠为直角,则x BP ==②当BAP ∠'为直角时,则同理可得:PP '=x BP PP =+'=;③当BAP ∠''为直角时,则112x BD DP AD =+''=+=,综上,x 或1. 【变式训练2】在平面直角坐标系xOy 中,将直线2y x =向下平移2个单位后,与一次函数132y x =-+的图象相交于点A .(1)将直线2y x =向下平移2个单位后对应的解析式为 ; (2)求点A 的坐标;(3)若P 是x 轴上一点,且满足△OAP 是等腰直角三角形,直接写出点P 的坐标.【答案】(1)22y x =-;(2)(2,2);(3)(2,0)或(4,0).【解析】(1)根据题意,得22y x =-;故答案为:22y x =-.(2)由题意得:22132y x y x =-⎧⎪⎨=-+⎪⎩,解得:22x y =⎧⎨=⎩,△点A 的坐标为(2,2); (3)如图所示,△P 是x 轴上一点,且满足△OAP 是等腰直角三角形,当OA =OP 时,P 点坐标为(4,0),当OP =AP 时,P 点坐标为(2,0), 综上,P 点的坐标为:(2,0)或(4,0). 类型五、最值问题 例1.如图,将直线34y x =-向上平移后经过点()4,3A ,分别交x 轴y 轴于点B 、C .(1)求直线BC 的函数表达式;(2)点P 为直线BC 上一动点,连接OP .问:线段OP 的长是否存在最小值?若存在,求出线段OP 的最小值,若不存在,请说明理由. 【答案】(1)364y x =-+;(2)存在,线段OP 的最小值为4.8.【解析】(1)设平移后的直线BC 的解析式为34y x b =-+,代入()4,3A 得3344b =-⨯+,解得6b = △直线BC 的解析式为364y x =-+; (2)存在,理由如下:令x =0,得y =6,△C (0,6),故OC =6令y =0,得x =8,△B (8,0)故OB =8△BC 10= △OP △BC 时,线段OP 最小, △S △ABC =12BO CO ⨯=12BC OP ⨯,△OP = 4.8BO COBC⨯=,即线段OP 的最小值为4.8. 【变式训练1】如图,四边形OABC 是张放在平面直角坐标系中的正方形纸片,点O 与坐标原点重合,点A 在x 轴正半轴上,点C 在y 轴正半轴上,5OC =,点E 在边BC 上.(1)若点N 的坐标为(3,0),过点N 且平行于y 轴的直线MN 与EB 交于点M ,将纸片沿直线OE 折叠,顶点C 恰好落在MN 上,并与MN 上的点G 重合. ①求点G 、点E 的坐标;②若直线:l y mx n =+平行于直线OE ,且与长方形ABMN 有公共点,请直接写出n 的取值范围. (2)若点E 为BC 上的一动点,点C 关于直线OE 的对称点为G ,连接BG ,请求出线段BG 的最小值.【答案】(1)①G (3,4),E (53,5);②-15≤n ≤-4;(2)5【解析】(1)由折叠的性质可知,OG =OC =5,由勾股定理得,GN 4=, △点G 的坐标为(3,4);设CE =x ,则EM =3-x ,由折叠的性质可知:EG =CE =x , △GN =4,△GM =5-4=1,在Rt △EMG 中,222EG EM MG =+,即()22231x x =-+,解得:x =53, △点E 的坐标为(53,5);设OE所在直线的解析式为:y=kx,则53k=5,解得,k=3,△OE所在直线的解析式为:y=3x,△直线l:y=mx+n平行于直线OE,△m=3,即直线l的解析式为y=3x+n,当直线l经过点M(3,5)时,5=3×3+n,解得,n=-4,当直线l经过点A(5,0)时,0=3×5+n,解得,n=-15,△直线l与长方形ABMN有公共点时,-15≤n≤-4;(3)连接OB,OG,△OC=BC=5,△OCB=90°,△BC OC=△点C关于直线OE的对称点为点G,△OC=OG=5,△BG≥OB-OG,△当O、B、G三点共线时,BG取得最小值,△BG的最小值为5.。
专题29 一次函数与平行四边形结合1.如图,在平面直角坐标系xOy 中,已知直线PA 是一次函数(0)y x m m =+>的图象,直线PB 是一次函数3()y x n n m =-+>的图象,点P 是两直线的交点,点A 、B 、C 、Q 分别是两条直线与坐标轴的交点.若四边形PQOB 的面积是5.5,且:1:2CQ AO =,若存在一点D ,使以A 、B 、P 、D 为顶点的四边形是平行四边形,则点D 的坐标为________.2.已知:在平面直角坐标系中,点A(1,0),点B(4,0),点C在y轴正半轴上,且OB=2OC.(1)试确定直线BC的解析式;(2)在平面内确定点M,使得以点M、A、B、C为顶点的四边形是平行四边形,请直接写出点M 的坐标.考点:一次函数综合题.3.已知直线1l :y 1=34x +m 与直线2l :y 2=2x +n 相交于点A (2,3).(1)求m ,n 的值;(2)请在所给坐标系中画出直线1l 和2l ,并根据图像回答:当x 满足____时,12y y <.(3)设1l 交x 轴于点B ,2l 交y 轴于点C ,若点D 与点A ,B ,C 能构成平行四边形,则点D 的坐标为_____.由函数图象得:当x >2时12y y <.故答案为:x >2;(3)当133042y x =+=时,解得:2x =-,∴B (-2,0),在221y x =-中,当x =0时,y =-1,∴C (0,-1),如图,当BC 是平行四边形的边时,【点睛】本题考查待定系数法,画一次函数图象,一次函数图象的交点与不等式的关系,平行四边形的判定等知识,解题关键是通过数形结合分类讨论.4.如图,已知函数12y x b =-+的图象与x 轴、y 轴分别交于点A 、B ,与函数y x =的图象交于点M ,点M 的坐标为()2,m .(1)直接写出b 和m 的值:b =______,m =______.(2)在x 轴上有一动点(),0P a (其中2a >),过点P 作x 轴的垂线,分别交函数12y x b =-+和y x =的图象于点C 、D .①若2OB CD =,求a 的值;②是否存在这样的点P ,使以B 、O 、C 、D 为顶点的四边形是平行四边形?若存在,直接写出点P 的坐标;若不存在,请说明理由.5.如图,直线l1:y=x+3与过点A(3,0)的直线l2交于点C(1,m),与x轴交于点B.(1)求直线l2对应的函数解析式;(2)求△ABC的面积;(3)请你找到图象中直线l1在直线l2上方的部分,直接写出此时自变量x的取值范围;(4)在坐标平面内是否存在点P,使以点A、B、C、P为顶点的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.当y=0时,x+3=0,解得∴B(﹣3,0),又A(3,0),∴AB=6,∵C(1,4),∴CD=4,11∴33122 00422mn-++ì=ïïí++ï=ïî,解得14mn=-ìí=-î,同理可得:3132204022mn+-+ì=ïïí++ï=ïî,解得:74mn=ìí=î,∴P(7,4);③以AP、BC为对角线,如图:同理可得:33122 00422mn+-+ì=ïïí++ï=ïî,解得:54mn=-ìí=î,∴P(﹣5,4);综上所述:以点A、B、C、P6.已知点A(4,0),B(0,﹣4),C(a,2a)及点D是一个平行四边形的四个顶点,则线段CD 的长的最小值为( )AB C.D.故选B .【点睛】本题考查了一次函数与平行四边形的综合题,解本题的关键是找到何时CD 最短.7.如图,在同一平面直角坐标系中,直线1:3l y x =-+与x 轴交于点A ,与y 轴交于点B ,直线2:2l y x =与直线1l 交于点P .(1)求P 点的坐标.(2)设直线1l 与直线2l 在第一象限内的图象为G ,若直线x m =与图象G 只有两个交点,请写出m 的取值范围.(3)在平面内是否存在一点Q ,使得以点O ,A ,B ,Q 为顶点的四边形是平行四边形,若存在请直接写出Q 点的坐标,若不存在请说明理由.【答案】(1)点P 的坐标为(1,2)(2)01m <<或13m <<.(03m <<且1m ¹)(3)存在,1(3,3)Q ;2(3,3)Q -;3(3,3)Q -【分析】(1)联立二元一次方程组求解即可;(2)根据图像判断即可;(3)如图,分别过点A ,B ,O 点作y 轴,x 轴,直线AB 的平行线,交点分别为123,,Q Q Q ,则点123,,Q Q Q 即为所求作的点.【详解】(1)解:根据题意,得32y x y x=-+ìí=î解得12x y =ìí=î∴点P 的坐标为(1,2).(2)解:如图,把y =0代入3y x =-+得,03x =-+,解得,3x =,\点A 的坐标为(3,0),由点P 的坐标为(1,2),01m \<<或13m <<.(03m <<且1m ¹)(3)解:存在Q ,使得以点O ,A ,B ,Q 为顶点的四边形是平行四边形,如图,分别过点A ,B ,O 点作y 轴,x 轴,直线AB 的平行线,交点分别为123,,Q Q Q ,则点123,,Q Q Q 即为所求作的点,Q 点A 的坐标为(3,0),点B 的坐标为(0,3),\ 1(3,3)Q ,2(3,3)Q -,3(3,3)Q -【点睛】本题考查了一次函数与几何的综合题,一次函数的交点坐标,一次函数与坐标轴的交点,一次函数与二元一次方程组,一次函数与不等式,正确理解一次函数的相关性质是解本题的关键.8.如图,Rt OAB V 的两直角边OA 、OB 分别在x 轴和y 轴上,()4,0A -,()0,8B ,将OAB V 绕O 点顺时针旋转90°得到OCD V ,直线AC 、BD 交于点E .点M 为直线BD 上的动点,点N 为x 轴上的点,若以A ,C ,M ,N 四点为顶点的四边形是平行四边,则符合条件的点M 的坐标为______.【答案】(4,4)或(8,−4).【分析】由A 、B 的坐标可求得AO 和OB 的长,由旋转的性质可求得OC 、OD 的长,由B 、D 坐标可求得直线BD 解析式,当M 点在x 轴上方时,则有CM ∥AN ,则可求得M 点纵坐标,代入直线BD 解析式可求得M 点坐标,当M 点在x 轴下方时,同理可求得M 点纵坐标,则可求得M 点坐标.【详解】解:∵()4,0A -,()0,8B ,∴OA =4,OB =8,∵将△OAB 绕O 点顺时针旋转90°得△OCD ,∴OC =OA =4,OD =OB =8,AB =CD ,∵OD =OB =8,∴D (8,0),且B (0,8),∴直线BD 解析式为y =−x +8,当M 点在x 轴上方时,则有CM ∥AN ,即CM ∥x 轴,∴M 点到x 轴的距离等于C 点到x 轴的距离,∴M 点的纵坐标为4,在y =−x +8中,令y =4可得x =4,∴M (4,4);当M 点在x 轴下方时,同理可得M 点的纵坐标为−4,在y =−x +4中,令y =−4可求得x =8,∴M 点的坐标为(8,−4);综上可知M 点的坐标为(4,4)或(8,−4),故答案为:(4,4)或(8,−4).【点睛】本题考查了平行四边形的判定和性质,旋转的性质、掌握平行四边形的判定和性质,进行分类讨论,是解题的关键.9.在平面直角坐标系中,已知(6,0)A -,(0,8)B ,(a,a)C ,D 是平面内的一点,以A ,B ,C ,D 为顶点的四边形是平行四边形,则CD 的最小值是___________.∵(6,0)A -,(0,8)B ,由平行四边形的性质,点F 为AB 的中点,∴点F 为(-3,4),∵CF ⊥直线y x =,∴CD=AB=226810+=;∵7210<,∴CD 的最小值为:72;三、解答题(共0分)10.如图,在平面直角坐标系xOy 中,直线1y x =+与24y x =-+交于点A ,两直线与x 轴分别交于点B 和点C ,D 是直线AC 上的一动点,E 是直线AB 上的一动点.若以E ,D ,O ,A 为顶点的四边形恰好为平行四边形,则点E 的坐标为________.∵OE ∥AC ,所以直线OE 的解析式为y =-2x ,联立OE 、AB ,得12y x y x =+ìí=-î,解得1323x y ì=-ïïíï=ïî,12∵OD ∥AB ,∴直线OD 的解析式为y =x ,联立OD 、AC ,得24y x y x =ìí=-+î解得4343x y ì=ïïíï=ïî,11.如图,在平面直角坐标系中,直线142y x=-+交x轴于点A,交y轴于点B.点C为OB的中点,点D在线段OA上,OD3AD=,点E为线段AB上一动点,连接CD、CE、DE.(1)求线段CD的长;V的面积为4,求点E的坐标;(2)若CDE(3)在(2)的条件下,点P在y轴上,点Q在直线CD上,是否存在以D、E、P、Q为顶点的四边形为平行四边形.若存在,直接写出点Q坐标;若不存在,请说明理由.12.如图,在平面直角坐标系中,直线y=52x+5与x轴交于点A,与y轴交于点B,过点B的另一直线交x轴正半轴于C,且△ABC面积为15.(1)求点C的坐标及直线BC的表达式;(2)若M为线段BC上一点,且△ABM的面积等于△AOB的面积,求M的坐标;(3)在(2)的条件下,点E为直线AM上一动点,在x轴上是否存在点D,使以点D、E、B、C 为顶点的四边形为平行四边形?若存在,直接写出点D的坐标;若不存在,请说明理由.∵B(0,5),BE∥CD,BE=CD,∴点E的纵坐标是5,∵点E为直线AM上一动点,直线AM的表达式为:y=x+2.∴x+2=5,解得:x=3,∴E(3,5),∴BE=CD=3,∵C(4,0),∴D(7,0);②当BC为平行四边形的边,四边形BDEC为平行四边形时,如图:过点E作EF⊥x轴于F,∵四边形BDEC为平行四边形,∴BC=ED,∠DBC=∠CED,BD=EC,∴△BDC≌△ECD(SAS),∴EF=OB,∵B(0,5),∴EF=OB=5,∴点E的纵坐标是﹣5,∵点E 为直线AM 上一动点,直线AM 的表达式为:y =x +2.∴x +2=﹣5,解得:x =﹣7,∴OF =7,在Rt △BOC 和Rt △EFD 中,BC ED OB FE=ìí=î∴Rt △BOC ≌Rt △EFD (HL ),∴DF =OC ,∵C (4,0),∴DF =4,∴OD =4+7=11,∴D (﹣11,0);③当BC 为平行四边形的对角线时,∵B (0,5),BE ∥CD ,BE =CD ,∴点E 的纵坐标是5,∵点E 为直线AM 上一动点,直线AM 的表达式为:y =x +2.∴x +2=5,解得:x =3,∴E (3,5),∴BE =CD =3,∵C (4,0),∴D (1,0).综上,存在,满足条件的点D 的坐标为(7,0)或(﹣11,0)或(1,0).【点睛】本题主要考查了一次函数的综合题,待定系数法求一次函数解析式,全等三角形的性质与判定,平行四边形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.13.如图,直线 y =-2x +4分别与 y 轴、x 轴交于点 A 、点 B ,点 C 的坐标为(-2,0),D 为线段 AB 上一动点,连接 CD 交 y 轴于点 E .(1)求出点 A 、点 B 的坐标;(2)若COE ADE S S D =V ,求点 D 的坐标;(3)在(2)的条件下,点 N 在 x 轴上,直线 AB 上是否存在点 M ,使以 M ,N ,D ,E 为顶点的四边形是平行四边形?若存在,请直接写出 M 点的坐标;若不存在,请说明理由.过E作EF∥OB交AB于点F,∵点F在直线y=-2x+4上,同理:BN=EF=43,∴ON=2+43=103,∴点N 的坐标为(103,0),设直线MN 的解析式为123y x n =+,14.定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满足x =3+a c ,y =3+b d ,那么称点T 是点A ,B 的三分点.例如:A(﹣1,5),B(7,7),当点T(x,y)满足x=173-+=2,y=573+=4时,则点T(2,4)是点A,B的三分点.(1)已知点C(﹣1,8),D(1,2),E(4,﹣2),请说明其中一个点是另外两个点的三分点.(2)如图,点A为(3,0),点B(t,2t+3)是直线l上任意一点,点T(x,y)是点A,B的三分点.①试确定y与x的关系式.②若①中的函数图象交y轴于点M,直线l交y轴于点N,当以M,N,B,T为顶点的四边形是平行四边形时,求点B的坐标.③若直线AT与线段MN有交点,直接写出t的取值范围.。
初二数学周测(十)
一、填空(每空2分,共32分)
1、(-5,-2)关于x 轴对称的点的坐标为_________,到原点的距离是__ ___
2、点P (a -3,5-a )在第三象限内,则a 的取值范围是____________
3、函数y=
3
+x x 的自变量x 的取值范围是________
4、函数y=x 2
1
-的图象经过_________象限,y 随x 的增大而____________
5、直线y=-5x -3与x 轴的交点坐标是_____ __,与y 轴的交点坐标是____ ____
6、函数y=-2x +4的图象不经过_____象限,它与两坐标轴围成的三角形面积为________
7、一次函数y=kx +b 的图象经过点(1,5),交y 轴于3,则k=____,b=____
8、如图,函数y=kx +b ,当x_______,y<3.
9、一个平行四边形的周长为80 cm ,且相邻两边之比为1∶3, 则长边=_____ ,短边=_____
10、四边形ABCD 中,AD ∥BC ,要使四边形ABCD 为平行四边形,需要 增加条件___ ______
二、选择(每题3分,共30分)
1、若点A (2-a ,1-2a )关于y 轴的对称点在第三象限,则a 的取值范围是( )
A 、 a<21
B 、 a>2
C 、 21<a<2
D 、a<2
1
或a>2
2、函数Y=4x -2与y=-4x -2的交点坐标为( )
A 、(-2,0)
B 、(0,-2)
C 、(0,2)
D 、(2,0)
3、已知正比例函数y=kx (k ≠0),当x=-1时, y=-2,则它的图象大致是( )
x x A B C D 3、在□ABCD 中,∠A ∶∠B ∶∠C ∶∠D 的可能情况是( )
A. 2∶7∶2∶7
B. 2∶2∶7∶7
C. 2∶7∶7∶2
D. 2∶3∶4∶5
4、如图,从等腰△ABC 底边上任意一点D ,作DE ∥AC 交AB 于E , DF ∥AB 交AC 于F ,则四边形AEDF 的周长( ) A.等于三角形周长 B.是三角形周长的一半 C.等于三角形一腰长 D.是一腰长的2倍
5、如图所示,□ABCD 中,CD=10,AD=12,AE 、DF 分别平分∠BAD 、 ∠ADC ,交BC 于E 、F ,则EF 的长是( ) A.4 B.6 C.8 D.10
6、如图,□ABCD 中,BC ∶AB=1∶2,M 为AB 的中点,连结MD 、MC , 则∠DMC 等于( )
A.30°
B.60°
C.90°
D.45°
7、如图,在□ABCD 中,EF 过对角线的交点O ,若AD =6,AB =5, OE =2,则四边形ABFE 的周长是( )。
A. 16
B. 14
C. 15
D. 无法确定 8、如图1,点D 、E 、F 分别是AB 、BC 、CA 的中点,则图中平 行四边形一共有( )
A 、1个
B 、2个
C 、3个
D 、4个 9、下列条件中,能判定四边形ABCD 是平行四边形的是( )
A 、AB=CD ,AD//BC ;
B 、AB//CD ,∠ABC+∠ADC=180°;
C 、∠ABC=∠ADC ,∠ABC+∠BCD=180°;
D 、∠ABC+∠ADC=180°,∠BAD=∠BCD 。
10、E 、F 分别为任意四边形ABCD 的边AD 、BC 的中点,则( )
A 、EF ≥21(AB+CD)
B 、EF ≤2
1
(AB+CD) C 、EF=21(AB+CD) D 、EF <2
1
(AB+CD)
6题图 5题图 A
C
D
B
F
E
7题图
三、解答(共38分)
1、已知一次函数的图象经过点A (-1,3)和点(2,-3)。
(1)求一次函数的解析式;(5分)
(2)判断点C (-2,5)是否在该函数图象上。
(3分)
2、已知:如图,□ABCD 的边AB 在x 轴上,顶点D 在y 轴上,AD =4, AB =5,点A 的坐标为(-2,0),求:点B 、点C 、点D 的坐标。
(10分)
3、已知:如图,ABCD 中,E 、F 为对角线AC 上的两点,且AE =CF 。
求证:四边形BEDF 是平行四边形。
(8分)
4、已知:M 、N 分别是平行四边形ABCD 的对边AD 、BC 的中点,连结CM 、DN 交于Q ,连结AN 、BM 交于P .试判断四边形PMQN 的形状,并说明理由.(12分)
D C B
A y x
O。