河北省唐山市开滦二中高一数学上学期10月月考试卷(含解析)
- 格式:doc
- 大小:191.00 KB
- 文档页数:13
2015-2016学年河北省唐山市开滦二中高三(上)10月月考数学试卷(文科)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项符合题目要求.)1.设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=( )A.{1} B.{2} C.{0,1} D.{1,2}2.i为虚数单位,若,则|z|=( )A.1 B.C.D.23.已知命题p:∀x∈R,sinx≤1,则( )A.¬p:∃x∈R,sinx≥1 B.¬p:∀x∈R,sinx≥1C.¬p:∃x∈R,sinx>1 D.¬p:∀x∈R,sinx>14.已知x,y满足不等式组,则z=2x+y的最大值与最小值的比值为( ) A.B.C.D.25.执行如图所示的程序框图,若输入n的值为8,则输出S的值为( )A.4 B.8 C.10 D.126.函数f(x)=e x lnx在点(1,f(1))处的切线方程是( )A.y=2e(x﹣1) B.y=ex﹣1 C.y=e(x﹣1)D.y=x﹣e7.函数f(x)=(x﹣)cosx(﹣π≤x≤π且x≠0)的图象可能为( )A. B. C.D.8.已知向量=(k,3),=(1,4),=(2,1)且(2﹣3)⊥,则实数k=( ) A.﹣B.0 C.3 D.9.双曲线﹣=1的渐近线与圆x2+(y﹣2)2=1相切,则双曲线离心率为( ) A.B.C.2 D.310.已知f′(x)是奇函数f(x)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)>0,则使得f(x)>0成立的x的取值范围是( )A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣1,0)∪(0,1)D.(﹣∞,﹣1)∪(1,+∞)11.已知函数f(x)=在区间(a,a+)(a>0)上存在极值,则实数a的取值范围是( )A.(0,1)B.(,1)C.(,1)D.(,1)12.已知函数,若关于x的方程f2(x)﹣af(x)=0恰有5个不同的实数解,则a的取值范围是( )A.(0,1)B.(0,2)C.(1,2)D.(0,3)二、填空题:(本大题共4小题,每小题5分,共20分.把答案填写在答题纸上.)13.函数y=xlnx的单调减区间为__________.14.一个四棱锥的三视图如图所示,其左视图是等边三角形,该四棱锥的体积V=__________.15.函数f(x)=alnx+x在x=1处取得极值,则a的值为__________.16.设a1=2,a n+1=,b n=||,n∈N+,则数列{b n}的通项公式b n为__________.三、解答题:(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知{a n}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(Ⅰ)求数列{a n}的通项;(Ⅱ)求数列{2an}的前n项和S n.18.已知函数f(x)=lnx,g(x)=.(1)当k=e时,求函数h(x)=f(x)﹣g(x)的单调区间和极值;(2)若f(x)≥g(x)恒成立,求实数k的值.19.某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关.现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100)分别加以统计,得到如图所示的频率分布直方图.(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的频率.(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2的列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?K2=,(其中n=a+b+c+d)20.已知等比数列{a n}满足2a1+a3=3a2,且a3+2是a2,a4的等差中项.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=a n+log2,S n=b1+b2+…b n,求使 S n﹣2n+1+47<0 成立的正整数n的最小值.21.设函数f(x)=x﹣﹣mlnx(1)若函数f(x)在定义域上为增函数,求m范围;(2)在(1)条件下,若函数h(x)=x﹣lnx﹣,∃x1,x2∈[1,e]使得f(x1)≥h(x2)成立,求m的范围.选修4-1;几何证明选讲.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.答题时在答题卡上注明所选题目的题号.22.如图,在△ABC中,CD是∠ACB的角平分线,△ADC的外接圆交BC于点E,AB=2AC (Ⅰ)求证:BE=2AD;(Ⅱ)当AC=3,EC=6时,求AD的长.选修4-4;坐标系与参数方程.23.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.已知曲线C1的极坐标方程为ρ2=,直线l的极坐标方程为ρ=.(Ⅰ)写出曲线C1与直线l的直角坐标方程;(Ⅱ)设Q为曲线C1上一动点,求Q点到直线l距离的最小值.选修4-5;不等式选讲.24.已知函数f(x)=|2x+1|+|2x﹣3|.(Ⅰ)求不等式f(x)≤6的解集;(Ⅱ)若关于x的不等式f(x)﹣log2(a2﹣3a)>2恒成立,求实数a的取值范围.2015-2016学年河北省唐山市开滦二中高三(上)10月月考数学试卷(文科)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项符合题目要求.)1.设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=( )A.{1} B.{2} C.{0,1} D.{1,2}【考点】交集及其运算.【专题】集合.【分析】求出集合N的元素,利用集合的基本运算即可得到结论.【解答】解:∵N={x|x2﹣3x+2≤0}={x|(x﹣1)(x﹣2)≤0}={x|1≤x≤2},∴M∩N={1,2},故选:D.【点评】本题主要考查集合的基本运算,比较基础.2.i为虚数单位,若,则|z|=( )A.1 B.C.D.2【考点】复数求模.【专题】数系的扩充和复数.【分析】利用复数模的运算性质,将已知关系式等号两端取模,即可即可求得答案【解答】解:∵,∴|||z|=||,即2|z|=2,∴|z|=1,故选:A.【点评】本题考查了复数求模、熟练应用模的运算性质是关键,属于基础题.3.已知命题p:∀x∈R,sinx≤1,则( )A.¬p:∃x∈R,sinx≥1B.¬p:∀x∈R,sinx≥1C.¬p:∃x∈R,sinx>1 D.¬p:∀x∈R,sinx>1【考点】命题的否定.【分析】根据¬p是对p的否定,故有:∃x∈R,sinx>1.从而得到答案.【解答】解:∵¬p是对p的否定∴¬p:∃x∈R,sinx>1故选C.【点评】本题主要考查全称命题与特称命题的转化问题.4.已知x,y满足不等式组,则z=2x+y的最大值与最小值的比值为( )A.B.C.D.2【考点】简单线性规划.【专题】计算题;数形结合.【分析】本题处理的思路为:根据已知的约束条件画出满足约束条件的可行域,再用角点法,求出目标函数的最值,即可求解比值.【解答】解:约束条件对应的平面区域如下图示:当直线z=2x+y过A(2,2)时,Z取得最大值6.当直线z=2x+y过B(1,1)时,Z取得最小值3,故z=2x+y的最大值与最小值的比值为:2.故选D.【点评】本题考查的知识点是线性规划,考查画不等式组表示的可行域,考查数形结合求目标函数的最值.5.执行如图所示的程序框图,若输入n的值为8,则输出S的值为( )A.4 B.8 C.10 D.12【考点】循环结构.【专题】图表型.【分析】由已知中的程序框图及已知中输入8,可得:进入循环的条件为i<8,即i=2,4,6,8.模拟程序的运行结果,即可得到输出的S值.【解答】解:当i=2时,S=(1×2)=2,i=2+2=4,k=2;当i=4时,S=(2×4)=4,i=4+2=6,k=3;当i=6时,S=(4×6)=8,i=6+2=8,k=4;当i=8时,不满足i<8,退出循环,输出S=8.故选B.【点评】本题考查的知识点是程序框图,在写程序的运行结果时,我们常使用模拟循环的变法,但程序的循环体中变量比较多时,要用表格法对数据进行管理.6.函数f(x)=e x lnx在点(1,f(1))处的切线方程是( )A.y=2e(x﹣1) B.y=ex﹣1 C.y=e(x﹣1)D.y=x﹣e【考点】利用导数研究曲线上某点切线方程.【专题】计算题;导数的综合应用.【分析】求导函数,切点切线的斜率,求出切点的坐标.,即可得到切线方程.【解答】解:求导函数,可得f′(x)=∴f′(1)=e,∵f(1)=0,∴切点(1,0)∴函数f(x)=e x lnx在点(1,f(1))处的切线方程是y﹣0=e(x﹣1),即y=e(x﹣1)故选C.【点评】本题考查导数的几何意义,考查学生的计算能力,属于基础题.7.函数f(x)=(x﹣)cosx(﹣π≤x≤π且x≠0)的图象可能为( )A. B. C.D.【考点】函数的图象.【专题】函数的性质及应用.【分析】先根据函数的奇偶性排除AB,再取x=π,得到f(π)<0,排除C.【解答】解:f(﹣x)=(﹣x+)cos(﹣x)=﹣(x﹣)cosx=﹣f(x),∴函数f(x)为奇函数,∴函数f(x)的图象关于原点对称,故排除A,B,当x=π时,f(π)=(π﹣)cosπ=﹣π<0,故排除C,故选:D.【点评】本题考查了函数图象的识别,常用函数的奇偶性,函数值,属于基础题.8.已知向量=(k,3),=(1,4),=(2,1)且(2﹣3)⊥,则实数k=( )A.﹣B.0 C.3 D.【考点】平面向量的坐标运算.【专题】平面向量及应用.【分析】根据两个向量的坐标,写出两个向量的数乘与和的运算结果,根据两个向量的垂直关系,写出两个向量的数量积等于0,得到关于k的方程,解方程即可.【解答】解:∵=(k,3),=(1,4),=(2,1)∴2﹣3=(2k﹣3,﹣6),∵(2﹣3)⊥,∴(2﹣3)•=0'∴2(2k﹣3)+1×(﹣6)=0,解得,k=3.故选:C.【点评】本题考查数量积的坐标表达式,是一个基础题,题目主要考查数量积的坐标形式,注意数字的运算不要出错.9.双曲线﹣=1的渐近线与圆x2+(y﹣2)2=1相切,则双曲线离心率为( ) A.B.C.2 D.3【考点】双曲线的简单性质;直线与圆的位置关系.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】利用圆心(0,2)到双曲线﹣=1的渐近线bx±ay=0的距离等于半径1,可求得a,b之间的关系,从而可求得双曲线离心率.【解答】解:∵双曲线﹣=1(a>0,b>0)的渐近线为bx±ay=0,依题意,直线bx±ay=0与圆x2+(y﹣2)2=1相切,设圆心(0,2)到直线bx±ay=0的距离为d,则d===1,∴双曲线离心率e==2.故选C.【点评】本题考查双曲线的简单性质,考查点到直线间的距离,考查分析、运算能力,属于中档题.10.已知f′(x)是奇函数f(x)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)>0,则使得f(x)>0成立的x的取值范围是( )A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣1,0)∪(0,1)D.(﹣∞,﹣1)∪(1,+∞)【考点】函数的单调性与导数的关系.【专题】导数的概念及应用.【分析】根据题意构造函数g(x)=,由求导公式和法则求出g′(x),结合条件判断出g′(x)的符号,即可得到函数g(x)的单调区间,根据f(x)奇函数判断出g(x)是偶函数,由f(﹣1)=0求出g(﹣1)=0,结合函数g(x)的单调性、奇偶性,再转化f (x)>0,由单调性求出不等式成立时x的取值范围.【解答】解:由题意设g(x)=,则g′(x)=∵当x>0时,有xf′(x)﹣f(x)>0,∴当x>0时,g′(x)>0,∴函数g(x)=在(0,+∞)上为增函数,∵函数f(x)是奇函数,∴g(﹣x)====g(x),∴函数g(x)为定义域上的偶函数,g(x)在(﹣∞,0)上递减,由f(﹣1)=0得,g(﹣1)=0,∵不等式f(x)>0⇔x•g(x)>0,∴或,即或,即有x>1或﹣a<x<0,∴使得f(x)>0成立的x的取值范围是:(﹣1,0)∪(1,+∞),故选:B.【点评】本题考查利用导数判断函数的单调性,由函数的奇偶性、单调性解不等式,考查构造函数法,转化思想和数形结合思想,属于综合题.11.已知函数f(x)=在区间(a,a+)(a>0)上存在极值,则实数a的取值范围是( )A.(0,1)B.(,1)C.(,1)D.(,1)【考点】函数在某点取得极值的条件.【专题】计算题;函数思想;综合法;导数的综合应用.【分析】求导函数,求出函数的极值点,利用函数f(x)在区间(a,a+)上存在极值点,建立不等式,即可求实数a的取值范围.【解答】解:∵f(x)=,x>0,∴f′(x)=﹣,令f′(x)=0,解得x=1,当f′(x)>0,即0<x<1,函数单调递增,当f′(x)<0,即x>1,函数单调递减,∴1是函数的极值点,∵函数f(x)区间(a,a+)(a>0)上存在极值,∴a<1<a+∴<a<1.故选:B.【点评】本题主要考查利用导数研究函数的单调性,考查函数的极值,考查学生的计算能力,属于中档题.12.已知函数,若关于x的方程f2(x)﹣af(x)=0恰有5个不同的实数解,则a的取值范围是( )A.(0,1)B.(0,2)C.(1,2)D.(0,3)【考点】根的存在性及根的个数判断.【专题】函数的性质及应用.【分析】由已知中函数,若关于x的方程f2(x)﹣af(x)=0恰有五个不同的实数解,我们可以根据函数f(x)的图象分析出实数a的取值范围.【解答】解:函数的图象如下图所示:关于x的方程f2(x)=af(x)可转化为:f(x)=0,或f(x)=a,若关于x的方程f2(x)=af(x)恰有五个不同的实数解,则f(x)=a恰有三个不同的实数解,由图可知:0<a<1故选A【点评】本题考查的知识点是根的存在性及根的个数判断,其中根据已知中函数的解析式,画出函数的图象,再利用数形结合是解答本题的关键.二、填空题:(本大题共4小题,每小题5分,共20分.把答案填写在答题纸上.)13.函数y=xlnx的单调减区间为(0,).【考点】利用导数研究函数的单调性.【专题】计算题.【分析】利用积的导数运算法则求出导函数,令导函数小于0求出x的范围与定义域的公共范围是函数的单调递减区间.【解答】解:y′=1+lnx,令,又因为函数y=xlnx的定义域为(0,+∞)所以函数y=xlnx的单调减区间为故答案为:【点评】此题考查基本函数的导数及导数的运算法则、考查利用导函数的符号求函数的单调区间.14.一个四棱锥的三视图如图所示,其左视图是等边三角形,该四棱锥的体积V=.【考点】由三视图求面积、体积.【专题】空间位置关系与距离.【分析】由已知中的三视图可知:该几何体是以俯视图为底面的四棱锥,计算出几何体的底面面积和高,代入棱锥体积公式,可得答案.【解答】解:由已知中的三视图可知:该几何体是以俯视图为底面的四棱锥,其底面面积S=×(1+2)×2=3,又∵左视图是等边三角形,∴高h=,故棱锥的体积V==,故答案为:【点评】本题考查的知识点是由三视图求体积,其中分析出几何体的形状是解答的关键.15.函数f(x)=alnx+x在x=1处取得极值,则a的值为﹣1.【考点】函数在某点取得极值的条件.【专题】计算题.【分析】由题意得求出函数的导数f′(x)=+1,因为函数f(x)=alnx+x在x=1处取得极值,所以f′(1)=0进而可以求出答案.【解答】解:由题意得f′(x)=+1因为函数f(x)=alnx+x在x=1处取得极值,所以f′(1)=0,即a+1=0,所以a=﹣1.故答案为﹣1.【点评】解决此类问题的关键是熟悉导数的作用即判断单调性,求极值,求切线方程等,解题时要正确利用公式求函数的导数.16.设a1=2,a n+1=,b n=||,n∈N+,则数列{b n}的通项公式b n为2n+1.【考点】数列的概念及简单表示法.【专题】等差数列与等比数列.【分析】a1=2,a n+1=,可得==﹣2•,b n+1=2b n,再利用等比数列的通项公式即可得出.【解答】解:∵a1=2,a n+1=,∴===﹣2•,∴b n+1=2b n,又b1==4,∴数列{b n}是等比数列,∴.故答案为:2n+1.【点评】本题考查了变形利用等比数列的通项公式,考查了变形能力与计算能力,属于中档题.三、解答题:(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知{a n}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(Ⅰ)求数列{a n}的通项;(Ⅱ)求数列{2an}的前n项和S n.【考点】等差数列与等比数列的综合.【专题】计算题.【分析】(I)由题意可得a32=a1•a9=a9,从而建立关于公差d的方程,解方程可求d,进而求出通项a n(II)由(I)可得,代入等比数列的前n项和公式可求S n【解答】解(Ⅰ)由题设知公差d≠0,由a1=1,a1,a3,a9成等比数列得=,解得d=1,d=0(舍去),故{a n}的通项a n=1+(n﹣1)×1=n;(Ⅱ)由(Ⅰ)知,由等比数列前n项和公式得S n=2+22+23+…+2n==2n+1﹣2.【点评】本题考查了等差数列及等比数列的通项公式,等比数列的前n项和公式,属于基本公式的简单运用.18.已知函数f(x)=lnx,g(x)=.(1)当k=e时,求函数h(x)=f(x)﹣g(x)的单调区间和极值;(2)若f(x)≥g(x)恒成立,求实数k的值.【考点】利用导数研究函数的极值.【专题】导数的综合应用.【分析】(1)把k=e代入函数解析式,求出函数的导函数,由导函数的符号得到函数的单调区间,进一步求得函数的极值;(2)求出函数h(x)的导函数,当k≤0时,由函数的单调性结合h(1)=0,可知h(x)≥0不恒成立,当k>0时,由函数的单调性求出函数h(x)的最小值,由最小值大于等于0求得k的值.【解答】解:(1)注意到函数f(x)的定义域为(0,+∞),∴h(x)=lnx﹣,当k=e时,∴h(x)=lnx﹣,∴h′(x)=﹣=,若0<x<e,则h′(x)<0;若x>e,则h′(x)>0.∴h(x)是(0,e)上的减函数,是(e,+∞)上的增函数,故h(x)min=h(e)=2﹣e,故函数h(x)的减区间为(0,e),增区间为(e,+∞),极小值为2﹣e,无极大值.(2)由(1)知,h′(x)=﹣=,当k≤0时,h′(x)>0对x>0恒成立,∴h(x)是(0,+∞)上的增函数,注意到h(1)=0,∴0<x<1时,h(x)<0不合题意.当k>0时,若0<x<k,h′(x)<0;若x>k,h′(x)>0.∴h(x)是(0,k)上的减函数,是(k,+∞)上的增函数,故只需h(x)min=h(k)=lnk﹣k+1≥0.令u(x)=lnx﹣x+1(x>0),∴u′(x)=﹣1=当0<x<1时,u′(x)>0;当x>1时,u′(x)<0.∴u(x)是(0,1)上的增函数,是(1,+∞)上的减函数.故u(x)≤u(1)=0当且仅当x=1时等号成立.∴当且仅当k=1时,h(x)≥0成立,即k=1为所求.【点评】本题考查了函数恒成立问题,考查了数学转化思想方法和函数构造法,训练了利用函数的导函数判断函数的单调性,训练了利用导数求函数的最值,是有一定难度题目19.某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关.现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100)分别加以统计,得到如图所示的频率分布直方图.(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的频率.(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2的列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?K2=,(其中n=a+b+c+d)【考点】独立性检验的应用.【专题】应用题;概率与统计.【分析】(1)由分层抽样的特点可得样本中有25周岁以上、下组工人人数,再由所对应的频率可得样本中日平均生产件数不足60件的工人中,25周岁以上、下组工人的人数分别为3,2,由古典概型的概率公式可得答案;(2)由频率分布直方图可得“25周岁以上组”中的生产能手的人数,以及“25周岁以下组”中的生产能手的人数,据此可得2×2列联表,可得k2≈1.79,由1.79<2.706,可得结论.【解答】解:(1)由已知可得,样本中有25周岁以上组工人100×=60名,25周岁以下组工人100×=40名,所以样本中日平均生产件数不足60件的工人中,25周岁以上组工人有60×0.05=3(人),25周岁以下组工人有40×0.05=2(人),故从中随机抽取2名工人所有可能的结果共=10种,其中至少1名“25周岁以下组”工人的结果共•+=7种,故所求的概率为:;(2)由频率分布直方图可知:在抽取的100名工人中,“25周岁以上组”中的生产能手有60×0.25=15(人),所以可得k2=≈1.79,因为1.79<2.706,所以没有90%的把握认为“生产能手与工人所在的年龄组有关”.【点评】本题考查独立性检验,涉及频率分布直方图,以及古典概型的概率公式,属中档题.20.已知等比数列{a n}满足2a1+a3=3a2,且a3+2是a2,a4的等差中项.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=a n+log2,S n=b1+b2+…b n,求使 S n﹣2n+1+47<0 成立的正整数n的最小值.【考点】等差数列与等比数列的综合;等比数列的通项公式;数列与不等式的综合.【专题】综合题.【分析】(Ⅰ)设等比数列{a n}的首项为a1,公比为q,根据2a1+a3=3a2,且a3+2是a2,a4的等差中项,建立方程组,从而可求数列{a n}的通项公式;(Ⅱ)=2n﹣n,求出S n=b1+b2+…b n,再利用,建立不等式,即可求得使成立的正整数n的最小值.【解答】解:(Ⅰ)设等比数列{a n}的首项为a1,公比为q,依题意,∵2a1+a3=3a2,且a3+2是a2,a4的等差中项∴由①得 q2﹣3q+2=0,解得q=1或q=2.当q=1时,不合题意舍;当q=2时,代入(2)得a1=2,所以a n=2n.….…(Ⅱ)=2n﹣n.….…所以S n=b1+b2+…b n=(2+22++2n)﹣(1+2+…+n)=2n+1﹣2﹣﹣n2….…因为,所以2n+1﹣2﹣﹣n2﹣2n+1+47<0,即n2+n﹣90>0,解得n>9或n<﹣10.….…故使成立的正整数n的最小值为10.….(13分)【点评】本题考查等比数列的通项,考查数列的通项与求和,考查解不等式,解题的关键是确定数列的通项与和,属于中档题.21.设函数f(x)=x﹣﹣mlnx(1)若函数f(x)在定义域上为增函数,求m范围;(2)在(1)条件下,若函数h(x)=x﹣lnx﹣,∃x1,x2∈[1,e]使得f(x1)≥h(x2)成立,求m的范围.【考点】利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【专题】导数的概念及应用;导数的综合应用.【分析】(1)f′(x)=1+=,转化为x2﹣mx+1>0,在x>0时恒成立,根据对钩函数求解即可.(2)根据导数判断单调性得出f(x)的最大值=f(e)=e﹣﹣m,h(x)单调递增,h(x)的最小值为h(1)=1﹣,把问题转化为f(x)的最大值≥h(x)的最小值,求解即可.【解答】解:函数f(x)=x﹣﹣mlnx(1)定义域上为(0,+∞),f′(x)=1+=,∵函数f(x)在定义域上为增函数,∴f(x)的最大值=f(e)=e﹣﹣m,h(x)单调递增,即x>m在x>0时恒成立,根据对钩函数得出m<2,故m的范围为:m<2.(2)函数h(x)=x﹣lnx﹣,∃x1,x2∈[1,e]使得f(x1)≥h(x2)成,即f(x)的最大值≥h(x)的最小值,∵f(x)的最大值=f(e)=e﹣﹣m,h′(x)=1>0,x∈[1,e],∴h(x)单调递增,h(x)的最小值为h(1)=1﹣,∴可以转化为e﹣﹣m≥1,即m≤e﹣1,m的范围为:m≤e﹣1.【点评】本题考查导数在求解函数的问题中的应用,存在性问题转化为函数最值的应用,关键是求解导数,判断单调性,属于难题.选修4-1;几何证明选讲.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.答题时在答题卡上注明所选题目的题号.22.如图,在△ABC中,CD是∠ACB的角平分线,△ADC的外接圆交BC于点E,AB=2AC (Ⅰ)求证:BE=2AD;(Ⅱ)当AC=3,EC=6时,求AD的长.【考点】与圆有关的比例线段.【专题】选作题;立体几何.【分析】(Ⅰ)连接DE,证明△DBE∽△CBA,利用AB=2AC,结合角平分线性质,即可证明BE=2AD;(Ⅱ)根据割线定理得BD•BA=BE•BC,从而可求AD的长.【解答】(Ⅰ)证明:连接DE,∵ACED是圆内接四边形,∴∠BDE=∠BCA,又∠DBE=∠CBA,∴△DBE∽△CBA,即有,又∵AB=2AC,∴BE=2DE,∵CD是∠ACB的平分线,∴AD=DE,∴BE=2AD;…(Ⅱ)解:由条件知AB=2AC=6,设AD=t,则BE=2t,BC=2t+6,根据割线定理得BD•BA=BE•BC,即(6﹣t)×6=2t•(2t+6),即2t2+9t﹣18=0,解得或﹣6(舍去),则.…【点评】本题考查三角形相似,考查角平分线性质、割线定理,考查学生分析解决问题的能力,属于中档题.选修4-4;坐标系与参数方程.23.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.已知曲线C1的极坐标方程为ρ2=,直线l的极坐标方程为ρ=.(Ⅰ)写出曲线C1与直线l的直角坐标方程;(Ⅱ)设Q为曲线C1上一动点,求Q点到直线l距离的最小值.【考点】简单曲线的极坐标方程.【专题】坐标系和参数方程.【分析】(Ⅰ)根据互化公式ρ2=x2+y2,x=ρcosθ,y=ρsinθ,将极坐标方程转化成直角坐标方程.(Ⅱ)设出Q点坐标,Q,再根据点到直线的距离公式求出最小值.【解答】(Ⅰ)以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,曲线C1的极坐标方程为ρ2=,直线l的极坐标方程为ρ=,根据ρ2=x2+y2,x=ρcosθ,y=ρsinθ,则C1的直角坐标方程为x2+2y2=2,直线l的直角坐标方程为.(Ⅱ)设Q,则点Q到直线l的距离为=,当且仅当,即(k∈Z)时取等号.∴Q点到直线l距离的最小值为.【点评】本题考查了极坐标方程和直角坐标系中一般方程的转化,考查了转化与化归思想,题目难度不大;另外第二问中对椭圆的参数方程也有考查,然后将问题转化成三角函数问题,即化成同一个角的三角函数并求出其最小值.选修4-5;不等式选讲.24.已知函数f(x)=|2x+1|+|2x﹣3|.(Ⅰ)求不等式f(x)≤6的解集;(Ⅱ)若关于x的不等式f(x)﹣log2(a2﹣3a)>2恒成立,求实数a的取值范围.【考点】函数恒成立问题.【专题】综合题;函数的性质及应用.【分析】(Ⅰ)通过对自变量x的范围的讨论,去掉绝对值符号,从而可求得不等式f(x)≤6的解集;(Ⅱ)不等式f(x )﹣>2恒成立⇔+2<f(x)min恒成立,利用绝对值不等式的性质易求f(x)min=4,从而解不等式<2即可.【解答】解:(Ⅰ)原不等式等价于或或,解得:<x≤2或﹣≤x≤或﹣1≤x<﹣,∴不等式f(x)≤6的解集为{x|﹣1≤x≤2}.(Ⅱ)不等式f(x )﹣>2恒成立⇔+2<f(x)=|2x+1|+|2x﹣3|恒成立⇔+2<f(x)min恒成立,∵|2x+1|+|2x﹣3|≥|(2x+1)﹣(2x﹣3)|=4,∴f(x)的最小值为4,∴+2<4,即,解得:﹣1<a<0或3<a<4.∴实数a的取值范围为(﹣1,0)∪(3,4).【点评】本题考查函数恒成立问题,着重考查等价转化思想与分类讨论思想的综合运用,考查函数的单调性与解不等式组的能力,属于难题.21。
开滦二中2016~2017学年第一学期高一年级10月月考化学试卷说明:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第(1)页至第(4)页,第Ⅱ卷第(5)页至第(7)页。
2、本试卷共100分,考试时间90分钟。
第Ⅰ卷(选择题,共50分)注意事项:1、答第Ⅰ卷前,考生务必将自己的准考证号、科目填涂在答题卡上。
2、每小题选出答案后,用2B铅笔把答题卡上对应的题目标号涂黑。
答在试卷上无效。
3、考试结束后,监考人员将试卷答题卡和机读卡一并收回。
可能用到的相对原子质量:H—1 ,C—12 ,N—14 ,O—16 ,S—32 ,Cu—64 ,Cl —35.5 ,Ne—20 Fe—56 Na—23 Cu—64一、选择题(本题包括25小题,每小题2分,共50分。
每小题只有一个选项符合题意。
)1.下列各选项中,后者不属于前者的是( )A.酸:硫酸 B.碳酸盐:Na2CO3 C.化合物:氧化物 D.钾盐:KOH 2.将少量下列物质分别加入足量的水中,充分搅拌后能形成溶液的是( )A.粉笔灰 B.冰块C.食盐D.色拉油3.下列反应中属于氧化还原反应的是()A.CuSO4+H2S=CuS↓+H2SO4B.2FeCl3+Cu=2FeCl2+CuCl2C.Cu2(OH)2CO3△2↑+H2O D.FeCl3+3NaOH=Fe(OH)3↓+3NaCl4.下列说法正确的是( )A.H2的摩尔质量是2g B.1mol H2O的质量是18g/molC.氧气的摩尔质量是32g/mol D.2g H2含1molH5.在标准状况下,与12g H2的体积相等的N2的量为( )A.质量为12g B.物质的量为6mol C.体积约为22.4L D.分子数约为6.02×1023 6.用N A表示阿伏加德罗常数的值,下列叙述正确的是( )A.含有N A个氦原子的氦气在标准状况下的体积约为11.2LB.在常温常压下,11.2L Cl2含有的分子数为0.5N AC.25℃,1.01×105Pa,64gSO2中含有的原子数为3N AD.标准状况下,11.2LH2O含有的分子数为0.5N A7.下列说法正确的是A.胶体区别于其他分散系的本质特征是胶体可发生丁达尔效应B.在一定温度和压强下,气体体积主要取决于气体分子之间的平均间距C.摩尔质量与物质的量的多少有关,它等于物质的质量除以物质的量D.确定物质中是否含有C、H、O、N、Cl、Br、S等元素可用元素分析仪,确定物质中是否含有哪些金属元素可用原子吸收光谱8.下列说法中,正确的是( )A.由同种元素组成的物质一定是纯净物 B.能电离出氢离子的化合物一定为酸C.置换反应一定是氧化还原反应 D.能和酸反应生成盐和水的氧化物为酸性氧化物9.同温同压下,A容器中的氢气和B容器中的二氧化硫所含原子数相等,则两个容器的体积之比为()A.3:2 B.2:3 C.1:1 D.1:210.磁流体是电子材料的新秀,它既具有固体的磁性,又具有液体的流动性。
开滦二中2017-2018学年第二学期高一年级 考试数 学 试 卷说明:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第(1)页至第(2)页,第Ⅱ卷第(3)页至第(6)页2、本试卷共150分,考试时间120分钟第Ⅰ卷(选择题,共60分)注意事项:1、答第Ⅰ卷前,考生务必将自己的准考证号、科目填涂在答题卡上2、每小题选出答案后,用2B 铅笔把答题卡上对应的题目标号涂黑。
答在试卷上无效3、考试结束后,监考人员将试卷答题卡和机读卡一并收回1.在⊿ABC 中,5:4:21sin :sin :sin =C B A ,则角A=( ) A .030 B .0150 C .060D .01202.化简=++++-----110118116114112122222( )A .127B .117C .107D .1153.甲、乙两名同学在5次体育测试中的成绩统计如图的茎叶图所示,若甲、乙两人的平均成绩分别是X 甲、X 乙,则下列结论正确的是( )A .X 甲<X 乙;乙比甲成绩稳定B .X 甲>X 乙;甲比乙成绩稳定C .X 甲>X 乙;乙比甲成绩稳定D .X 甲<X 乙;甲比乙成绩稳定4.从装有2个红球和2个黒球的口袋内任取2个球,则互斥但不对立的两个事件是( )A .至少有一个黒球与都是黒球B .至少有一个黒球与都是红球C .至少有一个黒球与至少有一个红球D .都是红球与都是黒球5.若x< -3,则32++x x 的最大值为( ) A.322+- B .322-- C .322+ D .322-6. 某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为2:3:5,现用分层抽样方法抽出一个容量为n 的样本,样本中A 种型号产品有16件.那么此样本的容量n =( )A.160B.120C.80D.607.在A ,B 两个袋中都有6张分别写有数字0,1,2,3,4, 5的卡片,现从每个袋中任取一张卡片,则两张卡片上数字之和为7的概率为( )A .19B .118C .16D .138.给出右面的程序框图,那么输出的数是( )A .2450B .2550C .5050D .49009.用秦九韶算法计算多项式654323567983512)(x x x x x x x f ++++-+=在4-=x 时的值时,3V 的值为( )A. -845B. 220C. -57D. 3410.如图,在一个不规则多边形内随机撒入200粒芝麻(芝麻落到任何位置可能性相等),恰有27粒落入半径为1的圆内,则该多边形的面积约为( )A.4πB.5πC.6πD.7π11.右边茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率为 ( )A .25B .710C .45D .910 12.函数]2,1[,13)(2-∈--=x x x x f ,任取一点]2,1[0-∈x ,使1)(0≥x f 的概率是( ) A.32 B. 95 C. 41 D. 94开滦二中2015~2016学年度高一年级6月考试数学试题 第Ⅱ卷(非选择题,共90分) 填空题:(每小题5分,共20分) 13.273与104的最大公约数为 . 14.下列各数)16(3E a = 、 )6(210=b 、 )4(1000=c 、 )2(111011=d 中,由大到小的顺序是________ 15. 如图所示的程序是计算函数)(x f 函数 INPUT x 值的程序,若输出的y 值为4,则输入 IF 0<x THEN 的x 值是 . 2)^2(+=x y ELSE IF 0=x THEN 4=y ELSE 2)^2(-=x y END IF END IF PRINT “=y ”; y END 16.从编号为1, 2,------ ,500的500个产品中用系统抽样的方法抽取 一个样本,已知样本中编号最小的两个编号分别为7,32,则样本中所 有的编号之和为 . 解答题:(书写必要的步骤) 17、(本题满分10分) 200辆汽车经过某一雷达地 区,时速的频率分布直方图如图所示(1)求汽车时速的众数(2)求汽车时速的中位数(3)求汽车时速的平均数18.(本题满分12分)城市公交车的数量若太多则容易造成资源的浪费,若太少又难以满足乘客需求。
数学(文)试题说明:一、本试卷共4页,包括三道大题,22道小题,其中第一道大题为选择题.共150分.时间为120分钟.二、做选择题时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的标号涂黑.如需改动,用橡皮将原选涂答案擦干净后,再选涂其他答案. 一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项符合题目要求.) 1.复数ii-+11的虚部为( ) A.1 B.-1 C.i D.i -2.已知集合1|lg ,1010A y y x x ⎧⎫==≤≤⎨⎬⎩⎭,{2,1,1,2}B =--,全集U =R ,则下列结论正确的是( ) A.(2,2)AB =-; B.{1,1}A B =-;C.[]1,1)(-=B A C U ;D.[]2,2)(-=B A C U 3.已知a ,b 都是实数,那么“22a b >”是“a b >”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D. 既不充分也不必要条件 4.曲线2sin ++=xe x y 在0=x 处的切线方程为( )A.12+=x yB. 32+=x yC. 3+=x yD. 2+=x y5.设变量x,y 满足线性约束条件 222-≥≤+≥x y x xy ,则y x z 3-=的最小值为( )A.-2B.-4C.-6D.-8 6.命题,03,:2>+∈∀xx R x p 则p ⌝是( )A.03,2≥+∈∃xx R x ; B. 03,2≥+∈∀xx R x C. 03,2≤+∈∃xx R x ; D. 03,2≤+∈∀xx R x7.某程序框图如图所示,该程序运行后输出的n 值是8,则S 0值为下列各值中的( )A. 0B. 1C. 2D. 38.已知命题a x x p 311:≥++-恒成立,命题()xa y q 12:-=为减函数,若q p 且为真命题,则实数a 的取值范围是( ) A.32≤a B.210<<a C.3221≤<a D.121<<a 9.已知偶函数()y f x =对任意实数x 都有(1)()f x f x +=-,且在[0,1]上单调递减,则( ) A. 777()()()235f f f <<B. 777()()()523f f f <<C. 777()()()325f f f <<D. 777()()()532f f f <<10.已知1,10><<b a 且1>ab ,则bM a1log =,b N a log =,b P b 1log =,则( )A. M P N <<B. M N P <<C. P M N <<D.N M P << 11.函数()xx x f 1ln -=的零点所在的区间是( ) A.()1,0 B.()e ,1 C. ()3,e D.()+∞,312.已知定义在R 上的函数()x f 满足条件()()x f x f -=+2且()()11--=--x f x f 给出下列命题:①函数()x f 为周期函数,②函数()x f 为偶函数,③函数()x f 为奇函数,④函数()x f 在R 上为单调函数,⑤函数()x f 的图像关于点()0,1-对称。
2024-2025学年河北省唐山市高一上学期10月月考数学质量检测试题考生注意:1.本试卷分第I 卷和第Ⅱ卷两部分,共120分.考试时间90分钟.2.将第I 卷答案用2B 铅笔涂在答题卡上,第Ⅱ卷用蓝黑钢笔或圆珠笔答在答题卡上.第I 卷(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1. 集合,,则( ){1,4,5}A ={21,Z}B xx n n ==+∈∣A B = A. B. C. D. {1,5}{1,4,5}{4}{1}2. 命题“”的否定是2,220x x x ∃∈++≤R A.B.2,220x x x ∀∈++>R 2,220x R x x ∀∈++≤C.D.2,220x x x ∃∈++>R 2,220x x x ∃∈++≥R 3. 使 “”成立的必要不充分条件是()2101x x +≥-A .B. 112x -≤≤112x -≤<C.或 D.或12x ≤-1x ≥12x ≤-1x >4. 下列说法正确的为()A.12x x+≥B. 函数4y =C. 若则最大值为10,x >(2)x x -D. 已知时,,当且仅当即时,取得3a >43+≥-a a 43=-a a 4a =43+-a a 最小值85. 已知,则下列说法正确的是( )()0,,a b c a b c >>->∈R A. B. ac bc>c c a b <C.D. a c ab c b +>+a b b c a c<--6. 已知实数m ,n ,p 满足,且,则下列说法正确的是244m n m p ++=+210m n ++=()A.B.C. D. n p m≥>p n m≥>n p m >>p n m>>7. 设,集合.则“”是“”的( ),R a b ∈{}{}22,1,,1A a a B b b =+=+A B =a b =A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件8. 已知不等式对满足的所有正实数a ,b 都成立,则22211612xx a b +≥+-()410a b a +-=正数x 的最小值为()A. B. 1C. D. 21232二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 如图,全集为U,集合A ,B 是U 的两个子集,则阴影部分可表示为()A. B. ()()U A B A B ⋂⋃⋃ð()()U A B A B ⋃⋂⋂ðC .D.()()()U U A B A B ⎡⎤⋂⋃⋂⎣⎦ðð()()()U U A B A B ⎡⎤⋃⋂⋃⎣⎦ðð10. 对于给定的实数,关于实数的一元二次不等式的解集可能为(a x ()()10a x a x -+>)A. B.∅{}1-C. D. ,或{1}xa x <<-∣{1xx <-∣}x a >11. 若关于的不等式的解集为,则x ()2020ax bx c a ≤++≤>{x |−1≤x ≤3}的值可以是( )32a b c ++A. B. C. 2 D. 11232第II 卷三、填空题:本题共3小题,每小题5分,共15分.12. 已知集合或,,若B A ,则实数a 的取值范围是{|1A x x =≥2}x £-{}|B x x a =≥________.13. 若关于的方程至少有一个负实根,则实数的取值范围是x 2220mx x ++=m ________.14.对于任意正实数x 、y成立,则k 的范围为______.≤四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知,或.{}3A x a x a =≤≤-+∣{1B xx =<-∣5}x >(1)若,求的取值范围;A B =∅ a (2)若,求的取值范围.A B =R a 16. 已知正数满足.,a b 2a b ab +=(1)求的最小值;ab (2)求的最小值;a b +(3)求的最小值.2821a ba b +--17. 设函数.()21f x mx mx =--(1)若命题:是假命题,求的取值范围;()R,0x f x ∃∈>m (2)若存在成立,求实数的取值范围.()()()24,0,13x f x m x ∈-≥++m18. 某蛋糕店推出两款新品蛋糕,分别为薄脆百香果蛋糕和朱古力蜂果蛋糕,已知薄脆百香果蛋糕单价为x 元,朱古力蜂果蛋糕单位为y 元,现有两种购买方案:方案一:薄脆百香果蛋糕购买数量为a 个,朱古力蜂果蛋糕购买数量为b 个,花费记为;1S 方案二:薄脆百香果蛋糕购买数量为b 个,朱古力蜂果蛋糕购买数量为a 个,花费记为.2S (其中)4,4y x b a >>>>(1)试问哪种购买方案花费更少?请说明理由;(2)若a ,b ,x ,y 同时满足关系,求这两种购买方案花4224y x b a a =-=+-费的差值S 最小值(注:差值花费较大值-花费较小值).S =19. 已知集合,,,若,,或{}12,,,n A x x x = *N n ∈3n ≥x A ∈y A Îx y A +∈,则称集合A 具有“包容”性.x y A -∈(1)判断集合和集合是否具有“包容”性;{}1,1,2,3-{}1,0,1,2-(2)若集合具有“包容”性,求的值;{}1,,B a b =22a b +(3)若集合C 具有“包容”性,且集合C 的子集有64个,,试确定集合C .1C ∈2024-2025学年河北省唐山市高一上学期10月月考数学质量检测试题考生注意:1.本试卷分第I 卷和第Ⅱ卷两部分,共120分.考试时间90分钟.2.将第I 卷答案用2B 铅笔涂在答题卡上,第Ⅱ卷用蓝黑钢笔或圆珠笔答在答题卡上.第I 卷(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1. 集合,,则( ){1,4,5}A ={21,Z}B xx n n ==+∈∣A B = A. B. C. D. {1,5}{1,4,5}{4}{1}【正确答案】A【分析】根据集合的含义以及交集的概念即可得到答案.B 【详解】集合,其表示所有的奇数,{21,Z}B xx n n ==+∈∣则.{1,5}A B = 故选:A.2. 命题“”的否定是2,220x x x ∃∈++≤R A.B.2,220x x x ∀∈++>R 2,220x R x x ∀∈++≤C. D.2,220x x x ∃∈++>R 2,220x x x ∃∈++≥R 【正确答案】A【分析】根据特称命题的否定是全称命题的知识,选出正确选项.【详解】特称命题的否定是全称命题,注意到要否定结论,故A 选项正确.故选A.本小题主要考查全称命题与特称命题的否定,属于基础题.3. 使 “”成立的必要不充分条件是()2101x x +≥-A. B. 112x -≤≤112x -≤<C. 或 D.或12x ≤-1x ≥12x ≤-1x >【正确答案】A【分析】解不等式,求得,根据必要不充分条件的定义即可得出结果.2101x x +≥-112x -≤<【详解】不等式可化为解得2101x x +≥-(1)(21)0,10,x x x -+≤⎧⎨-≠⎩11.2x -≤<则成立,反之不可以.112x -≤<⇒112x -≤≤所以是成立的必要不充分条件.112x -≤≤2101x x +≥-故选:A4. 下列说法正确的为()A.12x x+≥B. 函数4y =C. 若则最大值为10,x >(2)x x -D. 已知时,,当且仅当即时,取得3a >43+≥-a a 43=-a a 4a =43+-a a最小值8【正确答案】C【分析】利用基本不等式及其对勾函数的性质分别判断即可.【详解】对于选项,只有当时,才满足基本不等式的使用条件,则不正确;A 0x >A 对于选项,,By ===+(t t =≥即在上单调递增,则最小值为,(22y t t t =+≥)+∞min y ==则不正确;B 对于选项,,则正确;C ()()22(2)211111x x x x x -=--++=--+≤C 对于选项,当时,,当且仅当D 3a >44333733a a a a +=-++≥=--时,即,等号成立,则不正确.433a a -=-5a =D 故选.C 5. 已知,则下列说法正确的是( )()0,,a b c a b c >>->∈R A. B.ac bc>c c a b <C.D. a c ab c b +>+a bb c a c<--【正确答案】C【分析】对于AB :根据不等式性质分析判断;对于CD :利用作差法分析判断.【详解】对于选项A :因为,则,所以,故A 错()0,,a b c a b c >>->∈R 0c <ac bc <误;对于选项B :因为,且,()0,,a b c a b c >>->∈R 0c <可得,所以,故B 错误;11a b <c c a b >对于选项C :因为,()()()b a ca c a ab bc ab ac b c b b c b b c b-++---==+++且,,则,()0,,a b c a b c >>->∈R 0c <0,0b a b c -<+>可得,所以,故C 正确;()()0b a ca c abc b b c b-+-=>++a c ab c b +>+对于选项D :因为,()()()()()()22a b a b c a b a ac b bc b c a c b c a c b c a c -+---+-==------且,,则,()0,,a b c a b c >>->∈R 0c <0,0,0,0a b a b c b c a c ->+->->->可得,即,故D 错误;()()()()0a b a b c a bb c a c b c a c -+--=>----a bb c a c >--故选:C.6. 已知实数m ,n ,p 满足,且,则下列说法正确的是244m n m p ++=+210m n ++=()A.B.C. D. n p m≥>p n m≥>n p m >>p n m>>【正确答案】D【分析】根据题意,将所给等式变形,得到,推导出,然后利用作差法2(2)0p n m -=->p n >比较大小,结合二次函数的性质证出,从而得出正确结论.n m >【详解】由,得,210m n ++=211m n =--≤-因为,244m n m p ++=+移项得,244m m p n -+=-所以,2(2)0p n m -=->可得,p n >由,得,210m n ++=21m n =--可得,()2221311024n m n n n n n ⎛⎫-=---=++=++> ⎪⎝⎭可得.n m >综上所述,不等式成立,p n m >>故选:D.7. 设,集合.则“”是“”的( ),R a b ∈{}{}22,1,,1A a a B b b =+=+A B =a b =A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【正确答案】C【分析】利用集合相等的定义得到关于的方程组,推得充分性成立;再简单证得必要性,a b 也成立即可得解.【详解】因为,{}{}22,1,,1A a a B b b =+=+当时,则有,或,A B =2211a ba b =⎧⎨+=+⎩2211a b a b ⎧=+⎨+=⎩若,显然解得;2211a ba b =⎧⎨+=+⎩a b =若,则,整理得,2211a b a b⎧=+⎨+=⎩()2211b b ++=()()22012b b b b -+++=因为,,22131024b b b ⎛⎫+=-+ ⎝⎭->⎪22172024b b b ⎛⎫+=++ ⎝⎭+>⎪所以无解;()()22012bb b b -+++=综上,,即充分性成立;a b =当时,显然,即必要性成立;a b =A B =所以“”是“”的充分必要条件.A B =a b =故选:C.8. 已知不等式对满足的所有正实数a ,b 都成立,则22211612x x a b +≥+-()410a b a +-=正数x 的最小值为()A. B. 1C. D. 21232【正确答案】B【分析】先利用基本不等式证得(此公式也可背诵下来),从而由题()()2222m n m n +≥+设条件证得,结合题意得到,利用二次不等式的解法解之即可得2211612a b +≥21212xx ≥+-到正数的最小值.x 【详解】因为()()()22222222222m n m n m n m n mn +-+=+-++,当且仅当时,等号成立,()22220m n mn m n =+-=-≥m n =所以,()()2222m n m n +≥+因为为正实数,所以由得,即,,a b ()410a b a +-=4a b ab +=411b a +=所以,222221161441221a b a b b a ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=+≥+=⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦当且仅当,且,即时,等号成立,41b a =4a b ab +=2,8a b ==所以,即,2211621a b ⎛⎫+≥ ⎪⎝⎭2211612a b +≥因为对满足的所有正实数a ,b 都成立,22211612x x a b +≥+-()410a b a +-=所以,即,整理得,2n 2mi 211612x x a b ⎛⎫ ⎪⎝⎭+≥+-21212x x ≥+-2021x x --≥解得或,由为正数得,1x ≥12x ≤-x 1x ≥所以正数的最小值为.x 1故选:B.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 如图,全集为U ,集合A ,B 是U 的两个子集,则阴影部分可表示为()A. B. ()()U A B A B ⋂⋃⋃ð()()U A B A B ⋃⋂⋂ðC.D.()()()U U A B A B ⎡⎤⋂⋃⋂⎣⎦ðð()()()U U A B A B ⎡⎤⋃⋂⋃⎣⎦ðð【正确答案】AC【分析】由已知韦恩图分析出了阴影部分所表示的集合的元素满足的条件,进而根据集合运算的定义可得答案.【详解】根据图中阴影可知,符合题意,()()U A B A B ð又,∴也符合题意.()()()U U U A B A B ⋃=⋂ððð()A B ()()U U A B ⎡⎤⎣⎦ ðð故选:AC10. 对于给定的实数,关于实数的一元二次不等式的解集可能为(a x ()()10a x a x -+>)A .B.∅{}1-C. D. ,或{1}xa x <<-∣{1xx <-∣}x a >【正确答案】ACD【分析】根据二次方程根的大小分类讨论,即可求解二次不等式的解集.【详解】对于一元二次不等式,则;()()10a x a x -+>0a ≠当时,函数开口向上,与轴的交点为,0a >()()1y a x a x =-+x ,1a -故不等式的解集为,故D 正确;()(),1,x a ∈-∞-+∞ 当时,函数开口向下,若,不等式解集为,故A 正确;0a <()()1y a x a x =-+1a =-∅若,不等式的解集为,10a -<<()1,a -若,不等式的解集为,故C 正确.1a <-(),1a -故选:ACD11. 若关于的不等式的解集为,则x ()2020ax bx c a ≤++≤>{x |−1≤x ≤3}的值可以是( )32a b c ++A. B. C. 2 D. 11232【正确答案】BC【分析】先根据一元二次不等式的解集得到对称轴,然后根据端点得到两个等式和一个不等式,求出的取值范围,最后都表示成的形式即可.a 32a b c ++a 【详解】因为不等式的解集为,()2020ax bx c a ≤++≤>{x |−1≤x ≤3}所以二次函数的对称轴为直线,()2f x ax bx c=++1x =且需满足,即,解得,()()()123210f f f ⎧-=⎪=⎨⎪≥⎩29320a b c a b c a b c -+=⎧⎪++=⎨⎪++≥⎩232b ac a =-⎧⎨=-+⎩所以,所以,123202a b c a a a a ++=--+≥⇒≤10,2a ⎛⎤∈ ⎥⎝⎦所以,故的值可以是和,332326445,42a b c a a a a ⎡⎫++=--+=-∈⎪⎢⎣⎭32a b c ++322故选:BC关键点睛:一元二次不等式的解决关键是转化为二次函数问题,求出对称轴和端点的值,继而用同一个变量来表示求解.第II 卷三、填空题:本题共3小题,每小题5分,共15分.12. 已知集合或,,若B A ,则实数a 的取值范围是{|1A x x =≥2}x £-{}|B x x a =≥________.【正确答案】[)1,+∞【分析】由为的真子集,列出关于的不等式,求出不等式的解集即可.B A a 【详解】因为B A ,所以.1a ≥故[)1,+∞13. 若关于的方程至少有一个负实根,则实数的取值范围是x 2220mx x ++=m ________.【正确答案】1,2⎛⎤-∞⎥⎝⎦【分析】对和分类讨论求解,结合一元二次方程的根与系数的关系即可求解.0m =0m ≠【详解】当时,方程为,有一个负根,0m =220x +=当时,为一元二次方程,0m ≠2220mx x ++=关于的方程至少有一个负根,设根为,,x 2220mx x ++=1x 2x 当时,即时,方程为,解得,满足题意,480m ∆=-=12m =212202x x ++=2x =-当,即时,且时,480m ∆=->12m <0m ≠若有一个负根,则,解得,1220=<x x m 0m <若有两个负根,则,解得,12122020x x m x x m ⎧+=-<⎪⎪⎨⎪=>⎪⎩102m <<综上所述,则实数的取值范围是,,m (-∞1]2故,.(-∞1214.对于任意正实数x 、y 成立,则k 的范围为______.≤【正确答案】⎫+∞⎪⎪⎭≤2k ≥最大值即可.【详解】易知,,k>k≤.2k ∴≥令,分式上下同除y ,0t =>则,则即可,222221141121221t t t k t t +++⎛⎫≥=+ ⎪++⎝⎭22max 1411221t k t +⎛⎫≥+ ⎪+⎝⎭令,则.411u t =+>14u t -=可转化为:,24121t t ++()28829292u s u u u u u ==≤-++-于是,.()21411311222122t t +⎛⎫+≤+= ⎪+⎝⎭∴,即时,不等式恒成立(当时等号成立).232k ≥k ≥40x y =>故⎫+∞⎪⎪⎭四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知,或.{}3A x a x a =≤≤-+∣{1B xx =<-∣5}x >(1)若,求的取值范围;A B =∅ a (2)若,求的取值范围.A B =R a 【正确答案】(1)[)1,-+∞(2)(],2-∞-【分析】(1)分和两种情况讨论求解即可;A =∅A ≠∅(2)由题意得,从而可求出的取值范围.351a a -+≥⎧⎨≤-⎩a 【小问1详解】①当时,,∴,∴.A =∅AB =∅ 3a a >-+32a >②当时,要使,必须满足,解得.A ≠∅A B =∅ 32351a a a ⎧≤⎪⎪-+≤⎨⎪≥-⎪⎩312a -≤≤综上所述,的取值范围是.a [)1,-+∞【小问2详解】∵,,或,A B =R {}3A x a x a =≤≤-+∣{1B xx =<-∣5}x >∴,解得,351a a -+≥⎧⎨≤-⎩2a ≤-故所求的取值范围为.a (],2-∞-16. 已知正数满足.,ab 2a b ab +=(1)求的最小值;ab (2)求的最小值;a b +(3)求的最小值.2821a ba b +--【正确答案】(1)8 (2)3+(3)18【分析】(1)根据题意直接利用基本不等式即可得最值;(2)由题意可得,利用乘“1”法结合基本不等式运算求解;211a b +=(3)由题意可得,化简整理结合基本不等式运算求解.()()212a b --=【小问1详解】因为,且,0,0a b >>2a b ab +=则.2ab a b =+≥8ab ≥≥当且仅当,即时等号成立,24a b ==4,2a b ==所以的最小值为8.ab 【小问2详解】因为,且,则,0,0a b >>2a bab +=211a b +=可得,()2122133b a a b a b a b a b ⎛⎫+=++=+++≥+=+ ⎪⎝⎭当且仅当,即,即时等号成立,2b aa b =a=21a b =+=+所以的最小值为.a b +3+【小问3详解】因为,且,所以,0,0a b >>2a b ab +=()()212a b --=可得,()()2248182848101018212121a b a b a b a b a b -+-++=+=++≥+=------当且仅当,即时等号成立,4821a b =--3a b ==所以的最小值为18.2821a ba b +--17. 设函数.()21f x mx mx =--(1)若命题:是假命题,求的取值范围;()R,0x f x ∃∈>m (2)若存在成立,求实数的取值范围.()()()24,0,13x f x m x ∈-≥++m 【正确答案】(1)[]4,0-(2)4≥m 【分析】(1)依题意可得是真命题,分和两种情况讨论;()R,0x f x ∀∈≤0m =0m ≠(2)依题意参变分离可得存在使得成立,则只需,()4,0x ∈-4m x x ≥--min 4m x x ⎛⎫≥-- ⎪⎝⎭,利用基本不等式求出即可得解.()4,0x ∈-min 4x x ⎛⎫-- ⎪⎝⎭【小问1详解】若命题:是假命题,则是真命题,()R,0x f x ∃∈>()R,0x f x ∀∈≤即在上恒成立,210mxmx -≤-R 当时,,符合题意;0m =10-<当时,需满足,解得;0m ≠20Δ40m m m <⎧⎨=+≤⎩40m -≤<综上所述,的取值范围为.m []4,0-【小问2详解】若存在成立,()()()24,0,13x f x m x ∈-≥++即存在使得成立,故只需,,()4,0x ∈-4m x x ≥--min 4m x x ⎛⎫≥-- ⎪⎝⎭()4,0x ∈-因为,所以,则,()4,0x ∈-()0,4x -∈()444x x x x--=-+≥=-当且仅当,即时取等号,4x x -=-2x =-所以,所以.min44x x ⎛⎫- ⎪⎝⎭=-4≥m 18. 某蛋糕店推出两款新品蛋糕,分别为薄脆百香果蛋糕和朱古力蜂果蛋糕,已知薄脆百香果蛋糕单价为x 元,朱古力蜂果蛋糕单位为y 元,现有两种购买方案:方案一:薄脆百香果蛋糕购买数量为a 个,朱古力蜂果蛋糕购买数量为b 个,花费记为;1S 方案二:薄脆百香果蛋糕购买数量为b 个,朱古力蜂果蛋糕购买数量为a 个,花费记为.2S (其中)4,4y x b a >>>>(1)试问哪种购买方案花费更少?请说明理由;(2)若a ,b ,x ,y 同时满足关系,求这两种购买方案花4224y x b a a =-=+-费的差值S 最小值(注:差值花费较大值-花费较小值).S =【正确答案】(1)采用方案二;理由见解析 (2)24【分析】(1)列出两种方案的总费用的表达式,作差比较,即可求解;(2)根据题意,得到,利用换元法和基本不等式,即可214((4S S x a a -=-⋅+-求解.【小问1详解】解:方案一的总费用为(元);1S ax by =+方案二的总费用为(元),2S bx ay =+由,21()()()()()S S bx ay ax by a y x b x y y x a b -=+-+=-+-=--因为,可得,所以,4,4y x b a >>>>0,0y x a b ->-<()()0y x a b --<即,所以,所以采用方案二,花费更少.210S S -<21S S <【小问2详解】解:由(1)可知,()()(1244S S y x b a x a a ⎛⎫-=--=-⋅+ ⎪-⎝⎭令,t =24x t =+所以,当时,即时,等号成立,2224(1)33x t t t -=-+=-+≥1t =5x =又因为,可得,4a >40a ->所以,44(4)44844a a a a +=-++≥=--当且仅当时,即时,等号成立,444a a -=-6,14a b ==所以差的最小值为,当且仅当时,等号成立,S 2483=⨯5,8,6,14x y a b ====所以两种方案花费的差值最小为24元.S 19. 已知集合,,,若,,或{}12,,,n A x x x = *N n ∈3n ≥x A ∈y A Îx y A +∈,则称集合A 具有“包容”性.x y A -∈(1)判断集合和集合是否具有“包容”性;{}1,1,2,3-{}1,0,1,2-(2)若集合具有“包容”性,求的值;{}1,,B a b =22a b +(3)若集合C 具有“包容”性,且集合C 的子集有64个,,试确定集合C .1C ∈【正确答案】(1)集合不具有“包容”性,集合具有“包容”性{}1,1,2,3-{}1,0,1,2-(2)1(3),,,{}2,1,0,1,2,3--1131,,0,,1,222⎧⎫--⎨⎬⎩⎭2112,,0,,,13333⎧⎫--⎨⎬⎩⎭或.{}3,2,1,0,1,2---311,1,,0,,1222⎧⎫---⎨⎬⎩⎭【分析】(1)根据“包容”性的定义,逐一判断即可;(2)根据“包容”性的定义,能得到,分类讨论,得出a 和b 的值,即可得出结{}01,,a b ∈果;(3)由集合C 的子集有64个,推出集合C 中共有6个元素,且,再由条件,推0C ∈1C ∈出集合中有正数也有负数,将这几个元素设出来,再通过对正数负数个数的讨论,即可求出结果.【小问1详解】(Ⅰ)集合中的,,{}1,1,2,3-{}3361,1,2,3+=∉-{}3301,1,2,3-=∉-所以集合不具有“包容”性.{}1,1,2,3-集合中的任何两个相同或不同的元素,相加或相减,得到的两数中至少有一个属{}1,0,1,2-于集合,所以集合具有“包容”性.{}1,0,1,2-{}1,0,1,2-【小问2详解】(Ⅱ)已知集合具有“包容”性,记,则,{}1,,B a b ={}max 1,,m a b =1m ≥易得,从而必有,{}21,,m a b ∉{}01,,a b ∈不妨令,则,且,0a ={}1,0,B b =0b ≠1b ≠则,{}{}1,11,0,b b b +-⋂≠∅且,{}{}1,11,0,b b b +-⋂≠∅①当时,若,得,此时具有包容性;{}11,0,b b +∈10b +=1b =-{}1,0,1B =-若,得,舍去;若,无解;11b +=0b =1b b +=②当时,则,由且,可知b 无解,{}11,0,b b +∉{}{}1,11,0,b b b --⊆0b ≠1b ≠故.{}1,0,1B =-综上,.221a b +=【小问3详解】(Ⅲ)因为集合C 的子集有64个,所以集合C 中共有6个元素,且,又,且C 0C ∈1C ∈中既有正数也有负数,不妨设,{}1112,,,,0,,,,k k l C b b b a a a ---- 其中,,,5k l +=10l a a <<< 10k b b <<<L 根据题意,1111{,,}{,,,}l l l k k a a a a b b b ----⊆---L L且,1112112{,,,}{,,,}k k l b b b b b b a a a ----⊆L L 从而或.()(),2,3k l =()3,2①当时,,()(),3,2k l ={}{}313212,,b b b b a a --=并且由,得,由,得,313212{,}{,}b b b b b b -+-+=--312b b b =+2112{,}a a a a -∈212a a =由上可得,并且,2131322111(,)(,)(,)(2,)b b b b b b a a a a =--==31213b b b a =+=综上可知;{}111113,2,,0,,2C a a a a a =---②当时,同理可得.()(),2,3k l =11111{2,,0,,2,3}C a a a a a =--综上,C 中有6个元素,且时,符合条件的集合C 有5个,1C ∈分别是,,,{}2,1,0,1,2,3--1131,,0,,1,222⎧⎫--⎨⎬⎩⎭2112,,0,,,13333⎧⎫--⎨⎬⎩⎭或.{}3,2,1,0,1,2---311,1,,0,,1222⎧⎫---⎨⎬⎩⎭关键点点睛:本题是新定义题型,对于此类问题,要先弄清楚新定义的性质,按照其要求,严格“照章办事”,逐条分析验证。
2022-2023学年河北省唐山市第一中学高一上学期10月月考数学试题一、单选题1.设集合{15},{N |||2}M xx N x x =-≤<=∈≤∣,则M N =( )A .{}12xx -≤≤∣ B .{15}xx -≤<∣ C .1,0,1,2D .{}0,1,2【答案】D【分析】求出集合N 的元素,根据集合的交集运算即可求得答案. 【详解】由题意得{N |||2}{0,1,2}N x x =∈≤=, 故{}0,1,2MN =,故选:D2.命题“20,0x x x ∀>-≥”的否定是( )A .20,0x x x ∃≤-< B .20,0x x x ∀>-<C .20,0x x x ∃>-≥ D .20,0x x x ∃>-<【答案】D【分析】根据全称命题的否定为特称命题,即可判断出答案.【详解】命题“20,0x x x ∀>-≥”为全称命题,其否定为特称命题,即20,0x x x ∃>-<,故选:D3.如果,,,R a b c d ∈,则正确的是( ) A .若a b >,则11a b< B .若a b >,则22ac bc > C .若a b >,则2211ab a b> D .若,a b c d >>,则ac bd > 【答案】C【分析】对于A ,B ,D 取反例即可判断结果,根据作差法即可判断C .【详解】取1,1a b ==-,则11a b>,故A 错; 取0c ,则22ac bc =,故B 错; 由于a b >,所以2222110a bab a b a b --=>,则2211ab a b>,故C 正确; 取2,1,0,2a b c d ==-==-,则0,2ac bd ==,故D 错; 故选:C4.已知集合303x M xx -⎧⎫=<⎨⎬+⎩⎭∣,且{}24120,N x x x M N =--<∣、都是全集R 的子集,则如图所示韦恩图中阴影部分所表示的集合为( )A .{23}x x -<≤∣B .{3xx <-∣或6}x ≥ C .{}32x x -≤≤-∣ D .{}36xx -≤≤∣ 【答案】A【分析】解不等式后由补集与交集的概念求解【详解】由题意得(,3)(3,)M =-∞-+∞,(2,6)N =-, 图中阴影部分为R(2,3]N M =-,故选:A5.[]2:2,1,0p x x a ∀∈--≥为真命题的一个充分不必要条件是( )A .(],1-∞-B .(],0-∞C .(],1-∞D .(],4-∞【答案】A【分析】根据全称命题为真命题等价转化为不等式恒成立问题,再利用不等式的性质及充分不必要条件的定义即可求解.【详解】由[]22,1,0x x a ∀∈--≥为真命题,等价于2a x ≤在[]2,1-上恒成立,所以()2mina x≤,[]2,1x ∈-即可.设2()f x x =,[]2,1x ∈-,则由二次函数的性质知,对称轴为0x =,开口向上, 所以()f x 在[]2,0-上单调递减,在(]0,1上单调递增.当0x =时,()f x 取得最小值为2(0)00f ==,即0a ≤,所以0a ≤的一个充分不必要条件是(],0-∞的真子集,则1a ≤-满足条件. 故选:A.6.已知全集U =R ,集合(){}40,{22}M x x x N x a x a =-≥=<<+∣∣.若()U N M N ⋂=,则实数a 的取值范围是( ) A .[]0,1B .[](]0,1,2∞⋃--C .][(),01,∞∞-⋃+D .[)2,-+∞【答案】B【分析】解不等式得M ,再由集合间关系列不等式组求解 【详解】由题意得(,0][4,)M =-∞+∞,(0,4)U M =, 而()U N M N ⋂=,则UN M ⊆,①若N =∅,则22a a ≥+,得2a ≤-,②若N ≠∅,则220224a a a a <+⎧⎪≥⎨⎪+≤⎩,解得01a ≤≤,综上,a 的取值范围(],2[0,1]∞--, 故选:B7.已知命题“存在{12}x x x ∈-<<∣,使得等式30x m -=成立”是假命题,则实数m 的取值范围是( ) A .()3,6- B .()(),36,-∞-+∞C .[]3,6-D .][(),36,-∞-+∞【答案】D【分析】根据特称命题的否定是全称命题,结合原命题和否命题真假的关系即可求解.【详解】由已知命题“存在{12}x xx ∈-<<∣,使得等式30x m -=成立”是假命题,等价于“任意的{12}x xx ∈-<<∣,使得等式30x m -≠成立”是真命题,又因为12x -<<,所以336x -<<,要使3x m ≠,则需3m ≤-或6m ≥. 所以实数m 的取值范围为][(),36,-∞-+∞.故选:D.8.已知关于x 的不等式2240ax bx ++<的解集为4,m m ⎛⎫⎪⎝⎭,其中0m <,则44b a b +的最小值为( ) A .2- B .1 C .2 D .8【答案】C【分析】由一元二次不等式的解与方程根的关系求出系数1a =,确定2b ≥,然后结合基本不等式得最小值.【详解】2240ax bx ++<的解集为4,m m ⎛⎫ ⎪⎝⎭,则2240ax bx ++=的两根为m ,4m ,∴44m m a ⋅=,∴1a =,42m b m +=-,则424b m m=-+≥-,即2b ≥, 44244b b a b b +=+≥,当且仅当4b =时取“=”, 故选:C.二、多选题9.设正实数,a b 满足4a b +=,则( )A .19a b+有最小值4 B 2C D .22a b +有最小值8【答案】AD【分析】利用基本不等式及变形即可求解.【详解】对于A ,()1911919110104444b a a b a b a b a b ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当9b aa b =且4a b +=即1,3a b ==时,等号成立,所以19a b+的最小值为4,故A 正确;对于B ,22a b+=,当且仅当2a b ==时,等号成立,最大值为2,故B 不正确;对于C =2a b ==时,等号成立,C 不正确;对于D ,由不等式可得222282a a b b +⎛⎫≥= ⎪⎝⎭+,当且仅当2a b ==时,等号成立,所以22a b +的最小值为8,故D 正确.故选:AD.10.下列结论错误的是( )A .满足{},,a b c A ⊆ {},,,,,a b c d e f 的集合A 的个数是7个B .“1a <”是“方程20x x a ++=有一个正根和一个负根”的必要不充分条件C .设,R a b ∈,则“0a ≠”是“0ab ≠”的充分不必要条件D .不等式11x>的解集为{1}∣<xx 【答案】CD【分析】写出满足{},,a b c A ⊆ {},,,,,a b c d e f 的集合A ,可判断A;根据“1a <”和“方程20x x a ++=有一个正根和一个负根”之间的逻辑推理关系,判断B;根据“0a ≠”和“0ab ≠”之间的逻辑推理关系判断C;求得11x>的解集判断D. 【详解】对于A ,满足{},,a b c A ⊆ {},,,,,a b c d e f 的集合有{},,a b c ,{},,,a b c d ,{},,,a b c e ,{},,,a b c f ,{}{}{},,,,,,,,,,,,,,,a b c d e a b c d f a b c e f 共7个,A 正确;对于B ,方程20x x a ++=有一个正根和一个负根”的充要条件为140,00a a a ->⎧∴<⎨<⎩, 1a <推不出0a <,但0a <一定有1a <成立,故“1a <”是“方程20x x a ++=有一个正根和一个负根”的必要不充分条件,B 正确; 对于C ,,R a b ∈,当0a ≠时,0b = ,推出0ab =;当0ab ≠时,一定有0a ≠, 故“0a ≠”是“0ab ≠”的必要不充分条件,C 错误; 对于D, 不等式11x>的解集为{01}xx <<∣,D 错误, 故选:CD .11.若不等式20ax bx c ++>的解集是()2,1-,则下列选项正确的是( ) A .0a < B .0b <且0c > C .220a b c ++<D .不等式20ax cx b -+<的解集是{}R1x x ∈≠-∣ 【答案】ABD【分析】根据一元二次不等式结合一元二次方程以及二次函数的关系判断A ;由根与系数的关系可得到,,a b c 的关系,判断B;根据0a b c ++=以及,,a b c 的关系可判断C;利用,,a b c 的关系化简20ax cx b -+<,继而解不等式可判断D.【详解】因为不等式20ax bx c ++>的解集是()2,1-,则2,1-是方程20ax bx c ++=的两根,且二次函数2y ax bx c =++图象开口向下, 故0a < ,故A 正确;则2121b ac a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,故0,20b a c a =<=-> ,B 正确; 由1是方程20ax bx c ++=的根,可知0a b c ++= ,故2220a b c a b c b c b c a a a ++=++++=+=-=->,C 错误; 不等式20ax cx b -+<即220ax ax a ++<,而0a <, 即2210x x ++>,即2(1)0x +>,故1x ≠-,则不等式20ax cx b -+<的解集是{}R1x x ∈≠-∣,D 正确, 故选:ABD12.已知关于x 的不等式()22120ax a x +-->,其中0a ≤,则该不等式的解集可能是( ) A .(),2-∞B .12,a ⎛⎫- ⎪⎝⎭C .()1,2,a ⎛⎫-∞-⋃+∞ ⎪⎝⎭D .1,2a ⎛⎫- ⎪⎝⎭【答案】BD【分析】对于含参的不等式结合函数图像分类讨论即可得到答案. 【详解】当0a =时,不等式为20x -->,解集为{2}xx <-∣ 当0a <时,不等式为(2)(1)0x ax +->,令(2)(1)0x ax +-=,解得12x =-,或21x a=, 当102a -<<时,不等式的解集为12xx a ⎧⎫<<-⎨⎬⎩⎭∣,故D 正确; 当12a =-时,不等式的解集为∅,当12a <-时,不等式的解集为12xx a ⎧⎫-<<⎨⎬⎩⎭∣,故B 正确. 对照其他选项可以看出AC 错误; 故选:BD.三、填空题13.已知实数,a b 满足12,a b t a b -≤≤≤=-,则实数t 的取值范围是___________.【答案】[]3,0-【分析】根据不等式基本性质求出实数t 的取值范围. 【详解】12a b -≤≤≤,所以0a b -≤,且21b -≤-≤, 所以1212a b --≤-≤+,即33a b -≤-≤, 综上:[]3,0t a b =-∈- 故答案为:[]3,0-14.已知集合{}{}2210x mx x n -+==∣,则m n -=___________. 【答案】0或12-【分析】分0m =和0m ≠,当0m ≠时,利用判别式先求m ,然后解方程可得n . 【详解】由题知,方程2210mx x -+=有唯一实数解n , 所以,当0m =时,12n =; 当0m ≠时,440m ∆=-=得1m =,由2210x x -+=解得1x =,所以1n =. 所以,11022m n -=-=-或110m n -=-= 故答案为:0或12-15.若关于x 的不等式()2220x m x m -++<的解集中恰有3个整数,则实数m 的取值范围为___________. 【答案】[)(]2,15,6--⋃【分析】根据已知条件及一元二次不等式的解法即可求解即可求解.【详解】由()2220x m x m -++<,得()()20x m x --<,当2m =时,不等式的解集为∅,当2m <时,不等式的解集为}{2x m x <<, 当2m >时,不等式的解集为}{2x x m <<,因为不等式的解集中恰有3个整数,所以21m -≤<-或56m <≤, 所以实数m 的取值范围为[)(]2,15,6--⋃. 故答案为:[)(]2,15,6--⋃.四、双空题16.已知集合{}1,2,3,4,5,M A M =⊆,集合A 中所有元素的乘积称为集合A 的“累积值”,且规定:当集合A 只有一个元素时,其累积值即为该元素的数值,空集的累积值为0.设集合A 的累积值为n .(1)若5n =,则这样的集合A 共有___________个: (2)若n 为偶数,则这样的集合A 共有___________个. 【答案】 2 25【分析】第一空,根据累积值的规定,即可写出答案;第二空,先求集合M 的所有子集个数,再求出当n 为奇数时的A 的个数,即可求得n 为偶数时集合A 的个数. 【详解】(1)根据题意,{}1,2,3,4,5,M A M =⊆,结合“累积值”规定可知, 当5n =时,集合A 可以为{5}或{1,5}共2个;(2)由题意知{}1,2,3,4,5,M A M =⊆,则A 的个数共有1510105132+++++=个; 当n 为奇数时,共有1,3,5,15n =四种情况, 当1n =时,{1}A =;当3n =时,{3}=A 或{1,3};当5n =时,{5}A =或{1,5}; 当15n =时,{3,5}A =或{1,3,5};故当n 为偶数时,A 的个数为32725-=个, 故答案为:225;五、解答题17.已知集合611A xx ⎧⎫=≥⎨⎬+⎩⎭,{}220B x x x m =--<. (1)当3m =时,求()RAB ;(2)若{}14A B x x ⋂=-<<,求实数m 的值. 【答案】(1){|35}x x ≤≤ (2)8m =【分析】(1)化简集合,A B ,根据补集和交集的概念运算可得结果;(2)由B ≠∅求出1m >-,再求出B ,然后根据{}14A B x x ⋂=-<<列式可求出结果. 【详解】(1)由611≥+x 得016x <+≤,得15x -<≤, 所以{|15}A x x =-<≤,当3m =时,由2230x x --<,得13x , 所以{|13}B x x =-<<, 所以{|1B x x =≤-R 或3}x ≥, 所以()RAB {|35}x x =≤≤.(2)因为{}14A B x x ⋂=-<<, 所以B ≠∅,所以440m ∆=+>,即1m >-,由220x x m --<得2(1)1x m -<+,得11x <<,所以{|11B x x =<+,因为{}14A B x x ⋂=-<<,所以14,11-, 解得8m =.18.已知0,0x y >>,且280x y xy +-=,求 (1)xy 的最小值; (2)x y +的最小值. 【答案】(1)64;(2)18.【解析】(1)由280x y xy +-=,得到821x y +=,利用基本不等式,即可求解.(2)由280x y xy +-=,得821x y +=,根据8282()()10y x x y x y x y x y+=++=++,结合不等式,即可求解.【详解】(1)由280x y xy +-=,可得821x y+=,又由0,0x y >>,可得821x y =+≥, 当且仅当82x y=,即4x y =时,等号成立,即64xy ≥, 所以xy 的最小值为64.(2)由280x y xy +-=,得821x y+=,因为0,0x y >>,可得8282()()101018y x x y x y x y x y +=++=++≥+, 当且仅当82y xx y=,即12,6x y ==时等号成立, 所以x y +的最小值为18.【点睛】利用基本不等式求最值时,要注意其满足的三个条件:“一正、二定、三相等”: (1)“一正”:就是各项必须为正数;(2)“二定”:就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”:利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 19.设集合A ={x |x 2-3x +2=0},B ={x |x 2+2(a +1)x +a 2-5=0}. (1)若A ∩B ={2},求实数a 的值; (2)若A ∪B =A ,求实数a 的取值范围. 【答案】(1)-1或-3; (2)(,3]-∞-.【分析】(1)根据集合交集的性质进行求解即可; (2)根据集合并集的运算性质进行求解即可;【详解】(1)由x 2-3x +2=0得x =1或x =2,故集合A ={1,2}. 因为A ∩B ={2},所以2∈B ,将x =2代入B 中的方程, 得a 2+4a +3=0,解得a =-1或a =-3,当a =-1时,B ={x |x 2-4=0}={-2,2},满足条件; 当a =-3时,B ={x |x 2-4x +4=0}={2},满足条件, 综上,实数a 的值为-1或-3;(2)对于集合B ,∆=4(a +1)2-4(a 2-5)=8(a +3). 因为A ∪B =A ,所以B ⊆A .当∆<0,即a <-3时,B 为空集,满足条件; 当∆=0,即a =-3时,B ={2},满足条件; 当∆>0,即a >-3时,B =A ={1,2}才能满足条件, 则由根与系数的关系,得1+2=-2(a +1),1×2=a 2-5, 解得a =-52,且a 2=7,矛盾.综上,实数a 的取值范围是(,3]-∞-.20.已知命题:R p x ∃∈,使2420mx x -+=为假命题. (1)求实数m 的取值集合B ;(2)设{}32A x a x a =<<+为非空集合,若x A ∈是x B ∈的充分不必要条件,求实数a 的取值范围.【答案】(1)()2,B =+∞; (2)2,13⎡⎫⎪⎢⎣⎭.【分析】(1)由条件可得关于x 的方程2420mx x -+=无解,然后分0m =、0m ≠两种情况讨论即可;(2)首先由{}32A x a x a =<<+为非空集合可得1a <,然后由条件可得A B ⊆且A B ≠,然后可建立不等式求解.【详解】(1)因为命题:R p x ∃∈,使2420mx x -+=为假命题,所以关于x 的方程2420mx x -+=无解,当0m =时,2420mx x -+=有解,故0m =时不成立,当0m ≠时,1680m ∆=-<,解得2m >,所以()2,B =+∞(2)因为{}32A x a x a =<<+为非空集合,所以32a a <+,即1a <,因为x A ∈是x B ∈的充分不必要条件,所以A B ⊆且A B ≠,所以32a ≥,即23a ≥, 综上:实数a 的取值范围为2,13⎡⎫⎪⎢⎣⎭. 21.近日,随着新冠肺炎疫情在多地零星散发,一些城市陆续发出“春节期间非必要不返乡,就地过年”的倡议.为最大程度减少人员流动,减少疫情发生的可能性,某地政府积极制定政策,决定政企联动,鼓励企业在春节期间留住员工在本市过年并加班追产.为此,该地政府决定为当地某A 企业春节期间加班追产提供[]()0,20x x ∈(万元)的专项补贴.A 企业在收到政府x (万元)补贴后,产量将增加到(2)t x =+(万件).同时A 企业生产t (万件)产品需要投入成本为72(72)t x t ++(万元),并以每件40(6)t+元的价格将其生产的产品全部售出.注:收益=销售金额+政府专项补贴-成本(1)求A 企业春节期间加班追产所获收益()R x (万元)关于政府补贴x (万元)的函数关系式;(2)当政府的专项补贴为多少万元时,A 企业春节期间加班追产所获收益最大?【答案】(1)238272()x x R x --=+,[]0,20x ∈;(2)即当政府的专项补贴为4万元时,A 企业春节期间加班追产所获收益最大,最大值为18万元;【解析】(1)依题意得到()R x 的函数解析式;(2)利用基本不等式求出函数的最大值,即可得解;【详解】解:(1)依题意可知,销售金额()40406622t x t x ⎛⎫⎛⎫+=++ ⎪ ⎪+⎝⎭⎝⎭万元,政府补贴x 万元,成本为()7272727222t x x x t x ++=++++万元; 所以收益()()7272()7222240623822R x x x x x x x x x ⎛⎫⎡⎤+++-=-- +⎪⎢⎥+⎦=⎝+++⎭+⎣,[]0,20x ∈ (2)由(1)可知()()2727272()4242238222222R x x x x x x x ---+⎥⎡⎤===⎢++++⎣-+⎦-,[]0,20x ∈其中()4272222x x +≥=++,当且仅当()72222x x +=+,即4x =时取等号,所以()72()42422242182R x x x ⎡⎤=≤+-+-=⎢⎣⎦+⎥, 所以当4x =时,A 企业春节期间加班追产所获收益最大,最大值为18万元;即当政府的专项补贴为4万元时,A 企业春节期间加班追产所获收益最大,最大值为18万元;【点睛】利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方22.已知不等式2–10mx mx -<.(1)若对x R ∀∈不等式恒成立,求实数m 的取值范围;(2)若对]13[x ∀∈,不等式恒成立,求实数m 的取值范围. 【答案】(1)(–4]0,(2)1(,)6-∞ 【解析】(1)讨论当0m =时不是二次函数,成立;当0m ≠时为二次函数要使2–10mx mx -<在R 上恒成立,则开口只能向下,∆<0代入计算即可。
开滦二中2015~2016学年度高三年级十月月考试卷数学试卷第Ⅰ卷(选择题,共60分)一、选择题:(每小题5分,共60分)1、复数z 满足i z ⋅= 3 −i ,则在复平面内复数z 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2、若集合{|0}1xA x x =≤-,2{|2}B x x x =<,则A B =I ( ) A.{|01}x x << B.{|01}x x ≤< C.{|01}x x <≤ D.{|01}x x ≤≤ 3、函数f (x )=2x-2x-a 的一个零点在区间(1,2)内,则实数a 的取值范围是( )A .(1,3)B .(1,2)C .(0,3)D .(0,2) 4、已知0<<b a ,则下列不等式一定成立的是( )A .ab a <2B .b a <C .b a 11>D .ba ⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛21215、在等差数列{}n a 中,912162a a =+,则数列{}n a 的前11项和S 11等于( ) A . 132B .66C .48D .246、给出下列两个命题,命题:p “3x >”是“5x >”的充分不必要条件;命题q :函数()22log 1y x x =+-是奇函数,则下列命题是真命题的是( )A. p q ∧B. p q ∨⌝C. p q ∨D. p q ∧⌝7、已知变量,x y 满足: ()220230,20x yx y x y z x +-≤⎧⎪⎪-+≥=⎨⎪≥⎪⎩则的最大值为( )A. 2B. 22C.2D.48、设等比数列中,前n 项和为,已知,则( )A.B. C.D.9、已知1(1)1x f x x e ++=-+,则函数()f x 在点(0,(0))f 处的切线l 与坐标轴围成的三角形面积为 ( ) A12 B .14C .1D .21ln0x y-=10、若变量,x y 满足则y 关于x 的函数图象大致是( )11、已知函数)1(+x f 是偶函数,当x∈(1,+∞)时,函数x x x f -=sin )(, 设a =)21(-f ,)3(f b =,)0(f c =,则a 、b 、c 的大小关系为( ) A .b <a <c B .c <a <b C .b <c <aD .a <b <c12、定义在R 上的函数()f x 满足:()()()()()1,00,f x f x f f x f x ''>-=是的导函数,则不等式()1xxe f x e >-(其中e 为自然对数的底数)的解集为( )A. ()(),10,-∞-⋃+∞B. ()0,+∞C. ()(),01,-∞⋃+∞D. ()1,-+∞19、(本题满分12分)为了进一步激发同学们的学习热情,某班级建立了理科. 文科两个学习兴趣小组,两组的人数如下表所示. 现采用分层抽样的方法(层内采用简单随机抽样)从两组中共抽取3名同学进行测试.()1求从理科组抽取的同学中至少有1名女同学的概率;()2记ξ为抽取的3名同学中男同学的人数,求随机变量ξ的分布列和数学期望.20.(本小题12分)设数列{}n a 的前n 项和为n S ,已知23 3.n n S =+ (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足3log n n n a b a =,求数列{}n b 的前n 项和n T .21. (本题满分12分)已知函数()()12ln 2f x a x ax x=-++(0a ≤). ()1当0a =时,求()f x 的极值;()2当0a <时,讨论()f x 的单调性;()3若()3,2a ∀∈--,1x ,[]21,3x ∈,有()()()12ln32ln3m a f x f x +->-,求实数m的取值范围.请考生在第22、23、24题中任选一题作答22. 如图,已知AD 是△ABC 的外角∠EAC 的平分线,交BC 的延长线于点D , 延长DA 交△ABC 的外接圆于点F ,连结FB ,FC .(1)求证:FB=FC ;(2)若FA=2,AD=6,求FB 的长.23、以直角坐标系的原点O 为极点,x 轴 的正半轴为极轴建立极坐标系, 已知点P 的直角坐标为(1,-5),点M 的 极坐标为(4,π2).若直线l 过点P ,且倾斜角为π3,圆C 以M 为圆心、4为半径.(1)求直线l 的参数方程和圆C 的极坐标方程;(2)试判定直线l 和圆C 的位置关系.24、已知函数212)(--+=x x x f .(Ⅰ)解不等式0)(≥x f ; (Ⅱ)若存在实数x ,使得a x x f +≤)(,求实数a 的取值范围.开滦二中2015~2016学年第一学期高三年级10月月考考试理科数学试卷答案一、 选择题:1题—12题:CACCA CDABB AB 二、 填空题: 13、 5/4 14、16315、(110,10) 16、6三.解答题:17题:解:设公比为q由23132a a a =+得q a q a a 121132=+,∴q q 322=+,解得q=1或2 又23+a 是42,a a 的等差中项即2(23+a )=42a a +若q=1,则2(1a +2)=21a ,方程无解,舍去; 若q=2,则2(41a +2)=21a +81a ,解得1a =2 ∴nn n q a a 21-1== ---------------------6分(2)∵nn n a a b 1log 2+==n n-2 ------------ 8分∴21)(n -2-12-21+=+n S n n 21)(n -2-21+=+n n -----10分∴021)(n -454721<+=+-+n S n n 即090-2>+n n∴n<-10(舍)或n>9,∴正整数n 的最小值为10 ----12分18、(Ⅰ(1)2()3210g x x ax '=+-<解为113x -<< 121133aa ∴-+=-⇒=-32()2g x x x x =--+ ………………5分(2)设切点为00()x y ,,则切线方程为()()20000321y y x x x x -=--- (1,1)代入得()()()32200000012321x x x x x x x ---+=---()200001=0=0=1x x x x -或切线方程为21y x y =-+=或 ……………12分19:(1)两小组的总人数之比为8:4=2:1,共抽取3人,所以理科组抽取2人, 文科组抽取1人,…………………2分从理科组抽取的同学中至少有1名女同学的情况有:一男一女、两女,所以所求的概率为:11235328914C C C P C +==. …………………4分(2)由题意可知ξ的所有可能取值为0,1,2,3,…………………5分 相应的概率分别是021********(0)112C C C P C C ξ===,1112353321218484148(1)112C C C C P C C C C ξ==+=,1121355321218484145(2)112C C C C P C C C C ξ==+=,252184110(3)112C P C C ξ===,………………9分所以ξ的分布列为:48451031231121121122E ξ=⨯+⨯+⨯=.————12分20:(Ⅰ)由233n n S =+可得111(33)32a S ==+=, 11111(33)(33)3(2)22n n n n n n a S S n ---=-=+-+=≥而11133a -=≠,则13,1,3, 1.n n n a n -=⎧=⎨>⎩——————5分(Ⅱ)由3log n n n a b a =及13,1,3, 1.n n n a n -=⎧=⎨>⎩可得311,1,log 31, 1.3n n n n n a b n a n -⎧=⎪⎪==⎨-⎪>⎪⎩2311123133333n n n T --=+++++L . 2234111123213333333n n n n n T ---=++++++L 2231223121111111333333331111111()33333331121213133193922331313211823n n n n n n n nnnn T n n n n ---=+-++++--=-+++++----=+-=+--⋅-+=-⋅L L113211243n n n T -+=-⋅ ——————12分 21解:(1)当0a =时,()()22121212ln ,(0).x f x x f x x x x x x -'=+=-=> 由()221x f x x -'=>,解得12x >. ∴()f x 在10,2⎛⎫ ⎪⎝⎭上是减函数,在1,2⎛⎫+∞⎪⎝⎭上是增函数. ∴()f x 的极小值为122ln 22f ⎛⎫=-⎪⎝⎭,无极大值.………… 3分 (2)()()()()2222221121212(0)ax a x ax x a f x a x x x x x+--+--'=-+==>. ①当20a -<<时,()f x 在10,2⎛⎫ ⎪⎝⎭和1,a ⎛⎫-+∞ ⎪⎝⎭上是减函数,在11,2a ⎛⎫- ⎪⎝⎭上是增函数; ②当2a =-时,()f x 在()0,+∞上是减函数; ③当2a <-时,()f x 在1,2⎛⎫+∞⎪⎝⎭和10,a ⎛⎫- ⎪⎝⎭上是减函数,在11,2a ⎛⎫- ⎪⎝⎭上是增函数.8分(3)当32a -<<-时,由(2)可知()f x 在[]1,3上是减函数, ∴()()()()()1221342ln 33f x f x f f a a -≤-=-+-. 由()()()12ln32ln3m a f x f x +->-对任意的()[]123,2,,1,3a x x ∈--∈恒成立, ∴()()()12maxln32ln3m a f x f x +->-即()()2ln 32ln 342ln 33m a a a +->-+-对任意32a -<<-恒成立, 即243m a<-+对任意32a -<<-恒成立, 由于当32a -<<-时,132384339a -<-+<-,∴133m ≤-. …………… 12分 22(1)证明:∵A 、C 、B 、F 四点共圆∴∠FBC=∠DAC 又∵AD 平分∠EAC ∴∠EAD=∠DAC 又∵∠FCB=∠FAB (同弧所对的圆周角相等),∠FAB=∠EAD ∴∠FBC=∠FCB ∴FB=FC ;————————5分 (2)解:∵∠BAC=∠BFC ,∠FAB=∠FCB=∠FBC ∴∠FCD=∠BFC+∠FBC=∠BAC+∠FAB=∠FAC∵∠AFC=∠CFD , ∴△FAC ∽△FCD∴FA :FC=FC :FD ∴FB 2=FC 2=FA •FD=16,∴FB=4.————————10分23:解:(1)直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t y =-5+32t ,(t 为参数),圆C 的极坐标方程为ρ=8sin θ.————4分 (2)因为M (4,π2)对应的直角坐标为(0,4),直线l 化为普通方程为3x -y -5-3=0,圆心到l 的距离d =|0-4-5-3|3+1=9+32>4,所以直线l 与圆C 相离.——————10分24:解:(Ⅰ)① 当12x ≤-时,1223x x x --+≥⇒≤-,所以3x ≤- ② 当102x -<<时,12123x x x ++≥⇒≥,所以为φ③ 当0x ≥时,121x x +≥⇒≥,所以1x ≥综合①②③不等式的解集为(][),31,-∞-⋃+∞……………5分(Ⅱ)即12122122a x x a x x +-≤+⇒+-≤+ 由绝对值的几何意义,只需11322aa -≤+⇒≥-…………………10分。
河北省唐山市开滦第二中学2021届高三10月月考数学(文)试题一、选择题:(本大题共12小题,每题5分,共60分.在每题给出的四个选项中,有且只有一项符合题目要求.) 1. 已知集合{}{}An n x x B A ∈===,,4,3,2,12,那么A ∩B =()A .{}4,1B .{}3,2C .{}16,9D .{}2,1 2. 假设复数z 知足i z i 31)3(+-=-(其中i 是虚数单位),那么z 的实部为( ) A.6 B.1 C.1- D.6- 3. 已知α是第二象限角,sin α=513,那么cos α=( )A .-1213B .-513 C.513 D.12134.已知向量a ,b 的夹角为45°,且|a|=1,|2a -b|=10,则|b|=( )A .2 B .22 C .32 D .425. 已知函数21,(1)()2,(1)xx x f x ax x ⎧+≤⎪=⎨+>⎪⎩,假设((1))4f f a =,那么实数a 等于( ) A 、12 B 、43 C 、2 D 、46.已知流程图如右下图所示,该程序运行后,为使输出的b 值为16,那么循环体的判定框内①处应填( ) A .2 B .3 C .4 D .57. 函数()sin()(0)f x x ωϕω=+>的图象如下图,为了取得函数cos(2)6y x π=+的图象,只需将()y f x =的图象( )A .向左平移3π个单位长度 B .向右平移3π个单位长度 C .向左平移6π个单位长度 D .向右平移6π个单位长度8. 实数0.2220.2,log0.2,2a b c ===的大小关系正确的选项是( )A .a c b <<B .a b c <<C .b a c <<D .b c a <<9. 以下说法中,正确的选项是( ) A . 命题“假设a b <,那么22am bm <”的否命题是假命题.B .设,αβ为两个不同的平面,直线l α⊂,那么“l β⊥”是 “αβ⊥” 成立的充分没必要要条件.C .命题“∃2,0x R x x ∈->”的否定是“∀2,0x R x x ∈-<”. D .已知x R ∈,那么“1x >”是“2x >”的充分没必要要条件.10. 假设函数()()y f x x =∈R 知足(2)()f x f x +=,且[1,1]x ∈-时,()||f x x =,那么函数 ()y f x =的图象与函数4log ||y x =的图象的交点的个数为( )A .3B .4C .6D .811. 已知奇函数()x f 在()0,∞-上单调递减,且()02=f ,那么不等式()()11--x f x >0 的解集是( )A. ()1,3--B. ()()+∞-,21,3C. ()()+∞-,30,3D. ()()3,11,1 -12.假设实数y x ,知足01ln|1|=--y x ,那么y 关于x 的函数的图象大致是( ).二、填空题:(本大题共4小题,每题5分,共20分.把答案填写在答题卡上.)13.函数()⎥⎦⎤⎢⎣⎡∈--⎪⎭⎫ ⎝⎛+=2,4,12cos 34sin 22πππx x x x f ,则()x f 的最小值为________ . 14.已知函数()23nx mx x f +=在点()2,1-处的切线恰好与直线03=+y x 平行,则mn.15.如图,AB 是圆O 的直径,P 是圆弧AB 上的点,M ,N 是直径AB 上关于O 对称的两点,且AB =6,MN =4,那么PM →·PN →= .16.假设函数f(x)=2x2-ln x 在其概念域内的一个子区间(k -1,k +1)内不是单调函数,那么实数k 的取值范围是 .三、解答题:(本大题共6小题,共70分.解许诺写出文字说明、证明进程或演算步骤.) 17.(此题总分值12分)已知ABC ∆的三个内角C B A ,,所对的边别离为c b a ,,,A ∠是锐角,FED CBA且B a b sin 23⋅=.⑴求A ∠的度数;⑵若ABC a ∆=,7的面积为310,求22c b +的值.18.(此题总分值12分)已知等比数列{an}知足2a1+a3=3a2,且a3+2是a2,a4的等差中项.⑴求数列{an}的通项公式;⑵假设bn =an +log21an,Sn =b1+b2+…+bn ,求使Sn -2n+1+47<0成立的n 的最小值.19. (此题总分值12分)如下图,在四棱锥ABCD P -中,四边形ABCD 为菱形,PAD ∆为等边三角形,平面⊥PAD 平面ABCD ,且2,60=︒=∠AB DAB ,E 为AD 的中点. ⑴求证:PB AD ⊥;⑵求点E 到平面PBC 的距离.20.(此题总分值12分)为了解某市今年初二年级男生的躯体素养状况,从该市初二年级男生中抽取了一部份学生进行“掷实心球”的项目测试.成绩低于6米为不合格,成绩在6至8米(含6米不含8米)的为及格,成绩在8米至12米(含8米和12米,假定该市初二学生掷实心球均不超过12米)为优秀.把取得的所有数据,分成[)[)[)[)[]12,10,10,8,8,6,6,4,4,2五组,画出的频率散布直方图如图所示.已知有4名学生的成绩在10米到12米之间.⑴求实数a 的值及参加“掷实心球”项目测试的人数;⑵依照这次测试成绩的结果,试估量从该市初二年级男生中任意选取一人,“掷实心球”成绩为优秀的概率;⑶假设从这次测试成绩不合格的男生中随机抽取2名学生再进行其它项目的测试,求所抽取的2名学生来自不同组的概率.2一、(此题总分值12分)已知函数322()f x ax bx cx a =+++ ()0>a 的单调递减区间是()2,1,且知足()10=f ,⑴求()x f 的解析式;⑵对任意(]2,0∈m ,关于x 的不等式31()2f x m<-ln 3m m mt -+在x [)+∞∈,2上有解,求实数t 的取值范围。
开滦二中2015~2016学年高一年级第一学期10月月考试题数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.已知全集(}.7,6,5,3,1{},6,4,2{},7.6,5,4,3,2,1{ A B A U 则===B C U )等于( ) A .{2,4,6} B .{1,3, 5} C .{2,4} D .{2,5}【答案】C 【解析】试题分析:{1,2,3,4,5,6.7}U =,{1,3,5,6,7}B ={}(){}2,42,4U U C B A C B ∴=∴=考点:集合的交并补运算2.设A={a ,b},集合B={a+1,5},若A∩B={2},则A∪B=( ) A 、{1,2} B 、{1,5} C 、{2,5} D 、{1,2,5} 【答案】D 【解析】试题分析:由A∩B={2}可知集合A ,B 中都含有2,12,21a b a ∴+==∴={}{}{}1,2,2,51,2,5A B A B ==∴=考点:集合的交并运算3.已知函数F x x f y ∈=),( .集合{},),(),(F x x f y y x A ∈=={}1),(==x y x B 则B A 中所含元素的个数是( )A.0B.1C.0或1D.1或2 【答案】C 【解析】试题分析:若函数F x x f y ∈=),(的定义域F 中含有1,则集合A 中有点()()1,1f ,集合B 中的元素为()1,,y y R ∈,所以两集合只有一个相同元素;当函数F x x f y ∈=),(的定义域F 中不含有1,则两集合没有相同元素,因此B A 中所含元素的个数是0或1考点:1.集合的交集运算;2.函数概念4.设集合M={x|-2≤x ≤2}, N={y|0≤y ≤2},给出下列四个图形,其中能表示以集合M 为定义域,N 为值域的函数关系的是( )【答案】B 【解析】试题分析:A 中函数定义域不是M ;B 中函数定义域为M ,值域为N ,因此满足题意要求;C 中出现一对多的关系,因此不等构成函数;D 中函数的值域不是N 考点:函数的概念5.已知集合}01|{2=-=x x A ,则下列式子表示正确的有( ) ①A ∈1 ②A ∈-}1{ ③A ⊆φ ④A ⊆-}1,1{A .1个B .2个C .3个D .4个【答案】C 【解析】试题分析:{}2{|10}1,1A x x =-==-,所以①③④正确;②中两集合的关系应该是⊆关系考点:元素与集合,集合与集合间的关系6.若{},,A a b c =,{},B m n =,则能构成:f A B →的映射( )个 A 、5个 B 、6个 C 、7个 D 、8个 【答案】D 【解析】试题分析:根据映射的定义,对于A 集合中的元素a 有两个元素与之对应,同理对于,b c 都分别有两个元素与之对应,结合分步计数原理可知构成的映射为2228⨯⨯=个 考点:1.映射的定义;2.分步计数原理7.函数811y x =+-的单调递减区间是( ) A 、()()+∞∞-,11, B 、()()+∞--∞-,11, C 、()()+∞∞-,1,1, D 、()()+∞--∞-,1,1, 【答案】C 【解析】试题分析:函数定义域为()()+∞∞-,11, ,结合反比例函数图像可知在定义域的两个区间()()+∞∞-,1,1,都是递减的,因此减区间为()()+∞∞-,1,1, 考点:函数单调性8.函数y=ax 2+bx+3在(-∞,-1]上是增函数,在[-1,+∞)上是减函数,则( ) A 、b>0且a<0 B 、b=2a<0 C 、b=2a>0 D 、a ,b 的符号不定 【答案】B 【解析】试题分析:由函数的单调性可知函数为二次函数,且开口向下,对称轴为1x =-02012a b a b a <⎧⎪∴∴=<⎨-=-⎪⎩考点:二次函数单调性9.已知()R x x f ∈=π)(,则)(2πf 的值是( )A 、2πB 、πC 、πD 、不确定 【答案】B 【解析】试题分析:由函数解析式可知该函数为常函数,因此自变量取任意实数时函数值不变,均为()2f πππ∴= 考点:函数求值10.函数()f x 在()4,7-上是增函数,则使(3)2y f x =-+为增函数的区间为( ) A 、()2,3- B 、()1,7- C 、()1,10- D 、()10,4-- 【答案】C 【解析】试题分析:函数(3)2y f x =-+可看作在函数()f x 的基础上将图像向右平移3个单位,向上平移2个单位,因此平移后的增区间为()1,10- 考点:函数图像平移与单调性11.若函数234y x x =--的定义域为[0,]m ,值域为25[4]4--,,则m 的取值范围是( ) A .(]4,0 B .3[]2,4 C .3[3]2, D .3[2+∞,) 【答案】C 【解析】试题分析:二次函数对称轴为32x =,此时的函数值为254-,当0x =时4y =-,因此结合函数图像可知m 的取值范围是3[3]2,考点:二次函数图像及单调性最值12.已知5)2(22+-+=x a x y 在区间(4,)+∞上是增函数,则a 的范围是( ) A.2a ≤- B.2a ≥- C.6-≥a D.6-≤a 【答案】B 【解析】试题分析:二次函数的对称轴为2x a =-,函数在区间(4,)+∞上是增函数,该区间在对称轴右侧242a a ∴-≤∴≥-考点:二次函数单调性第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知{}{221,A y y x x B x y ==-+-==,则AB =_________【答案】1,02⎡⎤-⎢⎥⎣⎦【解析】试题分析:整理两集合得{}{}221|0A y y x x y y ==-+-=≤,{1|2B x y x x ⎧⎫===≥-⎨⎬⎩⎭,所以1|02AB x x ⎧⎫=-≤≤⎨⎬⎩⎭考点:1.集合的交集运算;2.函数的定义域值域14.集合{}01582=+-=x x x A ,集合{}01=-=ax x B ,若A B ⊆,则实数=a _________ 【答案】0或13或15【解析】试题分析:解方程可知集合{}3,5A =,由A B ⊆可知集合B 可以是{}{}3,5,a ∅,当{}3B =时13a =,当{}5B =时15a =,当B =∅时0a =,所以实数a 为0或13或15考点:集合的子集关系15.已知函数x x x f 2)12(2-=+,则)3(f 的值为__________ 【答案】1- 【解析】试题分析:令()221313121x x f +=∴=∴=-=-考点:函数求值 16.函数322-+=x x y 的单调递增区间是_____________【答案】()1,+∞ 【解析】试题分析:要使函数有意义,需满足22301x x x +-≥∴>或3x <-,结合二次函数单调性可知223t x x =+-的增区间为()1,-+∞,因此结合函数定义域可知函数322-+=x x y 的单调递增区间是()1,+∞考点:函数单调性三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本题10分)已知非空集合{|121}A x a x a =-<<+,{|01}B x x =<<,若A B =∅,求实数a的取值范围【答案】12a -a 22-<≤≥或【解析】 试题分析:由AB =∅可知两集合无相同元素,观察集合A 的特点可知其可能为空集,因此求解时需分,A B A B =∅≠∅两种情况求解,当AB ≠∅时可通过两集合边界值的大小关系得到a 的不等式,从而求解其范围 试题解析:A B=∅当A ≠∅时,有2a+1a-1a>-2>⇒ (3分) 又A B =∅,则有2a+10a-11≤≥或1a -a 22⇒≤≥或(9分)12a -a 22∴-<≤≥或,(10分) 考点:集合的交集运算;2.分情况讨论的解题思想 18.(本题12分)已知函数)22(21)(≤<--+=x x x x f(1)用分段函数的形式表示该函数 (2)画出该函数的图像 (3)写出该函数的值域 【答案】(1)⎩⎨⎧<<-≤≤=02-1201)(x x x x f ,,(2)详见解析 (3)[)1,3【解析】试题分析:(1)根据x 的符号分-2<x ≤0和0<x ≤2两种情况,去掉绝对值求出函数的解析式;(2)根据(1)的函数解析式,画出函数的图象;(3)根据函数的图象求出函数的值域 试题解析:(1)由题意知)22(21)(≤<--+=x x x x f ,当-2<x ≤0时,f (x )=1-x , 当0<x ≤2时,f (x )=1,则()()()120102x x f x x --<≤⎧⎪=⎨<≤⎪⎩(4分)(2)函数图象如图:(3)由(2)的图象得,函数的值域为[1,3),考点:1.函数的图象;2.分段函数的解析式求法及其图象的作法;3.函数的值域 19.(本题12分)求下列函数的定义域和值域 (1)xxy -+=43 (2)21y x x =++ 【答案】(1){}{}4,1x x y y ≠≠- (2){}1-≥x x ,{}2y y ≥-20.(本题12分)用定义证明函数6()f x x x=-在(0,)+∞单调递增 【答案】详见解析 【解析】试题分析:定义法证明单调性时,首先在定义域上任取12x x <,计算()()12f x f x -的值,判断其正负,若()()12f x f x <则函数为增函数,若()()12f x f x >则函数为减函数 试题解析:任取12,(0,)x x ∈+∞,不妨设12x x < (2分)12121266()()()()f x f x x x x x -=---122166()()x x x x =-+-121212()6()x x x x x x -=-+12126()(1)0x x x x =-+< (10分) 12()()f x f x ∴<()f x ∴在(0,)+∞单调递增 (12分)考点:定义法证明函数单调性21.(本题12分)已知()f x 是定义在[]1,1-的增函数,(2)(1)f x f x -<-,求x 的取值范围 【答案】312x ≤< 【解析】试题分析:结合增函数的定义:当12x x <时有()()12f x f x <可知将不等式可转化为两关于x 的代数式的大小关系,求解时要注意满足2,1x x --都在定义域内试题解析:由函数定义域及单调性可知不等式可化为12111121x x x x -≤-≤⎧⎪-≤-≤⎨⎪-<-⎩(9分)解得312x ≤<(12分) 考点:利用函数单调性解不等式22.(本题12分)]1,0[∈x 时,求函数223)62()(a x a x x f +-+=的最小值:。
开滦二中2013~2014学年高一年级第一学期10月月考试题数学试卷说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1页至第2页,第Ⅱ卷第3页至第6页.考试时间为120分钟,满分为150分.第Ⅰ卷(选择题,共60分)一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的. 本大题共12小题,每小题5分,共60分)1、已知全集(}.7,5,3,1{},6,4,2{},7.6,5,4,3,2,1{ A B A U 则===B C U ) 等于( )A .{2,4,6}B .{1,3,5}C .{2,4,5}D .{2,5}2、设A={a ,b},集合B={a+1,5},若A∩B={2},则A∪B=( )A 、{1,2}B 、{1,5}C 、{2,5}D 、{1,2,5}3、函数21)(--=x x x f 的定义域为( ) A 、[1,2)∪(2,+∞) B 、(1,+∞) C 、[1,2) D 、[1,+∞)4、设集合M={x|-2≤x ≤2},N={y|0≤y ≤2},给出下列四个图形,其中能 表示以集合M 为定义域, N 为值域的函数关系的是( )5、已知集合}01|{2=-=x x A ,则下列式子表示正确的有( ) ①A ∈1②A ∈-}1{ ③A ⊆φ ④A ⊆-}1,1{ A .1个 B .2个 C .3个 D .4个6、若{},,A a b c =,{},B m n =,则能构成:f A B →的映射( )个A 、5个B 、6个C 、7个D 、8个7、如果奇函数)(x f 在区间[3,7] 上是增函数且最大值为5,那么)(x f 在区间[]3,7--上是( )A .增函数且最小值是5-B .增函数且最大值是5-C .减函数且最大值是5-D .减函数且最小值是5-8、函数y=ax 2+bx+3在(-∞,-1]上是增函数,在[-1,+∞)上是减函数,则( )A 、b>0且a<0B 、b=2a<0C 、b=2a>0D 、a ,b 的符号不定9、若函数234y x x =--的定义域为[0,]m ,值域为25[4]4--,,则m 的取值范围是( )A .(]4,0B .3[]2,4C .3[3]2, D .3[2+∞,) 10、已知5)2(22+-+=x a x y 在区间(4,)+∞上是增函数,则a 的范围是( )A.2a ≤-B.2a ≥-C.6-≥aD.6-≤a11.设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是( ) A .{}|303x x x -<<>或 B .{}|303x x x <-<<或C .{}|33x x x <->或D .{}|3003x x x -<<<<或12.已知3()4f x ax bx =+-其中,a b 为常数,若(2)2f -=,则(2)f 的值等于( )A .2-B .4-C .6-D .10-第Ⅱ卷(非选择题共90分)二、填空题(本题共4小题,每小题5分,共20分.把答案填在题中的横线上)13、已知{}{221,A y y x x B x y ==-+-==,则A B =_________14、已知函数x x x f 2)12(2-=+,则)3(f 的值为__________15、函数322-+=x x y 的单调递增区间是_____________16、已知b a bx ax x f +++=3)(2是偶函数,其定义域为[]a a 2,1-,则a b +=三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17、(本题10分)设全集为R ,{}73|<≤=x x A ,{}102|<<=x x B ,(1)求()R C A B (2)()R C A B18、(本题12分)已知集合{|121}A x a x a =-<<+,{|01}B x x =<<,若A B =∅,求实数a 的取值范围。
2014-2015学年河北省唐山市开滦二中高一(上)10月月考数学试卷一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的.本大题共12小题,每小题5分,共60分)1.集合A={x|﹣1≤x≤2},B={x|x<1},则A∩(∁R B)=()A.{x|x>1} B.{x|x≥1} C.{x|1<x≤2} D.{x|1≤x≤2}2.设集合A={a,b},集合B={a+1,5},若A∩B={2},则A∪B等于()A.{1, 2} B.{1,5} C.{2,5} D.{1,2,5}3.下列各组函数f(x)与g(x)的图象相同的是()A.B.f(x)=x2,g(x)=(x+1)2C.f(x)=1,g(x)=x0D.4.集合M={x|﹣2≤x≤2},N={y|0≤y≤2},给出下列四个图形,其中能表示以M为定义域,N为值域的函数关系的是()A.B.C.D.5.已知f(x﹣1)=x2+4x﹣5,则f(x+1)=()A.x2+6x B.x2+8x+7 C.x2+2x﹣3 D.x2+6x﹣106.下列四个函数:①y=3﹣x;②;③y=x2+2x﹣10;④,其中值域为R的函数有()A.1个B.2个C.3个D.4个7.若奇函数f(x)在[1,3]上为增函数,且有最小值0,则它在[﹣3,﹣1]上()A.是减函数,有最小值0 B.是增函数,有最小值0C.是减函数,有最大值0 D.是增函数,有最大值08.已知函数f(x)是 R上的增函数,A(0,﹣1),B(3,1)是其图象上的两点,那么|f(x)|<1的解集是()A.(﹣3,0)B.(0,3)C.(﹣∞,﹣1]∪[3,+∞)D.(﹣∞,0]∪[1,+∞)9.设集合A={x|1<x<2},B={x|x<a},若A⊆B,则a的范围是()A.a≥2 B.a≥1 C.a≤1 D.a≤210.函数y=x2+4x+c,则()A.f(1)<c<f(﹣2)B..f(1)>c>f(﹣2) C.c>f(1)>f(﹣2)D.c<f (﹣2)<f(1)11.若函数y=x2﹣6x+8的定义域为x∈[1,a],值域为[﹣1,3],则a的取值范围是()A.(1,3)B.(1,5)C.(3,5)D.[3,5]12.已知f(x)=ax3+bx﹣4,其中a,b为常数,若f(﹣2)=2,则f(2)的值等于()A.﹣2 B.﹣4 C.﹣6 D.﹣10二、填空题(本题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.已知,则A∩B= .14.已知f(x+1)=x2﹣2x,则f(2)= .15.函数f(x)在区间[﹣2,3]上是增函数,则y=f(x+5)的递增区间是.16.若函数f(x)=(k﹣2)x2+(k﹣1)x+3是偶函数,则f(x)的递减区间是.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.全集U=R,A={x|﹣4≤x<2},B={x|﹣1<x≤3},,求(1)A∩B;(2)(∁U B)∪P.18.已知集合A={x|(x+3)(x﹣5)≤0},B={x|m﹣2<x<2m﹣3},且B⊆A,求实数m的取值范围.19.求下列函数的定义域和值域(1)y=;(2)y=x﹣.20.已知函数f(x)=2x2﹣1(Ⅰ)用定义证明f(x)是偶函数;(Ⅱ)用定义证明f(x)在(﹣∞,0)上是减函数.21.已知y=f(x)是定义在R上的奇函数,当x<0时,f(x)=x2+4x(1)求f(x)在R上的解析式;(2)写出f(x)的单调递减区间.22.已知函数f(x)=ax2﹣(6a+2)x+3在[2,+∞)单调递减,求a的取值范围.2014-2015学年河北省唐山市开滦二中高一(上)10月月考数学试卷参考答案与试题解析一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的.本大题共12小题,每小题5分,共60分)1.集合A={x|﹣1≤x≤2},B={x|x<1},则A∩(∁R B)=()A.{x|x>1} B.{x|x≥1} C.{x|1<x≤2} D.{x|1≤x≤2}考点:交、并、补集的混合运算.分析:根据补集和交集的意义直接求解.解答:解:C R B={X|x≥1},A∩C R B={x|1≤x≤2},故选D.点评:本题考查集合的基本运算,较简单.2.设集合A={a,b},集合B={a+1,5},若A∩B={2},则A∪B等于()A.{1,2} B.{1,5} C.{2,5} D.{1,2,5}考点:子集与交集、并集运算的转换.专题:计算题.分析:通过A∩B={2},求出a的值,然后求出b的值,再求A∪B.解答:解:由题意A∩B={2},所以a=1,b=2,集合A={1,2},A∪B={1,2}∪{2,5}={1,2,5}故选D点评:本题是基础题,考查集合之间的子集、交集、并集的运算,高考常考题型.3.下列各组函数f(x)与g(x)的图象相同的是()A.B.f(x)=x2,g(x)=(x+1)2C.f(x)=1,g(x)=x0D.考点:判断两个函数是否为同一函数.专题:常规题型.分析:要使数f(x)与g(x)的图象相同,函数f(x)与g(x)必须是相同的函数,注意分析各个选项中的2个函数是否为相同的函数.解答:解:f(x)=x与 g(x)=的定义域不同,故不是同一函数,∴图象不相同.f(x)=x2与g(x)=(x+1)2的对应关系不同,故不是同一函数,∴图象不相同.f(x)=1与g(x)=x0的定义域不同,故不是同一函数,∴图象不相同.f(x)=|x|与g(x)=具有相同的定义域、值域、对应关系,故是同一函数,∴图象相同.故选 D.点评:本题考查函数的三要素:定义域、值域、对应关系,相同的函数必然具有相同的定义域、值域、对应关系.4.集合M={x|﹣2≤x≤2},N={y|0≤y≤2},给出下列四个图形,其中能表示以M为定义域,N为值域的函数关系的是()A.B.C.D.考点:函数的概念及其构成要素.专题:数形结合.分析:本题考查的是函数的概念和图象问题.在解答时首先要对函数的概念从两个方面进行理解:一是对于定义域内的任意一个自变量在值域当中都有唯一确定的元素与之对应,二是满足一对一、多对一的标准,绝不能出现一对多的现象.解答:解:由题意可知:M={x|﹣2≤x≤2},N={y|0≤y≤2},对在集合M中(0,2]内的元素没有像,所以不对;对不符合一对一或多对一的原则,故不对;对在值域当中有的元素没有原像,所以不对;而符合函数的定义.故选:B.点评:本题考查的是函数的概念和函数图象的综合类问题.在解答时充分体现了函数概念的知识、函数图象的知识以及问题转化的思想.值得同学们体会和反思.5.已知f(x﹣1)=x2+4x﹣5,则f(x+1)=()A.x2+6x B.x2+8x+7 C.x2+2x﹣3 D.x2+6x﹣10考点:函数解析式的求解及常用方法.专题:函数的性质及应用.分析:通过已知的f(x﹣1)解析式求出f(x)的解析式,根据f(x)的解析式即可求得f (x+1)的解析式.解答:解:f(x﹣1)=(x﹣1)2+6(x﹣1),∴f(x)=x2+6x;∴f(x+1)=(x+1)2+6(x+1)=x2+8x+7.点评:考查函数的解析式,以及通过f(x﹣1)解析式先求出f(x)解析式,再求f(x+1)解析式的方法.6.下列四个函数:①y=3﹣x;②;③y=x2+2x﹣10;④,其中值域为R的函数有()A.1个B.2个C.3个D.4个考点:函数的值域.专题:函数的性质及应用.分析:根据一次函数的图象和性质,可判断①的值域为R;利用分析法,求出函数的值域,可判断②的真假;根据二次函数的图象和性质,求出函数y=x2+2x﹣10的值域,可判断③的真假;分段讨论,求出函数的值域,可判断④的真假;解答:解:根据一次函数的值域为R,y=3﹣x为一次函数,故①满足条件;根据x2+1≥1,可得,即函数的值域为(0,1],故②不满足条件;二次函数y=x2+2x﹣10的最小值为﹣11,无最大值,故函数y=x2+2x﹣10的值域为[﹣11,+∞),故③不满足条件;当x≤0时,y=﹣x≥0,当x>0时,y=﹣<0,故函数的值域为R,故④满足条件;故选B点评:本题考查的知识点是函数的值域,熟练掌握基本初等函数的图象和性质是解答的关键.7.若奇函数f(x)在[1,3]上为增函数,且有最小值0,则它在[﹣3,﹣1]上()A.是减函数,有最小值0 B.是增函数,有最小值0C.是减函数,有最大值0 D.是增函数,有最大值0考点:奇偶性与单调性的综合.专题:计算题.分析:奇函数在对称的区间上单调性相同,且横坐标互为相反数时函数值也互为相反数,由题设知函数f(x)在[﹣3,﹣1]上是增函数,且0是此区间上的最大值,故得答案.解答:解:由奇函数的性质,∵奇函数f(x)在[1,3]上为增函数,∴奇函数f(x)在[﹣3,﹣1]上为增函数,又奇函数f(x)在[1,3]上有最小值0,∴奇函数f(x)在[﹣3,﹣1]上有最大值0故应选D.点评:本题考点是函数的性质单调性与奇偶性综合,考查根据奇函数的性质判断对称区间上的单调性及对称区间上的最值的关系,是函数的单调性与奇偶性相结合的一道典型题.8.已知函数f(x)是 R上的增函数,A(0,﹣1),B(3,1)是其图象上的两点,那么|f(x)|<1的解集是()A.(﹣3,0)B.(0,3)C.(﹣∞,﹣1]∪[3,+∞)D.(﹣∞,0]∪[1,+∞)考点:函数单调性的性质.专题:计算题;函数的性质及应用.分析: |f(x)|<1等价于﹣1<f(x)<1,根据A(0,﹣1),B(3,1)是其图象上的两点,可得f(0)<f(x)<f(3),利用函数f(x)是R上的增函数,可得结论.解答:解:|f(x)|<1等价于﹣1<f(x)<1,∵A(0,﹣1),B(3,1)是其图象上的两点,∴f(0)<f(x)<f(3)∵函数f(x)是R上的增函数,∴0<x<3∴|f(x)|<1的解集是(0,3)故选:B.点评:本题考查不等式的解法,考查函数的单调性,属于中档题.9.设集合A={x|1<x<2},B={x|x<a},若A⊆B,则a的范围是()A.a≥2 B.a≥1 C.a≤1 D.a≤2考点:集合关系中的参数取值问题.专题:计算题.分析:根据两个集合间的包含关系,考查端点值的大小可得 2≤a.解答:解:∵集合A={x|1<x<2},B={x|x<a},A⊆B,∴2≤a,故选:A.点评:本题主要考查集合中参数的取值问题,集合间的包含关系,属于基础题.10.函数y=x2+4x+c,则()A.f(1)<c<f(﹣2)B..f(1)>c>f(﹣2) C.c>f(1)>f(﹣2)D.c<f (﹣2)<f(1)考点:二次函数的性质.专题:函数的性质及应用.分析:由二次函数y的图象与性质知,在x>﹣2时,函数是增函数,从而比较f(1)、f(0)(=c)、f(﹣2)的大小.解答:解:∵函数y=x2+4x+c的图象是抛物线,开口向上,对称轴是x=﹣2,且f(0)=c,在对称轴的右侧是增函数,∵1>0>﹣2,∴f(1)>f(0)>f(﹣2),即f(1)>c>f(﹣2);故选:B.点评:本题考查了二次函数的图象与性质,是基础题.11.若函数y=x2﹣6x+8的定义域为x∈[1,a],值域为[﹣1,3],则a的取值范围是()A.(1,3)B.(1,5)C.(3,5)D.[3,5]考点:二次函数的性质.专题:函数的性质及应用.分析:根据二次函数的性质,画出函数的图象,从而得出答案.解答:解:∵y=x2﹣6x+8=(x﹣3)2﹣1,对称轴x=3,与x轴的交点为:(2,0),(4,0),画出函数的图象:如图示:,∵函数的值域为[﹣1,3],∴3≤a≤5,故选:D.点评:本题考查了二次函数的性质,考查了数形结合思想,是一道基础题.12.已知f(x)=ax3+bx﹣4,其中a,b为常数,若f(﹣2)=2,则f(2)的值等于()A.﹣2 B.﹣4 C.﹣6 D.﹣10考点:函数的值.专题:计算题.分析:先把x=﹣2代入代数式ax3+bx﹣4得出8a+2b的值来,再把x=2代入ax3+bx﹣4,即可求出答案.解答:解:∵f(﹣2)=﹣8a﹣2b﹣4=2∴8a+2b=﹣6,∴f(2)=8a+2b﹣4=﹣6﹣4=﹣10故选D点评:本题主要考查了函数的求值问题,在解题时要根据题意找出适量关系是解题的关键.二、填空题(本题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.已知,则A∩B= [﹣,0] .考点:函数的值域;交集及其运算.专题:计算题;函数的性质及应用.分析:求出A中函数的值域确定出A,求出B中函数的定义域确定出B,求出A与B的交集即可.解答:解:集合A中的函数y=﹣x2+2x﹣1=﹣(x﹣1)2≤0,即A=(﹣∞,0];集合B中的函数y=,得到2x+1≥0,解得:x≥﹣,即B=[﹣,+∞),则A∩B=[﹣,0].故答案为:[﹣,0]点评:此题以函数定义域与值域为平台,考查了交集及其运算,熟练掌握交集的定义是解本题的关键.14.已知f(x+1)=x2﹣2x,则f(2)= ﹣1 .考点:函数解析式的求解及常用方法.专题:函数的性质及应用.分析:首先,换元令x+1=t,得到x=t﹣1,然后,得到函数解析式,然后,求解f(2)的值即可.解答:解:令x+1=t,∴x=t﹣1,∴f(t)=(t﹣1)2﹣2(t﹣1)=t2﹣4t+3,∴f(x)=x2﹣4x+3,∴f(2)=﹣1故答案为:﹣1点评:本题重点考查了函数的换元法求解函数解析式,注意运用此方法时,容易出现变量的范围扩大或者缩小等问题,需要引起足够重视,属于基础题.15.函数f(x)在区间[﹣2,3]上是增函数,则y=f(x+5)的递增区间是[﹣7,﹣2] .考点:函数单调性的性质.专题:函数的性质及应用.分析:函数f(x)的图象向左平移5个单位,可得y=f(x+5)的图象,结合函数f(x)在区间[﹣2,3]上是增函数,将区间向左平移5个单位,可得答案.解答:解:将函数f(x)的图象向左平移5个单位,可得y=f(x+5)的图象,∵函数f(x)在区间[﹣2,3]上是增函数,∴函数y=f(x+5)在区间[﹣7,﹣2]上是增函数,故答案为:[﹣7,﹣2]点评:本题考查的知识点是函数图象的平移变换,熟练掌握函数图象平移变换“左加右减,上加下减”的法则,是解答的关键.16.若函数f(x)=(k﹣2)x2+(k﹣1)x+3是偶函数,则f(x)的递减区间是[0,+∞).考点:奇偶性与单调性的综合.专题:函数的性质及应用.分析:利用偶函数的定义f(﹣x)=f(x),解出 k的值,化简f(x)的解析式,通过解析式求出f(x)的递减区间.解答:解:∵函数f(x)=(k﹣2)x2+(k﹣1)x+3是偶函数,∴f(﹣x)=f(x),即(k﹣2)x2 ﹣(k﹣1)x+3=(k﹣2)x2+(k﹣1)x+3,∴k=1,∴f(x)=﹣x2 +3,f(x)的递减区间是[0,+∞).故答案为:[0,+∞).点评:本题考查偶函数的定义及二次函数的单调性、单调区间的求法.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.全集U=R,A={x|﹣4≤x<2},B={x|﹣1<x≤3},,求(1)A∩B;(2)(∁U B)∪P.考点:交、并、补集的混合运算.专题:集合.分析:(1)由A与B,求出两集合的交集即可;(2)由全集U=R,以及B,求出B的补集,找出B补集与P的并集即可.解答:解:(1)∵A={x|﹣4≤x<2},B={x|﹣1<x≤3},∴A∩B={x|﹣1<x<2};(2)∵全集U=R,B={x|﹣1<x≤3},P={x|x≤0或x≥},∴∁U B={x|x≤1或x>3},则(∁U B)∪P={x|x≤0或x>3}.点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.18.已知集合A={x|(x+3)(x﹣5)≤0},B={x|m﹣2<x<2m﹣3},且B⊆A,求实数m的取值范围.考点:集合关系中的参数取值问题.专题:不等式的解法及应用.分析:化简集合A,根据B⊆A,分B≠∅、B=∅两种情况,分别求出实数m的取值范围,再把这两个范围取并集,即得所求.解答:解:∵集合A={x|(x+3)(x﹣5)≤0}={x|﹣3≤x≤5},B={x|m﹣2<x<2m﹣3},且B⊆A,∴当B不是空集时,应有,解得1<m≤4.当B=∅时,应有m﹣2≥2m﹣3,解得 m≤1.综上可得,实数m的取值范围为(﹣∞,4].点评:本题主要考查集合中参数的取值问题,两个集合的交集的定义,体现了分类讨论的数学思想,属于基础题.19.求下列函数的定义域和值域(1)y=;(2)y=x﹣.考点:函数的定义域及其求法.专题:函数的性质及应用.分析:(1)根据y=,分母不为0,求出定义域,再用y表示x,求出值域y的取值范围;(2)根据y=x﹣,二次根式被开方数大于或等于0,求出定义域,再利用换元法求出y 的取值范围.解答:解:(1)∵y=,∴3﹣x≠0,∴x≠3;又∵y=,∴x(1+y)=3y﹣2,∴1+y≠0,∴y≠﹣1;∴函数y的定义域是{x|x≠3},值域是{y|y≠﹣1};(2)∵y=x﹣,∴2x+1≥0,∴x≥﹣;设t=,∴t≥0,∴x=,∴y=f(t)=﹣t=(t﹣1)2﹣1≥×(0﹣1)2﹣1=﹣;∴函数y的定义域是{x|x≥﹣},值域是{y|y≥﹣}.点评:本题考查了求函数的定义域和值域的问题,解题时应根据函数的解析式求出自变量的取值范围是定义域,函数值的取值范围是值域,是基础题.20.已知函数f(x)=2x2﹣1(Ⅰ)用定义证明f(x)是偶函数;(Ⅱ)用定义证明f(x)在(﹣∞,0)上是减函数.考点:函数奇偶性的判断;函数单调性的判断与证明.专题:证明题;函数的性质及应用.分析:(Ⅰ)由偶函数的定义即可证明;(Ⅱ)根据定义法证明单调性的步骤即可证明.解答:(Ⅰ)证明:函数f(x)的定义域为R,对于任意的x∈R,都有f(﹣x)=2(﹣x)2﹣1=2x2﹣1=f(x),∴f(x)是偶函数.(Ⅱ)证明:在区间(﹣∞,0]上任取x1,x2,且x1<x2,则有,∵x1,x2∈(﹣∞,0],x1<x2,∴x1﹣x2<0,x1+x2<0,即(x1﹣x2)•(x1+x2)>0∴f(x1)﹣f(x2)>0,即f(x)在(﹣∞,0)上是减函数.点评:本题考查函数奇偶性与单调性的证明,属于基本概念与基本方法考查题,此类题要求熟练掌握,保证不失分.21.已知y=f(x)是定义在R上的奇函数,当x<0时,f(x)=x2+4x(1)求f(x)在R上的解析式;(2)写出f(x)的单调递减区间.考点:函数解析式的求解及常用方法;函数单调性的判断与证明.专题:函数的性质及应用.分析:(1)根据f(x)是定义在R上的奇函数,f(﹣x)=﹣f(x),求出f(0)=0,设x >0时,﹣x<0转化为当x<0时,f(x)=x2+4x,求解析式.(2)根据分段函数的式子,每段都是二次函数,写出单调递减区间.解答:(1)解:∵y=f(x)是定义在R上的奇函数,∴f(﹣x)=﹣f(x),即f(0)=0∵当x<0时,f(x)=x2+4x,∴当x>0时,﹣x<0,f(x)=﹣f(﹣x)=﹣[(﹣x)2+4(﹣x)]=﹣x2+4x,故(2)根据二次函数的性质,可以知道(﹣∞,﹣2),(,2,+∞)单调递减区间.点评:本题考察了函数的性质,运用性质求解析式,容易题.22.已知函数f(x)=ax2﹣(6a+2)x+3在[2,+∞)单调递减,求a的取值范围.考点:二次函数的性质.专题:函数的性质及应用.分析:讨论a=0和a≠0两种情况,a=0时,f(x)=﹣2x+3,该函数在[2,+∞)上单调递减;a≠0时,f(x)是二次函数,根据二次函数的单调性,则有,解该不等式组并合并a=0即可得到a的取值范围.解答:解:当a=0时,f(x)=﹣2x+3,满足在[2,+∞)上单调递减;当a≠0时,f(x)的对称轴是x=,要使函数f(x)在[2,+∞)上单调递减,则:,解得﹣1≤a<0;所以﹣1≤a≤0;∴a的取值范围是[﹣1,0].点评:考查一次函数的单调性,二次函数单调性的特点:在对称轴的一边具有单调性,不要漏了a=0的情况.。