2021高考数学一轮复习课后限时集训14导数的概念及运算理
- 格式:doc
- 大小:123.00 KB
- 文档页数:6
教课资料范本2021版江苏高考数学复习课后限时集训:导数的观点及运算含分析编辑: __________________时间: __________________建议用时: 45 分钟一、选择题1.函数 y=ln( 2x2+ 1)的导数是()14xA.2x2+1B.2x2+1 4x4C.(2x2+ 1) ln 10D.( 2x2+ 1) log2e14xB [y′=2x2+1·4x=2x2+1,应选 B.]2.已知函数 f(x)的导函数为 f′( x),且知足 f(x)= 3x2+2x·f′( 2),则 f′( 5)=()A.2B.4C.6D.8C[由已知得, f′( x)= 6x+ 2f′( 2),令 x=2,得 f′( 2)=- 12. 再令 x=5,得 f′( 5)= 6×5+2f′( 2)= 30-24= 6.应选 C.]13.一质点沿直线运动,假如由始点起经过t秒后的位移为 s=3t3-3t2+8t,那么速度为零的时辰是()A.1秒末B.1秒末和 2秒末C.4秒末D.2秒末和 4秒末D[∵ s′( t)= t2-6t+8,由导数的定义可知 v=s′( t),令 s′( t)= 0,得 t=2 或 4,即 2 秒末和 4 秒末的速度为零,应选 D.]4.(20xx ·贵阳模拟)曲线 y=xln x在点( e, e)处的切线方程为()A.y=2x- eB.y=- 2x-eC.y=2x+ eD.y=- x-1A[对 y=xln x 求导可得 y′= ln x+ 1,则曲线在点( e, e)处的切线斜率为 ln e+1=2,所以切线方程为 y- e= 2( x- e),即 y=2x- e.应选 A.]3 25.(20xx ·陕西西安名校联考)若点 P是曲线 y=2x -2ln5x上随意一点,则点 P到直线 y=x-2的距离的最小值为()33A.2B.232C.2D.53 2C[点 P 是曲线 y=2x -2ln x 上随意一点,所以当曲线在点P 处的切线555与直线 y=x-2平行时,点 P 到直线 y=x-2的距离最小,又直线y= x-2的斜22率为 1,所以 y′= 3x-x=1,解得 x= 1 或 x=-3(舍去),所以曲线与切线351-3-522的切点为 P 1,,所以点 P 到直线 y=x-的距离的最小值是2212+(- 1)2 32=2.应选 C.]二、填空题6.已知函数 y=f( x)及其导函数 y=f′( x)的图象如下图,则曲线y=f ( x)在点 P处的切线方程是.x- y- 2= 0 [依据导数的几何意义及图象可知,曲线 y=f(x)在点 P 处的切线的斜率 k=f′( 2)= 1,又过点 P(2,0),所以切线方程为 x- y-2=0.]7.若曲线 f( x)= ax3+ lnx存在垂直于 y轴的切线,则实数 a的取值范围是.(-∞, 0)[由题意,可知 f′( x)= 3ax2+1x,又存在垂直于 y 轴的切线,所以 3ax2+1x= 0,即 a=-3x31(x>0),故 a∈(-∞, 0).]8.(2020·泰州中学期初)曲线 y=lnx的切线 l:x-y+m=0与曲线 y=x2+a也相切,则 m+ a=.-7[设直线 l:x-y+m=0 与曲线 y= ln x 相切于点( x0, ln x0).由 y=4得11所以切点为(),则-ln x y′=,所以 y′|x=x==1.所以 x=1.x x01,0 1 0+ m=0,所以 m=- 1.由于曲线 y= x2+a 也与直线 x-y-1=0 相切 .y= x2+a由消去 y,得 x2-x+a+1=0,23所以=(- 1)-4(a+1)= 0.所以 a=-4.37所以 m+a=(- 1)+-4=-4.]三、解答题9.已知函数 f(x)= x3-4x2+5x-4.(1)求曲线 f(x)在点( 2, f(2))处的切线方程;(2)求经过点 A( 2,- 2)的曲线 f(x)的切线方程 .[解]( 1)∵ f′( x)= 3x2-8x+5,∴ f′( 2)= 1,又 f(2)=- 2,∴曲线在点( 2, f(2))处的切线方程为 y+2=x-2,即 x-y-4=0.(2)设曲线与经过点A( 2,- 2)的切线相切于点P( x0,x30- 4x20+ 5x0-4),∵f′( x0)= 3x20-8x0+5,∴切线方程为 y-(- 2)=( 3x20-8x0+5)( x- 2),又切线过点 P(x0,x30- 4x20+5x0-4),∴x30- 4x20+5x0-2=( 3x20-8x0+5)( x0-2),整理得( x0-2)2( x0-1)= 0,解得 x0=2 或 1,∴经过点 A( 2,- 2)的曲线 f( x)的切线方程为x- y- 4= 0 或 y+2=0.110.已知函数 f(x)=3x3- 2x2+ 3x(x∈R)的图象为曲线 C.(1)求过曲线 C上随意一点切线斜率的取值范围;(2)若在曲线 C上存在两条互相垂直的切线,求此中一条切线与曲线 C的切[解]( 1)由题意得 f′( x)= x2- 4x+3,则 f′( x)=( x-2)2- 1≥- 1,即过曲线 C 上随意一点切线斜率的取值范围是[-1,+∞) .(2)设曲线 C 的此中一条切线的斜率为k,则由已知( 2)中条件并联合( 1)中结论可知,k≥- 1,1-k≥- 1,解得- 1≤k< 0 或 k≥1,故由- 1≤x2-4x+ 3< 0 或 x2- 4x+3≥1,得 x∈(-∞, 2-2]∪( 1,3)∪[ 2+2,+∞) .1.(20xx ·全国卷Ⅰ)设函数 f(x)= x3+( a- 1) x2+ax.若f( x)为奇函数,则曲线 y=f(x)在点(0,0)处的切线方程为()A.y=- 2xB.y=- xC.y=2xD.y=xD[由于函数 f( x)= x3+( a- 1)x2+ax 为奇函数,所以 f(- x)=-f(x),3232 所以(- x)+( a-1)(- x)+a(- x)=-[ x +( a-1)x +以 f ′( x )= 3x 2+1,所以 f ′( 0)= 1,所以曲线 y = f (x )在点( 0,0)处的切线方程为 y =x.应选 D.]2.曲线在点( 4,e 2)处的切线与坐标轴所围成的三角形的面积为()9 2 2 A.2eB.4eC.2e 2D.e 2D [易知曲线 y =在点( 4, e 2)处的切线斜率存在,设其为 k.∵y ′=12122 ,∴,∴切线方程为 y -e = 2e ( x - 4),令 x =0,得 y =-1 2 = 2 ]2,令 y =0,得 x = 2,∴所求面积为 S = × ×-e22| e | e .3.若直线 y = kx +b 是曲线 y = ln+ 的切线,也是曲线 x的切线,则 b =. x 2 y =e0或1 [设直线 y =kx + b 与曲线 y =ln x +2 的切点为( x ,y ),与曲线 y111= e x的切点为( x 2, y 2), y =ln x +2 的导数为 y ′= x ,y =e x 的导数为 y ′=x,可得 k =ex 2=1又由 = y2-y1 =ex2-ln x1-2,消去 x 2 ,可得( + ex1.kx2-x1 x2-x11 ln1x 1)( x 1 -1)= 0,则 x 1=e 或 x 1=1,则直线 y =kx + b 与曲线 y = ln x +2 的切点为1,1 或(1,2 ),与曲线 = x的切点为( , )或( ),所以 k =e - 1ey e 1 e 0,1 11- e1-2= e 或 k = 0-1=1,则切线方程为 y =ex 或 y =x + 1,可得 b = 0 或 1.]b4.设函数 f ( x )= ax -x ,曲线 y = f (x )在点( 2,f (2))处的切线方程为7x - 4y -12=0.(1)求 f (x )的分析式;(2)证明曲线 f (x )上任一点处的切线与直线 x =0和直线 y = x 所围成的三角形面积为定值,并求此定值 .71[解] ( 1)方程 7x -4y -12=0 可化为 y =4x - 3,当 x =2 时, y = 2.b又由于 f ′( x )= a +x2,b 12a -2=2,a =1,3所以b 7 解得b =3,所以 f ( x )= x - x .a +4=4,(2)证明:设 P (x 0,0)为曲线 = (x )上任一点,由 y ′= + 3知曲yy f1 x2线在点 P ( x 0,0)处的切线方程为- 0 =1+3( x - x 0),即 - x0- 3y y yx20 y x03 (x -x 0).= 1+x20令 x =0,得 y =- 6,所以切线与直线 x =0 的交点坐标为0,- 6 令 =x0x0. yx ,得 y = x = 2x ,所以切线与直线 y =x 的交点坐标为( 2x2x ).0,所以曲线 y =f (x )在点 P (x 0,0)处的切线与直线x = , y = x 所围成的y16三角形的面积 S =2 -x0 |2x 0 |= 6.故曲线 y =f ( x )上任一点处的切线与直线 x =0,y =x 所围成的三角形面积为定值,且此定值为 6.1.定义 1:若函数 f(x)在区间 D上可导,即 f′( x)存在,且导函数 f′( x )在区间 D上也可导,则称函数 f(x)在区间 D上存在二阶导数,记作 f″( x)=[ f′( x)]′ .定义 2:若函数 f(x)在区间 D上的二阶导数恒为正,即f″( x)> 0恒建立3,则称函数 f( x)在区间 D上为凹函数 .已知函数 f(x)= x3-2x2+ 1在区间 D上为凹函数,则 x的取值范围是.1,+∞[由于f(x)=x3-3x2+1,所以f′(x)=3x2-3x,f″22( x)= 6x-3,11令 f″( x)> 0 得 x>2,故 x 的取值范围是2,+∞.]2.已知函数 f(x)= ax3+bx2+cx在x=±1处获得极值,且在 x=0处的切线的斜率为-3.(1)求 f(x)的分析式;(2)若过点 A(2,m)可作曲线 y= f( x)的三条切线,务实数m的取值范围 .[解]( 1)f′( x)= 3ax2+2bx+c,f ′( 1)= 3a+ 2b+c=0,b=0,依题意?f ′(- 1)= 3a-2b+ c= 03a+ c= 0又 f′( 0)=- 3,所以 c=- 3,所以 a=1,所以 f( x)= x3-3x.(2)设切点为( x0,x30- 3x0),由于 f′( x)= 3x2-3,所以 f′( x0)= 3x20- 3,所以切线方程为 y-( x30-3x0)=( 3x20-3)( x-x0).又切线过点 A(2,m),所以 m-( x30-3x0)=( 3x20- 3)( 2-x0),所以 m=- 2x30+ 6x20-6,9/102021版江苏高考数学复习课后限时集训:导数的概念及运算含解析则 g′( x)=- 6x2+12x=- 6x(x-2),由 g′( x)= 0 得 x=0 或 x=2,g(x)极小值=g(0)=- 6, g(x)极大值= g (2)= 2,画出草图知,当- 6<m< 2 时, g(x)=- 2x3+ 6x2- 6 有三个解,所以 m 的取值范围是(- 6,2) .10/10。
第1节 导数的概念与导数的计算考试要求 1.了解导数概念的实际背景;2。
通过函数图象直观理解导数的几何意义;3。
能根据导数的定义求函数y =c (c 为常数),y =x ,y =错误!,y =x 2,y =x 3,y =错误!的导数;4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单复合函数(仅限于形如y =f (ax +b )的复合函数)的导数.知 识 梳 理1。
函数y =f (x )在x =x 0处的导数(1)定义:称函数y =f (x )在x =x 0处的瞬时变化率0lim x ∆→错误!=0lim x ∆→ 错误!为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0lim x ∆→ 错误!=0lim x ∆→ 错误!。
(2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率。
相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).2。
函数y =f (x )的导函数如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,这个函数称为函数y =f (x )在开区间内的导函数.记作f ′(x )或y ′。
3。
基本初等函数的导数公式 基本初等函数 导函数f (x )=c (c 为常数) f ′(x )=04.导数的运算法则若f′(x),g′(x)存在,则有:(1)[f(x)±g(x)]′=f′(x)±g′(x);(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);(3)错误!′=错误!(g(x)≠0)。
5.复合函数的导数复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为y x′=y u′·u x′,即y对x的导数等于y对u的导数与u对x的导数的乘积。
高考数学一轮复习考点知识专题讲解 导数的概念及其意义、导数的运算考点要求1.了解导数的概念、掌握基本初等函数的导数.2.通过函数图象,理解导数的几何意义.3.能够用导数公式和导数的运算法则求简单函数的导数.知识梳理 1.导数的概念(1)函数y =f (x )在x =x 0处的导数记作f ′(x 0)或y ′|0x x =. f ′(x 0)=lim Δx →0 Δy Δx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx .(2)函数y =f (x )的导函数f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx.2.导数的几何意义函数y =f (x )在x =x 0处的导数的几何意义就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,相应的切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式基本初等函数导函数f (x )=c (c 为常数) f ′(x )=0f (x )=x α(α∈Q ,且α≠0)f ′(x )=αx α-1 f (x )=sin x f ′(x )=cos x f (x )=cos x f ′(x )=-sin x f (x )=a x (a >0,且a ≠1)f ′(x )=a x ln a f (x )=e xf ′(x )=e x f (x )=log a x (a >0,且a ≠1)f ′(x )=1x ln a f (x )=ln xf ′(x )=1x4.导数的运算法则若f ′(x ),g ′(x )存在,则有 [f (x )±g (x )]′=f ′(x )±g ′(x ); [f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x );⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0); [cf (x )]′=cf ′(x ). 常用结论1.区分在点处的切线与过点处的切线(1)在点处的切线,该点一定是切点,切线有且仅有一条. (2)过点处的切线,该点不一定是切点,切线至少有一条. 2.⎣⎢⎡⎦⎥⎤1f (x )′=-f ′(x )[f (x )]2(f (x )≠0).思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)f′(x0)是函数y=f(x)在x=x0附近的平均变化率.(×)(2)与曲线只有一个公共点的直线一定是曲线的切线.(×)(3)f′(x0)=[f(x0)]′.(×)教材改编题1.若f(x)=1x,则f′(x)=________.答案-x 2x2解析f(x)=1x=12x-,∴f′(x)=3212x--=-x2x2.2.函数f(x)=e x+1x在x=1处的切线方程为.答案y=(e-1)x+2解析f′(x)=e x-1x2,∴f′(1)=e-1,又f(1)=e+1,∴切点为(1,e+1),切线斜率k=f′(1)=e-1,即切线方程为y-(e+1)=(e-1)(x-1),即y=(e-1)x+2.3.已知函数f(x)=x ln x+ax2+2,若f′(e)=0,则a=.答案-1e解析f ′(x )=1+ln x +2ax , ∴f ′(e)=2a e +2=0,∴a =-1e.题型一 导数的运算例1(1)(2022·济南质检)下列求导运算正确的是________.(填序号) ①⎝ ⎛⎭⎪⎫1ln x ′=-1x (ln x )2;②(x 2e x )′=2x +e x ; ③(tan x )′=1cos 2x; ④⎝ ⎛⎭⎪⎫x -1x ′=1+1x 2.答案①③④解析⎝ ⎛⎭⎪⎫1ln x ′=-1(ln x )2·(ln x )′=-1x (ln x )2,故①正确;(x 2e x )′=(x 2+2x )e x ,故②错误;(tan x )′=⎝ ⎛⎭⎪⎫sin x cos x ′=cos 2x +sin 2x cos 2x =1cos 2x ,故③正确;⎝⎛⎭⎪⎫x -1x ′=1+1x 2,故④正确.(2)函数f (x )的导函数为f ′(x ),若f (x )=x 2+f ′⎝ ⎛⎭⎪⎫π3sin x ,则f ⎝ ⎛⎭⎪⎫π6=.答案π236+2π3解析f ′(x )=2x +f ′⎝ ⎛⎭⎪⎫π3cos x ,∴f ′⎝ ⎛⎭⎪⎫π3=2π3+12f ′⎝ ⎛⎭⎪⎫π3,∴f ′⎝ ⎛⎭⎪⎫π3=4π3,∴f ⎝ ⎛⎭⎪⎫π6=π236+2π3.教师备选在等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)(x -a 2)…(x -a 8),则f ′(0)等于()A .26B .29C .212D .215 答案C解析因为在等比数列{a n }中,a 1=2,a 8=4, 所以a 1a 8=a 2a 7=a 3a 6=a 4a 5=2×4=8. 因为函数f (x )=x (x -a 1)(x -a 2)…(x -a 8),所以f ′(x )=(x -a 1)(x -a 2)…(x -a 8)+x [(x -a 1)(x -a 2)…(x -a 8)]′, 所以f ′(0)=a 1a 2…a 8=(a 1a 8)4=84=212.思维升华 (1)求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导.(2)抽象函数求导,恰当赋值是关键,然后活用方程思想求解.跟踪训练1(1)函数y =sin2x 的导数y ′等于()A .2B .cos2C .2cos2xD .2sin2x 答案C解析y =sin2x =2sin x ·cos x ,y ′=2cos x ·cos x +2sin x ·(-sin x ) =2cos 2x -2sin 2x =2cos2x .(2)若函数f (x ),g (x )满足f (x )+xg (x )=x 2-1,且f (1)=1,则f ′(1)+g ′(1)等于() A .1 B .2 C .3 D .4 答案C解析当x =1时,f (1)+g (1)=0, ∵f (1)=1,得g (1)=-1,原式两边求导,得f ′(x )+g (x )+xg ′(x )=2x , 当x =1时,f ′(1)+g (1)+g ′(1)=2, 得f ′(1)+g ′(1)=2-g (1)=2-(-1)=3. 题型二 导数的几何意义 命题点1求切线方程例2(1)(2021·全国甲卷)曲线y =2x -1x +2在点(-1,-3)处的切线方程为. 答案5x -y +2=0解析y ′=⎝ ⎛⎭⎪⎫2x -1x +2′=2(x +2)-(2x -1)(x +2)2=5(x +2)2,所以y ′|x =-1=5(-1+2)2=5,所以切线方程为y +3=5(x +1),即5x -y +2=0.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l的方程为. 答案x -y -1=0解析∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0). 又f ′(x )=1+ln x ,∴直线l 的方程为y +1=(1+ln x 0)x . ∴由⎩⎨⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴直线l 的方程为y =x -1,即x -y -1=0. 命题点2求参数的值(范围)例3(1)(2022·西安模拟)直线y =kx +1与曲线f (x )=a ln x +b 相切于点P (1,2),则2a +b 等于()A .4B .3C .2D .1 答案A解析∵直线y =kx +1与曲线f (x )=a ln x +b 相切于点P (1,2), 将P (1,2)代入y =kx +1, 可得k +1=2,解得k =1, ∵f (x )=a ln x +b ,∴f ′(x )=a x,由f ′(1)=a1=1,解得a =1,可得f (x )=ln x +b , ∵P (1,2)在曲线f (x )=ln x +b 上, ∴f (1)=ln1+b =2,解得b=2,故2a+b=2+2=4.(2)已知曲线f(x)=13x3-x2-ax+1存在两条斜率为3的切线,则实数a的取值范围是________.答案(-4,+∞)解析f′(x)=x2-2x-a,依题意知x2-2x-a=3有两个实数解,即a=x2-2x-3=(x-1)2-4有两个实数解,∴y=a与y=(x-1)2-4的图象有两个交点,∴a>-4.教师备选1.已知曲线f(x)=x3-x+3在点P处的切线与直线x+2y-1=0垂直,则P点的坐标为()A.(1,3) B.(-1,3)C.(1,3)或(-1,3) D.(1,-3)答案C解析设切点P(x0,y0),f′(x)=3x2-1,又直线x+2y-1=0的斜率为-1 2,∴f′(x0)=3x20-1=2,∴x20=1,∴x0=±1,又切点P(x0,y0)在y=f(x)上,∴y0=x30-x0+3,∴当x0=1时,y0=3;当x0=-1时,y0=3.∴切点P为(1,3)或(-1,3).2.(2022·哈尔滨模拟)已知M是曲线y=ln x+12x2+(1-a)x上的任一点,若曲线在M点处的切线的倾斜角均是不小于π4的锐角,则实数a的取值范围是()A.[2,+∞) B.[4,+∞) C.(-∞,2] D.(-∞,4] 答案C解析因为y=ln x+12x2+(1-a)x,所以y′=1x+x+1-a,因为曲线在M点处的切线的倾斜角均是不小于π4的锐角,所以y′≥tan π4=1对于任意的x>0恒成立,即1x+x+1-a≥1对任意x>0恒成立,所以x+1x≥a,又x+1x≥2,当且仅当x=1 x ,即x=1时,等号成立,故a≤2,所以a的取值范围是(-∞,2].思维升华(1)处理与切线有关的参数问题,关键是根据曲线、切线、切点的三个关系列出参数的方程:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上. (2)注意区分“在点P 处的切线”与“过点P 处的切线”.跟踪训练2(1)(2022·南平模拟)若直线y =x +m 与曲线y =e xe 2n 相切,则()A .m +n 为定值B.12m +n 为定值C .m +12n 为定值D .m +13n 为定值答案B解析设直线y =x +m 与曲线y =e x e 2n 切于点002e (,)e x n x ,因为y ′=e x e 2n ,所以02e e x n =1,所以x 0=2n ,所以切点为(2n ,1),代入直线方程得1=2n +m ,即12m +n =12.(2)若函数f (x )=ln x +2x 2-ax 的图象上存在与直线2x -y =0平行的切线,则实数a 的取值范围是. 答案[2,+∞)解析直线2x -y =0的斜率k =2,又曲线f (x )上存在与直线2x -y =0平行的切线, ∴f ′(x )=1x+4x -a =2在(0,+∞)内有解,则a =4x +1x-2,x >0.又4x +1x≥24x ·1x=4,当且仅当x =12时取“=”.∴a ≥4-2=2.∴a 的取值范围是[2,+∞). 题型三 两曲线的公切线例4(1)(2022·驻马店模拟)已知函数f (x )=x ln x ,g (x )=x 2+ax (a ∈R ),直线l 与f (x )的图象相切于点A (1,0),若直线l 与g (x )的图象也相切,则a 等于() A .0B .-1C .3D .-1或3 答案D解析由f (x )=x ln x 求导得f ′(x )=1+ln x ,则f ′(1)=1+ln1=1,于是得函数f (x )在点A (1,0)处的切线l 的方程为y =x -1, 因为直线l 与g (x )的图象也相切,则方程组⎩⎨⎧y =x -1,g (x )=x 2+ax ,有唯一解,即关于x 的一元二次方程x 2+(a -1)x +1=0有两个相等的实数根, 因此Δ=(a -1)2-4=0,解得a =-1或a =3, 所以a =-1或a =3.(2)若函数f (x )=x 2-1与函数g (x )=a ln x -1的图象存在公切线,则正实数a 的取值范围是()A .(0,e)B .(0,e]C .(0,2e)D .(0,2e] 答案D解析f (x )=x 2-1的导函数f ′(x )=2x ,g (x )=a ln x -1的导函数为g ′(x )=a x. 设切线与f (x )相切的切点为(n ,n 2-1),与g (x )相切的切点为(m ,a ln m -1), 所以切线方程为y -(n 2-1)=2n (x -n ),y -(a ln m -1)=am(x -m ),即y =2nx -n 2-1,y =a mx -a +a ln m -1.所以⎩⎨⎧2n =a m ,n 2+1=a +1-a ln m ,所以a 24m 2=a -a ln m ,由于a >0,所以a4m 2=1-ln m , 即a4=m 2(1-ln m )有解即可. 令h (x )=x 2(1-ln x )(x >0),h ′(x )=x (1-2ln x ),所以h (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,最大值为h (e)=e2,当0<x <e 时,h (x )>0, 当x >e 时,h (x )<0, 所以0<a 4≤e2,所以0<a ≤2e.所以正实数a 的取值范围是(0,2e].教师备选1.若f (x )=ln x 与g (x )=x 2+ax 两个函数的图象有一条与直线y =x 平行的公共切线,则a 等于()A .1B .2C .3D .3或-1 答案D解析设在函数f (x )=ln x 处的切点为(x ,y ),根据导数的几何意义得到k =1x=1,解得x =1,故切点为(1,0),可求出切线方程为y =x -1,此切线和g (x )=x 2+ax 也相切, 故x 2+ax =x -1,化简得到x 2+(a -1)x +1=0,只需要满足Δ=(a -1)2-4=0,解得a =-1或a =3. 2.已知曲线y =e x 在点(x 1,1e x )处的切线与曲线y =ln x 在点(x 2,ln x 2)处的切线相同,则(x 1+1)(x 2-1)等于()A .-1B .-2C .1D .2 答案B解析已知曲线y =e x 在点(x 1,1e x )处的切线方程为y -1e x =1e x (x -x 1), 即y =1e x x -1e x x 1+1e x ,曲线y =ln x 在点(x 2,ln x 2)处的切线方程为y -ln x 2=1x 2(x -x 2),即y =1x 2x -1+ln x 2,由题意得⎩⎨⎧1ex =1x 2,1ex -1e x x 1=-1+ln x 2,得x 2=11ex , 1e x -1e x x 1=-1+ln x 2=-1+ln11e x =-1-x 1,则1e x =x 1+1x 1-1.又x 2=11ex , 所以x 2=x 1-1x 1+1, 所以x 2-1=x 1-1x 1+1-1=-2x 1+1, 所以(x 1+1)(x 2-1)=-2.思维升华 公切线问题,应根据两个函数在切点处的斜率相等,且切点既在切线上又在曲线上,列出有关切点横坐标的方程组,通过解方程组求解.或者分别求出两函数的切线,利用两切线重合列方程组求解.跟踪训练3(1)(2022·雅安模拟)已知定义在区间(0,+∞)上的函数f (x )=-2x 2+m ,g (x )=-3ln x -x ,若以上两函数的图象有公共点,且在公共点处切线相同,则m 的值为() A .2 B .5 C .1 D .0 答案C解析根据题意,设两曲线y =f (x )与y =g (x )的公共点为(a ,b ),其中a >0, 由f (x )=-2x 2+m ,可得f ′(x )=-4x ,则切线的斜率为k =f ′(a )=-4a , 由g (x )=-3ln x -x ,可得g ′(x )=-3x -1,则切线的斜率为k =g ′(a )=-3a-1,因为两函数的图象有公共点,且在公共点处切线相同,所以-4a =-3a-1,解得a =1或a =-34(舍去),又由g (1)=-1,即公共点的坐标为(1,-1), 将点(1,-1)代入f (x )=-2x 2+m , 可得m =1.(2)不与x 轴重合的直线l 与曲线f (x )=x 3和y =x 2均相切,则l 的斜率为________. 答案6427解析设直线l 与曲线f (x )=x 3相切的切点坐标为(x 0,x 30),f ′(x )=3x 2,则f ′(x 0)=3x 20,则切线方程为y =3x 20x -2x 30,因为不与x 轴重合的直线l 与曲线y =x 3和y =x 2均相切, 则⎩⎨⎧y =3x 20x -2x 30,y =x 2,得x 2-3x 20x +2x 30=0,Δ=9x 40-8x 30=0,得x 0=0(舍去)或x 0=89,所以l 的斜率为3x 20=6427. 课时精练1.(2022·阳江模拟)下列函数的求导正确的是()A .(x -2)′=-2xB .(x cos x )′=cos x -x sin xC .(ln10)′=110D .(3x )′=3x 答案B解析(x -2)′=-2x -3,∴A 错; (x cos x )′=cos x -x sin x ,∴B 对;(ln10)′=0,∴C错;(3x)′=3x·ln3,∴D错.2.已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如图所示,则该函数的图象是()答案B解析由y=f′(x)的图象是先上升后下降可知,函数y=f(x)图象的切线的斜率先增大后减小.3.(2022·黑龙江哈师大附中月考)曲线y=2cos x+sin x在(π,-2)处的切线方程为() A.x-y+π-2=0 B.x-y-π+2=0C.x+y+π-2=0 D.x+y-π+2=0答案D解析y′=-2sin x+cos x,当x=π时,k=-2sinπ+cosπ=-1,所以在点(π,-2)处的切线方程,由点斜式可得y+2=-1×(x-π),化简可得x+y-π+2=0.4.(2022·兴义模拟)已知y=f(x)是可导函数,如图,直线y=kx+2是曲线y=f(x)在x=3处的切线,令g(x)=xf(x),g′(x)是g(x)的导函数,则g′(3)等于()A .-1B .0C .2D .4 答案B解析由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13,∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ), ∴g ′(3)=f (3)+3f ′(3), 又由题图可知f (3)=1, ∴g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0.5.设曲线f (x )=a e x +b 和曲线g (x )=cos x +c 在它们的公共点M (0,2)处有相同的切线,则b +c -a 的值为() A .0B .πC.-2D .3 答案D解析∵f ′(x )=a e x ,g ′(x )=-sin x , ∴f ′(0)=a ,g ′(0)=0,∴a =0, 又M (0,2)为f (x )与g (x )的公共点, ∴f (0)=b =2,g (0)=1+c =2,解得c =1, ∴b +c -a =2+1-0=3.6.已知点A是函数f(x)=x2-ln x+2图象上的点,点B是直线y=x上的点,则|AB|的最小值为()A. 2 B.2 C.433D.163答案A解析当与直线y=x平行的直线与f(x)的图象相切时,切点到直线y=x的距离为|AB|的最小值.f′(x)=2x-1x=1,解得x=1或x=-12(舍去),又f(1)=3,所以切点C(1,3)到直线y=x的距离即为|AB|的最小值,即|AB|min=|1-3|12+12= 2.7.已知函数f(x)的图象如图,f′(x)是f(x)的导函数,设a=f(3)-f(2),则下列结论正确的是()A.f′(2)<f′(3)<aB.f′(2)<a<f′(3)C.f′(3)<a<f′(2)D.a<f′(3)<f′(2)答案C解析a=f(3)-f(2)=f(3)-f(2)3-2,∴a 表示曲线上两点A (2,f (2)),B (3,f (3))连线的斜率, 由图知,曲线切线的斜率越来越小, ∴f ′(3)<a <f ′(2).8.(2022·固原模拟)设点P 是函数f (x )=2e x -f ′(0)x +f ′(1)图象上的任意一点,点P 处切线的倾斜角为α,则角α的取值范围是() A.⎣⎢⎡⎭⎪⎫0,3π4 B.⎣⎢⎡⎭⎪⎫0,π2∪⎝⎛⎭⎪⎫3π4,π C.⎝ ⎛⎭⎪⎫π2,3π4 D.⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π 答案B解析∵f (x )=2e x -f ′(0)x +f ′(1), ∴f ′(x )=2e x -f ′(0),∴f ′(0)=2-f ′(0),f ′(0)=1, ∴f (x )=2e x -x +f ′(1), ∴f ′(x )=2e x -1>-1.∵点P 是曲线上的任意一点,点P 处切线的倾斜角为α, ∴tan α>-1. ∵α∈[0,π),∴α∈⎣⎢⎡⎭⎪⎫0,π2∪⎝ ⎛⎭⎪⎫3π4,π. 9.已知函数y =f (x )的图象在x =2处的切线方程是y =3x +1,则f (2)+f ′(2)=________. 答案10解析切点坐标为(2,f (2)),∵切点在切线上,∴f (2)=3×2+1=7, 又k =f ′(2)=3,∴f (2)+f ′(2)=10.10.(2022·四川天府名校联考)若曲线f (x )=x cos x 在x =π处的切线与直线ax -y +1=0平行,则实数a =. 答案-1解析因为f (x )=x cos x , 所以f ′(x )=cos x -x sin x ,f ′(π)=cosπ-π·sinπ=-1,因为函数在x =π处的切线与直线ax -y +1=0平行,所以a =f ′(π)=-1. 11.已知函数f (x )=1ax -1+e x cos x ,若f ′(0)=-1,则a =. 答案2解析f ′(x )=-(ax -1)′(ax -1)2+e x cos x -e x sin x =-a (ax -1)2+e x cos x -e xsin x ,∴f ′(0)=-a +1=-1,则a =2.12.已知函数f (x )=x 3-ax 2+⎝ ⎛⎭⎪⎫23a +1x (a ∈R ),若曲线y =f (x )存在两条垂直于y 轴的切线,则a 的取值范围为. 答案(-∞,-1)∪(3,+∞)解析因为f (x )=x 3-ax 2+⎝ ⎛⎭⎪⎫23a +1x (a ∈R ),所以f ′(x )=3x 2-2ax +23a +1,因为曲线y =f (x )存在两条垂直于y 轴的切线, 所以关于x 的方程f ′(x )=3x 2-2ax +23a +1=0有两个不等的实根, 则Δ=4a 2-12⎝ ⎛⎭⎪⎫23a +1>0,即a 2-2a -3>0,解得a >3或a <-1,所以a 的取值范围是(-∞,-1)∪(3,+∞).13.已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2023(x )等于()A .-sin x -cos xB .sin x -cos xC .-sin x +cos xD .sin x +cos x答案A解析∵f 1(x )=sin x +cos x ,∴f 2(x )=f 1′(x )=cos x -sin x ,f 3(x )=f 2′(x )=-sin x -cos x ,f 4(x )=f 3′(x )=-cos x +sin x ,f 5(x )=f 4′(x )=sin x +cos x ,∴f n (x )的解析式以4为周期重复出现,∵2023=4×505+3,∴f 2023(x )=f 3(x )=-sin x -cos x .14.(2021·新高考全国Ⅰ)若过点(a ,b )可以作曲线y =e x 的两条切线,则()A .e b <aB .e a <bC .0<a <e bD .0<b <e a答案D解析方法一设切点(x 0,y 0),y 0>0,则切线方程为y -b =0e x (x -a ),由⎩⎨⎧ y 0-b =0e x (x 0-a ),y 0=0e x ,得0e x (1-x 0+a )=b ,则由题意知关于x 0的方程0e x (1-x 0+a )=b 有两个不同的解.设f (x )=e x (1-x +a ),则f ′(x )=e x (1-x +a )-e x =-e x (x -a ),由f ′(x )=0得x =a ,所以当x <a 时,f ′(x )>0,f (x )单调递增,当x >a 时,f ′(x )<0,f (x )单调递减,所以f (x )max =f (a )=e a (1-a +a )=e a ,当x <a 时,a -x >0,所以f (x )>0,当x →-∞时,f (x )→0,当x →+∞时,f (x )→-∞,函数f (x )=e x (1-x +a )的大致图象如图所示,因为f (x )的图象与直线y =b 有两个交点,所以0<b <e a .方法二(用图估算法)过点(a ,b )可以作曲线y =e x 的两条切线,则点(a ,b )在曲线y =e x 的下方且在x 轴的上方,得0<b <e a .15.(2022·重庆沙坪坝区模拟)若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=[f ′(x )]′.若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在⎝⎛⎭⎪⎫0,3π4上是凸函数的是________.(填序号)①f (x )=-x 3+3x +4;②f (x )=ln x +2x ;③f (x )=sin x +cos x ;④f (x )=x e x .答案①②③解析对①,f (x )=-x 3+3x +4, f ′(x )=-3x 2+3,f ″(x )=-6x ,当x ∈⎝⎛⎭⎪⎫0,3π4时,f ″(x )<0,故①为凸函数; 对②,f (x )=ln x +2x ,f ′(x )=1x+2, f ″(x )=-1x 2, 当x ∈⎝⎛⎭⎪⎫0,3π4时,f ″(x )<0,故②为凸函数; 对③,f (x )=sin x +cos x , f ′(x )=cos x -sin x ,f ″(x )=-sin x -cos x =-2sin ⎝ ⎛⎭⎪⎫x +π4,当x ∈⎝⎛⎭⎪⎫0,3π4时,f ″(x )<0,故③为凸函数; 对④,f (x )=x e x ,f ′(x )=(x +1)e x , f ″(x )=(x +2)e x ,当x ∈⎝⎛⎭⎪⎫0,3π4时,f ″(x )>0,故④不是凸函数. 16.已知f (x )=e x (e 为自然对数的底数),g (x )=ln x +2,直线l 是f (x )与g (x )的公切线,则直线l 的方程为____________________.答案y =e x 或y =x +1解析设直线l 与f (x )=e x 的切点为(x 1,y 1),则y 1=1e x ,f ′(x )=e x ,∴f ′(x 1)=1e x ,∴切点为(x 1,1e x ),切线斜率k =1e x ,∴切线方程为y -1e x =1e x (x -x 1),即y =1e x ·x -x 11e x +1e x , ①同理设直线l 与g (x )=ln x +2的切点为(x 2,y 2),∴y 2=ln x 2+2,g ′(x )=1x, ∴g ′(x 2)=1x 2, 切点为(x 2,ln x 2+2),切线斜率k =1x 2, ∴切线方程为y -(ln x 2+2)=1x 2(x -x 2),即y =1x 2·x +ln x 2+1, ②由题意知,①与②相同,∴⎩⎨⎧ 1e x =1x 2⇒x 2=1e x -,③-x 11e x +1e x =ln x 2+1,④把③代入④有-x 11e x +1e x =-x 1+1, 即(1-x 1)(1e x -1)=0,解得x 1=1或x 1=0,当x 1=1时,切线方程为y =e x ;当x 1=0时,切线方程为y =x +1,综上,直线l 的方程为y =e x 或y =x +1.。
(1)设函数 y =f (x )在区间(a ,b )上有定义,x 0∈(a ,b ),若 Δx 无限趋近于 0 时,比值Δx =f ′(x )= f ′(x )= 11.导数与导函数的概念Δy f (x 0+Δx )-f (x 0) Δx无限趋近于一个常数 A ,则称 f (x )在 x =x 0 处可导,并称该常数 A 为函数 f (x )在 x =x 0 处的导数(derivative), 记作 f ′(x 0).(2)若 f (x )对于区间(a ,b )内任一点都可导,则 f (x )在各点的导数也随着自变量 x 的变化而变化,因而也是自变量 x 的函数,该函数称为 f (x )的导函数,记作 f ′(x ).2.导数的几何意义函数 y =f (x )在点 x 0 处的导数的几何意义,就是曲线 y =f (x )在点 P (x 0,f (x 0))处的切线的斜率 k ,即 k = f ′(x 0)3.基本初等函数的导数公式基本初等函数f (x )=C (C 为常数)f (x )=x α(α 为常数)f (x )=sin xf (x )=cos xf (x )=e xf (x )=a x (a >0,a ≠1)f (x )=ln xf (x )=log a x (a >0,a ≠1)导函数f ′(x )=0f ′(x )=αx α-f ′(x )=cos_xf ′(x )=-sin_xf ′(x )=e xf ′(x )=a x ln_a1x1x ln a(3)[ ]′= (g (x )≠0).1.(教材改编)f ′(x )是函数 f (x )= x 3+2x +1 的导函数,则 f ′(-1)的值为________.3.设函数 f (x )的导数为 f ′(x ),且 f (x )=f ′( )sin x +cos x ,则 f ′( )=________.上,α 为曲线在点 P 处的切线的倾斜角,则 α 的取值范围是__________.5.(2015· 陕西)设曲线 y =e x 在点(0,1)处的切线与曲线 y = (x >0)上点 P 处的切线垂直,则 P 的坐标为4.导数的运算法则若 f ′(x ),g ′(x )存在,则有 (1)[f (x )±g (x )]′=f ′(x )±g ′(x );(2)[f (x )· g (x )]′=f ′(x )g (x )+f (x )g ′(x );f (x ) f ′(x )g (x )-f (x )g ′(x ) g (x ) g 2(x )【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)f ′(x 0)与(f (x 0))′表示的意义相同.( )(2)求 f ′(x 0)时,可先求 f (x 0)再求 f ′(x 0).()(3)曲线的切线不一定与曲线只有一个公共点.()(4)与曲线只有一个公共点的直线一定是曲线的切线.( )(5)函数 f (x )=sin(-x )的导数是 f ′(x )=cos x .()1 32.如图所示为函数 y =f (x ),y =g (x )的导函数的图象,那么 y =f (x ),y =g (x )的图象可能是________.π π2 44.已知点 P 在曲线 y = 4e x +11x________.例 2 (1)函数 f (x )= 的图象在点(1,-2)处的切线方程为__________.题型一 导数的运算例 1 求下列函数的导数:(1)y =(3x 2-4x )(2x +1);(2)y =x 2sin x ;(3)y =3x e x -2x +e ;思维升华 求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;遇到函数的商的形式时,如能化简则化简,这样可避免使用商的求导法则,减少运算量.(1)f (x )=x (2 016+ln x ),若 f ′(x 0)=2 017,则 x 0=________.(2)若函数 f (x )=ax 4+bx 2+c 满足 f ′(1)=2,则 f ′(-1)=________.题型二 导数的几何意义命题点 1 已知切点的切线方程问题ln x -2xx(2)已知函数 y =f (x )及其导函数 y =f ′(x )的图象如图所示,则曲线 y =f (x )在点 P 处的切线方程是_______________.命题点 2 未知切点的切线方程问题例 4 已知 f (x )=ln x ,g (x )= x 2+mx + (m <0),直线 l 与函数 f (x ),g (x )的图象都相切,且与 f (x )图象的⎪⎩y 0-y 1=f ′(x 1)(x 0-x 1)⎪例 3 (1)与直线 2x -y +4=0 平行的抛物线 y =x 2 的切线方程是__________.(2)已知函数 f (x )=x ln x ,若直线 l 过点(0,-1),并且与曲线 y =f (x )相切,则直线 l 的方程为____________.命题点 3 和切线有关的参数问题1 72 2切点为(1,f (1)),则 m =________.命题点 4 导数与函数图象的关系例 5 如图,点 A (2,1),B (3,0),E (x,0)(x ≥0),过点 E 作 OB 的垂线 l △.记 AOB 在直线 l 左侧部分的面积为 S ,则函数 S =f (x )的图象为下图中的________.(填序号)思维升华 导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面:(1)已知切点 A (x 0,f (x 0))求斜率 k ,即求该点处的导数值:k =f ′(x 0). (2)已知斜率 k ,求切点 A (x 1,f (x 1)),即解方程 f ′(x 1)=k .⎧y 1=f (x 1), (3)若求过点 P (x 0,y 0)的切线方程,可设切点为(x 1,y 1),由⎨ 求解即可. (4)函数图象在每一点处的切线斜率的变化情况反映函数图象在相应点处的变化情况,由切线的倾斜程 度可以判断出函数图象升降的快慢.(1)已知函数 f (x )=x 3-3x ,若过点 A (0,16)且与曲线 y =f (x )相切的直线方程为 y =ax +16,则实数 a 的值是________.(2)若直线 y =2x +m 是曲线 y =x ln x 的切线,则实数 m 的值为________.4.求曲线的切线方程条件审视不准致误典例 若存在过点 O (0,0)的直线 l 与曲线 y =x 3-3x 2+2x 和 y =x 2+a 都相切,求 a 的值.易错分析 由于题目中没有指明点 O (0,0)的位置情况,容易忽略点 O 在曲线 y =x 3-3x 2+2x 上这个隐含条件,进而不考虑 O 点为切点的情况.温馨提醒 对于求曲线的切线方程没有明确切点的情况,要先判断切线所过点是否在曲线上;若所过点在曲线上,要对该点是否为切点进行讨论.[方法与技巧]1.f ′(x 0)代表函数 f (x )在 x =x 0 处的导数值;(f (x 0))′是函数值 f (x 0)的导数,而函数值 f (x 0)是一个常数, 其导数一定为 0,即(f (x 0))′=0.2.对于函数求导,一般要遵循先化简再求导的基本原则.在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.3.未知切点的曲线切线问题,一定要先设切点,利用导数的几何意义表示切线的斜率建立方程. [失误与防范]1.利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.2.求曲线切线时,要分清在点 P 处的切线与过 P 点的切线的区别,前者只有一条,而后者包括了前 者.3.曲线的切线与曲线的交点个数不一定只有一个,这和研究直线与二次曲线相切时有差别.A 组 专项基础训练(时间:40 分钟)1.已知函数 f (x )的导函数为 f ′(x ),且满足 f (x )=2xf ′(1)+ln x ,则 f ′(1)=________.2.已知曲线 y =ln x 的切线过原点,则此切线的斜率为________.7.在平面直角坐标系 xOy 中,若曲线 y =ax 2+ (a ,b 为常数)过点 P (2,-5),且该曲线在点 P 处的切10.设函数 f (x )=ax - ,曲线 y =f (x )在点(2,f (2))处的切线方程为 7x -4y -12=0.3.已知函数 f (x )的导数为 f ′(x ),且满足关系式 f (x )=x 2+3xf ′(2)+ln x ,则 f ′(2)的值等于________.4.设曲线 y =ax -ln x 在点(1,1)处的切线方程为 y =2x ,则 a =________.5.已知 a 为常数,若曲线 y =ax 2+3x -ln x 存在与直线 x +y -1=0 垂直的切线,则实数 a 的取值范围是__________.6.设函数 f (x )=x (x +k )(x +2k )(x -3k ),若 f ′(0)=6,则 k =________.b x线与直线 7x +2y +3=0 平行,则 a +b 的值是______.8.(2015· 课标全国Ⅱ)已知曲线 y =x +ln x 在点(1,1)处的切线与曲线 y =ax 2+(a +2)x +1 相切,则 a =________.9.已知曲线 y =x 3+x -2 在点 P 0 处的切线 l 1 平行于直线 4x -y -1=0,且点 P 0 在第三象限. (1)求 P 0 的坐标;(2)若直线 l ⊥l 1,且 l 也过切点 P 0,求直线 l 的方程.bx(1)求 f (x )的解析式;(2)证明:曲线 y =f (x )上任一点处的切线与直线 x =0 和直线 y =x 所围成的三角形的面积为定值,并求 此定值.B 组 专项能力提升(时间:20 分钟)11.已知函数 f (x )= x +1,g (x )=a ln x ,若在 x = 处函数 f (x )与 g (x )的图象的切线平行,则实数 a 的值13.若函数 f (x )= x 2-ax +ln x 存在垂直于 y 轴的切线,则实数 a 的取值范围是________. )114为________.12.曲边梯形由曲线 y =x 2+1,y =0,x =1,x =2 所围成,过曲线 y =x 2+1 (x ∈[1,2]上一点 P 作切线, 使得此切线从曲边梯形上切出一个面积最大的普通梯形,则这一点的坐标为____________.1214.已知曲线 f (x )=x n +(n ∈N *)与直线 x =1 交于点 P ,设曲线 y =f (x )在点 P 处的切线与 x 轴交点的横 坐标为 x n ,则 log 2 016x 1+log 2 016x 2+…+log 2 016x 2 015 的值为________.15.已知函数 f (x )=ax 3+3x 2-6ax -11,g (x )=3x 2+6x +12 和直线 m :y =kx +9,且 f ′(-1)=0. (1)求 a 的值;(2)是否存在 k ,使直线 m 既是曲线 y =f (x )的切线,又是曲线 y =g (x )的切线?如果存在,求出 k 的值; 如果不存在,请说明理由.。
2021高考数学一轮复习导数及其应用学案理知识点一、导数的差不多运算1.差不多初等函数的导数公式2.导数的运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).3、复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 小题速通1.下列求导运算正确的是( )A.⎝ ⎛⎭⎪⎫x +1x ′=1+1x2B .(log 2x )′=1x ln 2C .(3x )′=3xlog 3eD .(x 2cos x )′=-2sin x2.函数f (x )=(x +2a )(x -a )2的导数为( )A .2(x 2-a 2) B .2(x 2+a 2) C .3(x 2-a 2)D .3(x 2+a 2)3.函数f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值是( )A.193B.163C.133D.1034.(2021·天津高考)已知函数f (x )=(2x +1)e x,f ′(x )为f (x )的导函数,则f ′(0)的值为________.5.函数y =ln 2x +1x的导数为________.易错点1.利用公式求导时,一定要注意公式的适用范畴及符号,如(x n)′=nxn -1中n ≠0且n ∈Q *,(cos x )′=-sin x .2.注意公式不要用混,如(a x )′=a x ln a ,而不是(a x )′=xa x -1.1、已知函数f (x )=sin x -cos x ,若f ′(x )=12f (x ),则tan x 的值为( )A .1B .-3C .-1D .2 2、若函数f (x )=2x+ln x 且f ′(a )=0,则2aln 2a=( )A .-1B .1C .-ln 2D .ln 2知识点二、导数的几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度确实是位移函数s (t )对时刻t 的导数).相应地,切线方程为y -y 0=f ′(x 0)·(x -x 0). 小题速通1.(2020·郑州质检)已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .2D .4 2.设函数f (x )=x ln x ,则点(1,0)处的切线方程是________. 3.已知曲线y =2x 2的一条切线的斜率为2,则切点的坐标为________.4.函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =3x -2,则f (1)+f ′(1)=________. 易错点1.求曲线切线时,要分清在点P 处的切线与过P 点的切线的区别,前者只有一条,而后者包括了前者. 2.曲线的切线与曲线的交点个数不一定只有一个,这和研究直线与二次曲线相切时有差别. 1.若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( )A .-1或-2564B .-1或214C .-74或-2564D .-74或72.(2021·兰州一模)已知直线y =2x +1与曲线y =x 3+ax +b 相切于点(1,3),则实数b 的值为________.知识点三、利用导数研究函数的单调性1.函数f (x )在某个区间(a ,b )内的单调性与f ′(x )的关系(1)若f ′(x )>0,则f (x )在那个区间上是增加的. (2)若f ′(x )<0,则f (x )在那个区间上是减少的. (3)若f ′(x )=0,则f (x )在那个区间内是常数. 2.利用导数判定函数单调性的一样步骤(1)求f ′(x ).(2)在定义域内解不等式f ′(x )>0或f ′(x )<0. (3)依照结果确定f (x )的单调性及单调区间.小题速通1.函数f (x )=2x 3-9x 2+12x +1的单调减区间是( )A .(1,2)B .(2,+∞)C .(-∞,1)D .(-∞,1)和(2,+∞) 2.已知函数f (x )的导函数f ′(x )=ax 2+bx +c 的图象如图所示,则f (x )的图象可能是( )3.已知f (x )=x 2+ax +3ln x 在(1,+∞)上是增函数,则实数a 的取值范畴为( )A .(-∞,-26] B.⎝ ⎛⎦⎥⎤-∞,62 C .[-26,+∞) D .[-5,+∞) 易错点若函数y =f (x )在区间(a ,b )上单调递增,则f ′(x )≥0,且在(a ,b )的任意子区间,等号不恒成立;若函数y =f (x )在区间(a ,b )上单调递减,则f ′(x )≤0,且在(a ,b )的任意子区间,等号不恒成立. 若函数f (x )=x 3+x 2+mx +1是R 上的单调增函数,则m 的取值范畴是________.知识点四、利用导数研究函数的极值与最值1.函数的极大值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都小于x 0点的函数值,称点x 0为函数y =f (x )的极大值点,其函数值f (x 0)为函数的极大值. 2.函数的极小值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都大于x 0点的函数值,称点x 0为函数y =f (x )的极小值点,其函数值f (x 0)为函数的极小值.极大值与极小值统称为极值,极大值点与极小值点统称为极值点. 3.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值. 小题速通1.如图是f (x )的导函数f ′(x )的图象,则f (x )的极小值点的个数为( )A .1B .2C .3D .42.若函数f (x )=x 3+ax 2+3x -9在x =-3时取得极值,则a 的值为( )A .2B .3C .4D .53.(2021·济宁一模)函数f (x )=12x 2-ln x 的最小值为( )A.12B .1C .0D .不存在4.若函数f (x )=12x 2-ax +ln x 有极值,则a 的取值范畴为________.5.设x 1,x 2是函数f (x )=x 3-2ax 2+a 2x 的两个极值点,若x 1<2<x 2,则实数a 的取值范畴是________. 易错点1.f ′(x 0)=0是x 0为f (x )的极值点的既不充分也不必要条件.例如,f (x )=x 3,f ′(0)=0,但x =0不是极值点;又如f (x )=|x |,x =0是它的极小值点,但f ′(0)不存在.2.求函数最值时,易误认为极值点确实是最值点,不通过比较就下结论. 1.(2021·岳阳一模)下列函数中,既是奇函数又存在极值的是( )A .y =x 3B .y =ln(-x )C .y =x e -xD .y =x +2x2.设函数f (x )=x 3-3x +1,x ∈[-2,2]的最大值为M ,最小值为m ,则M +m =________.知识点五、定积分1.定积分的概念在∫ba f (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式. 2.定积分的性质(1) ⎠⎛a b kf (x )d x =k ⎠⎛a b f (x )d x (k 为常数); (2) ⎠⎛a b [f 1(x )±f 2(x )]d x =⎠⎛a b f 1(x )d x ±⎠⎛ab f 2(x )d x ;(3) ⎠⎛ab f (x )d x =⎠⎛ac f (x )d x +⎠⎛cb f (x )d x (其中a <c <b ).3.微积分差不多定理一样地,假如f (x )是区间[a ,b ]上的连续函数,同时F ′(x )=f (x ),那么⎠⎛ab f (x )d x =F (b )-F (a ),那个结论叫做微积分差不多定理,又叫做牛顿-莱布尼茨公式.其中F (x )叫做f (x )的一个原函数.为了方便,常把F (b )-F (a )记作F (x ) ⎪⎪⎪ba,即⎠⎛ab f (x )d x =F (x ) ⎪⎪⎪ba =F (b )-F (a ).小题速通1.若f (x )=⎩⎪⎨⎪⎧lg x ,x >0,x +⎠⎛0a 3t 2d t ,x ≤0,f (f (1))=1,则a 的值为( )A .1B .2C .-1D .-2 2.⎠⎛01(e x+x)d x =________.3.(2020·天津高考)曲线y =x 2与直线y =x 所围成的封闭图形的面积为________. 易错点定积分的几何意义是曲边梯形的面积,但要注意:面积非负,而定积分的结果能够为负. 由曲线y =x 2和直线x =0,x =1,y =14所围成的图形(如图所示)的面积为( )A .23 B.13 C .12 D.14过关检测练习一、选择题1.已知函数f (x )=log a x (a>0且a ≠1),若f ′(1)=-1,则a =( )A .e B.1e C.1e 2 D.122.直线y =kx +1与曲线y =x 2+ax +b 相切于点A(1,3),则2a +b 的值为( )A .-1B .1C .2D .-23.函数y =2x 3-3x 2的极值情形为( )A .在x =0处取得极大值0,但无极小值B .在x =1处取得极小值-1,但无极大值C .在x =0处取得极大值0,在x =1处取得极小值-1D .以上都不对4.若f(x)=-12x 2+m ln x 在(1,+∞)是减函数,则m 的取值范畴是( )A .[1,+∞)B .(1,+∞)C .(-∞,1]D .(-∞,1)5.函数f (x )=(x -3)e x的单调递增区间是( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞)6.已知函数f (x )=x (x -m )2在x =1处取得极小值,则实数m =( )A .0B .1C .2D .37.由曲线y =x 2-1,直线x =0,x =2和x 轴所围成的封闭图形的面积是( )A .⎠⎛02(x 2-1)d x B.⎠⎛02|x 2-1|d x C .⎠⎛02(x 2-1)d x D .⎠⎛01(x 2-1)d x +⎠⎛12(1-x 2)d x8.若函数f (x )=⎩⎪⎨⎪⎧1-2x,x ≤0,x 3-3x +a ,x >0的值域为[0,+∞),则实数a 的取值范畴是( )A .[2,3]B .(2,3]C .(-∞,2]D .(-∞,2) 二、填空题9.若函数f (x )=x +a ln x 不是单调函数,则实数a 的取值范畴是________. 10.已知函数f (x )=ln x -f ′(-1)x 2+3x -4,则f ′(1)=________.11.已知函数f (x )的图象在点M (1,f (1))处的切线方程是y =12x +3,则f (1)+f ′(1)=________.12.已知函数g (x )满足g (x )=g ′(1)e x -1-g (0)x +12x 2,且存在实数x 0,使得不等式2m -1≥g (x 0)成立,则实数m的取值范畴为________. 三、解答题13.已知函数f (x )=x +a x+b (x ≠0),其中a ,b ∈R.(1)若曲线y =f (x )在点P (2,f (2))处的切线方程为y =3x +1,求函数f (x )的解析式; (2)讨论函数f (x )的单调性;(3)若关于任意的a ∈⎣⎢⎡⎦⎥⎤12,2,不等式f (x )≤10在⎣⎢⎡⎦⎥⎤14,1上恒成立,求实数b 的取值范畴.14.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f(x)的单调区间与极值.高考研究课:一 导数运确实是基点、几何意义是重点、定积分应用是潜考点考点 考查频度 考查角度导数的几何意义5年7考 求切线、已知切线求参数、求切点坐标定积分未考查题型一、导数的运算[典例] (1)(2020·惠州模拟)已知函数f (x )=1x cos x ,则f (π)+f ′⎝ ⎛⎭⎪⎫π2=( ) A .-3π2 B .-1π2 C .-3π D .-1π(2)已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 018(x )等于( )A .-sin x -cos xB .sin x -cos xC .sin x +cos xD .cos x -sin x (3)已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)=( ) A .-e B .-1 C .1 D .e 方法技巧1、可导函数的求导步骤(1)分析函数y =f (x )的结构特点,进行化简; (2)选择恰当的求导法则与导数公式求导; (3)化简整理答案. 2、求导运算应遵循的原则求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,如此能够减少运算量,提高运算速度,减少差错. 即时演练1.(2020·江西九校联考)已知y =(x +1)(x +2)(x +3),则y ′=( )A .3x 2-12x +6 B .x 2+12x -11 C .x 2+12x +6 D .3x 2+12x +11 2.已知函数f (x )=x ln x ,若f ′(x 0)=2,则x 0=________.题型二、导数的几何意义导数的几何意义为高考热点内容,考查题型多为选择、填空题,也常显现在解答题的第1问中,难度较低,属中、低档题. 常见的命题角度有: 1求切线方程; 2确定切点坐标;3已知切线求参数值或范畴; 4切线的综合应用.角度一:求切线方程1.已知函数f (x )=ln(1+x )-x +x 2,则曲线y =f (x )在点(1,f (1))处的切线方程是________.角度二:确定切点坐标2.已知函数f (x )=exx(x >0),直线l :x -ty -2=0.若直线l 与曲线y =f (x )相切,则切点横坐标的值为________.角度三:已知切线求参数值或范畴3.(2021·武汉一模)已知a 为常数,若曲线y =ax 2+3x -ln x 上存在与直线x +y -1=0垂直的切线,则实数a 的取值范畴是________.4.若两曲线y =x 2-1与y =a ln x -1存在公切线,则正实数a 的取值范畴是________.角度四:切线的综合应用5.已知函数f (x )=m ln(x +1),g (x )=xx +1(x >-1).(1)讨论函数F (x )=f (x )-g (x )在(-1,+∞)上的单调性;(2)若y =f (x )与y =g (x )的图象有且仅有一条公切线,试求实数m 的值.方法技巧利用导数解决切线问题的方法(1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0). (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k .(3)已知过某点M (x 1,f (x 1))(不是切点)的切线斜率为k 时,常需设出切点A (x 0,f (x 0)),利用k =f x 1-f x 0x 1-x 0求解.题型三、定积分及应用[典例] (1)(2020·东营模拟)设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],2-x ,x ∈1,2],则⎠⎛02f(x)d x 等于( )A.34B.45C.56D .不存在 (2)设f (x )=)⎩⎨⎧1-x 2,x ∈[-1,1,x 2-1,x ∈[1,2],则⎠⎛-12f (x )dx 的值为( )A.π2+43 B.π2+3 C.π4+43 D.π4+3 (3)设a >0,若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =________.方法技巧求定积分的2种方法及注意事项(1)定理法运用微积分差不多定理求定积分时要注意以下几点: ①对被积函数要先化简,再求积分;②求被积函数为分段函数的定积分,依据定积分“对区间的可加性”,分段积分再求和; ③关于含有绝对值符号的被积函数,要先去掉绝对值符号再求积分; ④注意用“F′(x )=f (x )”检验积分的对错. (2)面积法依照定积分的几何意义可利用面积求定积分. 即时演练1.(2020·西安调研)定积分⎠⎛01(2x +e x)d x 的值为( )A .e +2B .e +1C .eD .e -12.直线y =2x +3与抛物线y =x 2所围成封闭图形的面积为________.3.如图,在长方形OABC 内任取一点P ,则点P 落在阴影部分的概率为________.高考真题演练1.(2020·全国卷Ⅱ)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .32.(2021·全国卷Ⅰ)曲线y =x 2+1x在点(1,2)处的切线方程为________.3.(2021·全国卷Ⅱ)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln (x +1)的切线,则b =________. 4.(2020·全国卷Ⅰ)已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a =________. 5.(2020·全国卷Ⅱ)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.高考达标检测一、选择题1.若a =⎠⎛02x d x ,则二项式⎝⎛⎭⎪⎫x -a +1x 6展开式中的常数项是( ) A .20 B .-20 C .-540 D .5402.(2020·衡水调研)曲线y =1-2x +2在点(-1,-1)处的切线方程为( ) A .y =2x +1 B .y =2x -1 C .y =-2x -3 D .y =-2x -23.(2020·济南一模)已知曲线f (x )=ln x 的切线通过原点,则此切线的斜率为( )A .eB .-eC .1eD .-1e4.已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f(x)图象的切点为(1,f (1)),则m 的值为( )A .-1B .-3C .-4D .-25.(2020·南昌二中模拟)设点P 是曲线y =x 3-3x +23上的任意一点,P 点处切线倾斜角α的取值范畴为( )A .⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫5π6,π B.⎣⎢⎡⎭⎪⎫2π3,π C .⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫2π3,π D.⎝ ⎛⎦⎥⎤π2,5π6 6.已知曲线y =1e x +1,则曲线的切线斜率取得最小值时的直线方程为( ) A .x +4y -2=0 B .x -4y +2=0 C .4x +2y -1=0 D .4x -2y -1=0二、填空题7.若a 和b 是运算机在区间(0,2)上产生的随机数,那么函数f(x)=lg (ax 2+4x +4b)的值域为R 的概率为________. 8.已知函数f (x )=e ax+bx (a <0)在点(0,f(0))处的切线方程为y =5x +1,且f (1)+f ′(1)=12.则a ,b 的值分别为________.9.(2021·东营一模)函数f (x )=x ln x 在点P(x 0,f (x 0))处的切线与直线x +y =0垂直,则切点P(x 0,f (x 0))的坐标为________.10.设过曲线f (x )=-e x-x(e 为自然对数的底数)上的任意一点的切线为l 1,总存在过曲线g (x )=mx -3sin x 上的一点处的切线l 2,使l 1⊥l 2,则m 的取值范畴是________. 三、解答题11.已知函数f (x )=13x 3-2x 2+3x (x ∈R)的图象为曲线C .(1)求过曲线C 上任意一点切线斜率的取值范畴;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范畴.12.已知函数f (x )=12x 2-ax +(3-a )ln x ,a ∈R.(1)若曲线y =f (x )在点(1,f (1))处的切线与直线2x -y +1=0垂直,求a 的值; (2)设f (x )有两个极值点x 1,x 2,且x 1<x 2,求证:f (x 1)+f (x 2)>-5.能力提高训练题1.(2020·广东七校联考)已知函数y =x 2的图象在点(x 0,x 20)处的切线为l ,若l 也与函数y =ln x ,x ∈(0,1)的图象相切,则x 0必满足( )A .0<x 0<12B.12<x 0<1 C.22<x 0< 2 D.2<x 0< 32.函数y =f (x )图象上不同两点M (x 1,y 1),N (x 2,y 2)处的切线的斜率分别是k M ,k N ,规定φ(M ,N )=|k M -k N ||MN |(|MN |为线段MN 的长度)叫做曲线y =f (x )在点M 与点N 之间的“弯曲度”.设曲线f (x )=x 3+2上不同两点M (x 1,y 1),N (x 2,y 2),且x 1x 2=1,则φ(M ,N )的取值范畴是________.高考研究课:二、函数单调性必考,导数工具离不了全国卷5年命题分析[典例] (2021·山东高考节选)已知f (x )=a (x -ln x )+2x -1x2,a ∈R ,讨论f (x )的单调性.方法技巧导数法判定函数f (x )在(a ,b )内单调性的步骤(1)求f ′(x );(2)确定f ′(x )在(a ,b )内的符号;(3)作出结论:f ′(x )>0时为增函数;f ′(x )<0时为减函数.[提醒] 研究含参数函数的单调性时,需注意依据参数取值对不等式解集的阻碍进行分类讨论. 即时演练1.(2021·芜湖一模)函数f (x )=e x-e x ,x ∈R 的单调递增区间是( )A.()0,+∞B.()-∞,0C.()-∞,1D.()1,+∞ 2.(2021·全国卷Ⅱ节选)讨论函数f (x )=x -2x +2e x 的单调性,并证明当x >0时,(x -2)e x+x +2>0. 题型二、利用导数研究函数单调性的应用函数的单调性是高考命题的重点,其应用是考查热点.,常见的命题角度有: 1y =f (x )与y =f ′(x )的图象辨识;2比较大小;3已知函数单调性求参数的取值范畴; 4构造函数解不等式.角度一:y =f (x )与y =f ′(x )的图象辨识1.已知函数f (x )=ax 3+bx 2+cx +d ,若函数f (x )的图象如图所示,则一定有( )A .b >0,c >0B .b <0,c >0C .b >0,c <0D .b <0,c <02.已知函数y =f (x )的图象是下列四个图象之一,且其导函数y =f ′(x )的图象如图所示,则该函数的图象是( )角度二:比较大小3.设定义在R 上的函数f (x )的导函数为f ′(x ),且满足f (2-x )=f (x ),f ′xx -1<0,若x 1+x 2>2,x 1<x 2,则( ) A .f (x 1)<f (x 2) B .f (x 1)=f (x 2) C .f (x 1)>f (x 2) D .f (x 1)与f (x 2)的大小不能确定角度三:已知函数单调性求参数的取值范畴4.(2020·宝鸡一检)已知函数f (x )=x 2+4x +a ln x ,若函数f (x )在(1,2)上是单调函数,则实数a 的取值范畴是( )A .(-6,+∞)B .(-∞,-16)C .(-∞,-16]∪[-6,+∞)D .(-∞,-16)∪(-6,+∞)5.(2020·成都模拟)已知函数f (x )=-12x 2+4x -3ln x 在区间[t ,t +1]上不单调,则t 的取值范畴是________.方法技巧由函数的单调性求参数的范畴的方法(1)可导函数f (x )在D 上单调递增(或递减)求参数范畴问题,可转化为f ′(x )≥0(或f ′(x )≤0)对x ∈D 恒成立问题,再参变分离,转化为求最值问题,要注意“=”是否取到.(2)可导函数在某一区间上存在单调区间,实际上确实是f ′(x )>0(或f ′(x )<0)在该区间上存在解集,如此就把函数的单调性问题转化成不等式问题.(3)若已知f (x )在区间I 上的单调性,区间I 中含有参数时,可先求出f (x )的单调区间,令I 是其单调区间的子集,从而可求出参数的取值范畴.(4)若已知f (x )在D 上不单调,则f (x )在D 上有极值点,且极值点不是D 的端点.角度四:构造函数解不等式6.设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (3)=0.则不等式f (x )g (x )<0的解集是( )A .(-3,0)∪(3,+∞)B .(-3,0)∪(0,3)C .(-∞,-3)∪(3,+∞)D .(-∞,-3)∪(0,3)7.设函数f (x )是定义在(-∞,0)上的可导函数,其导函数为f ′(x ),且有2f (x )+xf ′(x )>x 2,则不等式(x +2 018)2f (x +2 018)-f (-1)<0的解集为________.高考真题演练1.(2021·全国卷Ⅰ)若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范畴是( )A .[-1,1] B.⎣⎢⎡⎦⎥⎤-1,13 C.⎣⎢⎡⎦⎥⎤-13,13 D.⎣⎢⎡⎦⎥⎤-1,-13 2.(2020·全国卷Ⅱ)若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范畴是( )A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞) 3.(2021·全国卷Ⅰ)已知函数f (x )=e x(e x-a )-a 2x .(1)讨论f (x )的单调性;(2)若f (x )≥0,求a 的取值范畴.高考达标检测一、选择题1.已知函数f (x )=ln x +x 2-3x (a ∈R),则函数f (x )的单调递增区间为( )A.⎝ ⎛⎭⎪⎫-∞,12 B .(1,+∞) C.⎝ ⎛⎭⎪⎫-∞,12和(1,+∞) D.⎝ ⎛⎭⎪⎫0,12和(1,+∞) 2.(2021·浙江高考)函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是( )3.关于R 上可导的任意函数f (x ),若满足1-xf ′x≤0,则必有( )A .f (0)+f (2)>2f (1)B .f (0)+f (2)≤2f (1)C .f (0)+f (2)<2f (1)D .f (0)+f (2)≥2f (1)4.已知函数f (x )=x sin x ,x 1,x 2∈⎝ ⎛⎭⎪⎫-π2,π2,且f (x 1)<f (x 2),那么( ) A .x 1-x 2>0 B .x 1+x 2>0 C .x 21-x 22>0 D .x 21-x 22<05.(2021·吉林长春三模)定义在R 上的函数f (x )满足:f ′(x )>f (x )恒成立,若x 1<x 2,则e x 1f (x 2)与e x 2f (x 1)的大小关系为( )A .e x 1f (x 2)>e x 2f (x 1)B .e x 1f (x 2)<e x 2f (x 1)C .e x 1f (x 2)=e x 2f (x 1)D .e x 1f (x 2)与e x 2f (x 1)的大小关系不确定6.已知定义在R 上的函数y =f (x )满足条件f (x +4)=-f (x ),且函数y =f (x +2)是偶函数,当x ∈(0,2]时,f (x )=ln x -ax ⎝ ⎛⎭⎪⎫a >12,当x ∈[-2,0)时,f (x )的最小值为3,则a 的值为( ) A .e 2B .eC .2D .1 二、填空题7.设函数f (x )=x (e x-1)-12x 2,则函数f (x )的单调增区间为________.8.已知函数f (x )=x ln x -ax 2-x .若函数f (x )在定义域上为减函数,则实数a 的取值范畴是________. 9.(2020·兰州诊断)若函数f (x )=x 2-e x-ax 在R 上存在单调递增区间,则实数a 的取值范畴是________. 三、解答题10.已知函数f (x )=x -2x+1-a ln x ,a >0.讨论f (x )的单调性.11.(2020·武汉调研)已知函数f (x )=x ln x .(1)若函数g (x )=f (x )+ax 在区间[e 2,+∞)上为增函数,求a 的取值范畴; (2)若对任意x ∈(0,+∞),f (x )≥-x 2+mx -32恒成立,求实数m 的最大值.12.(2020·湖南十校联考)函数f (x )=13x 3+|x -a |(x ∈R ,a ∈R).(1)若函数f (x )在R 上为增函数,求a 的取值范畴;(2)若函数f (x )在R 上不单调时,记f (x )在[-1,1]上的最大值、最小值分别为M (a ),m (a ),求M (a )-m (a ).能力提高训练题1.已知函数f (x )=ln x +(e -a )x -b ,其中e 为自然对数的底数.若不等式f (x )≤0恒成立,则b a的最小值为________.2.已知函数f (x )=(a -1)ln x -a 2x 2+x (a ∈R),g (x )=-13x 3-x +(a -1)ln x .(1)若a ≤12,讨论f (x )的单调性;(2)若过点⎝ ⎛⎭⎪⎫0,-13可作函数y =g (x )-f (x )(x >0)图象的两条不同切线,求实数a 的取值范畴.高考研究课:三、极值、最值两考点,利用导数巧推演全国卷5年命题分析极值 5年6考 求极值、由极值求参数 最值 5年5考 求最值、证明最值的存在性题型一、运用导数解决函数的极值问题函数的极值是每年高考的必考内容,题型既有选择题、填空题,也有解答题,难度适中,为中高档题.常见的命题角度有:1知图判定函数极值;2已知函数求极值;3已知极值求参数值或范畴.角度一:知图判定函数极值1.(2020·赤峰模拟)设函数f (x )在定义域R 上可导,其导函数为f ′(x ),若函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是( )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2)角度二:已知函数求极值2.已知函数f (x )=x -1+aex (a ∈R ,e 为自然对数的底数). (1)若曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,求a 的值;(2)求函数f (x )的极值.角度三:已知极值求参数值或范畴3.设函数f (x )=ln x -1ax 2-bx ,若x =1是f (x )的极大值点,则a 的取值范畴是( )A .(-1,0)B .(-1,+∞)C .(0,1)D .(1,+∞)4.已知函数f (x )=ax -x 2-ln x ,若函数f (x )存在极值,且所有极值之和小于5+ln 2,则实数a 的取值范畴是________.方法技巧利用导数研究函数极值的一样流程题型二、运用导数解决函数的最值问题[典例] (2020·日照模拟)设函数f (x )=(x -1)e x -kx 2(k ∈R). (1)当k =1时,求函数f (x )的单调区间;(2)当k ∈⎝ ⎛⎦⎥⎤12,1时,求函数f (x )在[0,k ]上的最大值M .方法技巧 求函数f (x )在[a ,b ]上的最值的步骤(1)求函数在(a ,b )内的极值;(2)求函数在区间端点的函数值f (a ),f (b );(3)将函数f (x )的极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.即时演练1.若函数f (x )=13x 3+x 2-23在区间(a ,a +5)上存在最小值,则实数a 的取值范畴是( ) A .[-5,0)B .(-5,0)C .[-3,0)D .(-3,0)2.(2020·南昌模拟)已知函数f (x )=(2x -4)e x +a (x +2)2(x >0,a ∈R ,e 是自然对数的底数).(1)若f (x )是(0,+∞)上的单调递增函数,求实数a 的取值范畴;(2)当a ∈⎝ ⎛⎭⎪⎫0,12时,证明:函数f (x )有最小值,并求函数f (x )的最小值的取值范畴.高考真题演练1.(2021·全国卷Ⅱ)若x =-2是函数f (x )=(x 2+ax -1)·ex -1的极值点,则f (x )的极小值为( ) A .-1 B .-2e -3 C .5e -3 D .12.(2020·全国卷Ⅱ)设函数f (x )=3sin πx m.若存在f (x )的极值点x 0满足x 20+[f (x 0)]2<m 2,则m 的取值范畴是( )A .(-∞,-6)∪(6,+∞)B .(-∞,-4)∪(4,+∞)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞)3.(2020·全国卷Ⅱ)已知函数f (x )=x 3+ax 2+bx +c ,下列结论中错误的是( )A .∃x 0∈R ,f (x 0)=0B .函数y =f (x )的图象是中心对称图形C .若x 0是f (x )的极小值点,则f (x )在区间(-∞,x 0)单调递减D .若x 0是f (x )的极值点,则 f ′(x 0)=04.(2020·全国卷Ⅱ)已知函数f (x )=ln x +a (1-x ).(1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范畴.5.(2020·全国卷Ⅱ)已知函数f (x )=x 2e -x .(1)求f (x )的极小值和极大值; (2)当曲线y =f (x )的切线l 的斜率为负数时,求l 在x 轴上截距的取值范畴.6.(2021·江苏高考)已知函数f (x )=x 3+ax 2+bx +1(a >0,b ∈R)有极值,且导函数f ′(x )的极值点是f (x )的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b 关于a 的函数关系式,并写出定义域;(2)证明:b 2>3a ;(3)若f (x ),f ′(x )这两个函数的所有极值之和不小于-72,求a 的取值范畴.7.(2021·山东高考)已知函数f(x)=x2+2cos x,g(x)=e x(cos x-sin x+2x-2),其中e=2.718 28…是自然对数的底数.(1)求曲线y=f(x)在点(π,f(π))处的切线方程;(2)令h(x)=g(x)-af(x)(a∈R),讨论h(x)的单调性并判定有无极值,有极值时求出极值.高考达标检测一、选择题1.函数f (x )=(x 2-1)2+2的极值点是( )A .x =1B .x =-1C .x =1或-1或0D .x =0 2.已知函数f (x )=x 3+ax 2+bx -a 2-7a 在x =1处取得极大值10,则a b 的值为( )A .-23B .-2C .-2或-23D .2或-233.(2020·浙江瑞安中学月考)已知函数f (x )=x 3+bx 2+cx 的图象如图所示,则x 21+x 22等于( )A.23B.43C.83D.163题:①f (x )的解析式为:f (x )=x 3-4x ,x ∈[-2,2];②f (x )的极值点有且仅有一个;③f (x )的最大值与最小值之和等于零.其中正确的命题个数为( )A .0B .1C .2D .3 5.(2021·长沙二模)已知函数f (x )=x x 2+a (a >0)在[1,+∞)上的最大值为33,则a 的值为( ) A.3-1 B.34 C.43 D.3+16.已知直线l 1:y =x +a 分别与直线l 2:y =2(x +1)及曲线C :y =x +ln x 交于A ,B 两点,则A ,B 两点间距离的最小值为( ) A.355 B .3 C.655 D .3 2二、填空题7.若函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)内存在最小值,则实数k 的取值范畴是________.8.已知函数f (x )=e x x 2-k ⎝ ⎛⎭⎪⎫2x +ln x ,若x =2是函数f (x )的唯独一个极值点,则实数k 的取值范畴为________. 9.(2020·湘中名校联考)已知函数g (x )=a -x 21e≤x ≤e,e 为自然对数的底数与h (x )=2ln x 的图象上存在关于x 轴对称的点,则实数a 的取值范畴是________.三、解答题10.已知函数f (x )=⎩⎪⎨⎪⎧ -x 3+x 2,x <1,a ln x ,x ≥1.(1)求f (x )在区间(-∞,1)上的极小值和极大值点;(2)求f (x )在[-1,e](e 为自然对数的底数)上的最大值.11.设函数f (x )=12x 2-(a +1)x +a ln x ,a >0. (1)求函数f (x )的单调区间;(2)讨论函数f (x )的零点个数.12.已知函数f(x)=ln x+x2-ax(a∈R).(1)当a=3时,求函数f(x)的单调区间;(2)若函数f(x)有两个极值点x1,x2,且x1∈(0,1],证明f(x1)-f(x2)≥-34+ln 2.能力提高训练题1.若函数f(x)=x3+ax2+bx的图象与x轴相切于点(c,0),且f(x)有极大值4,则c=( ) A.-3 B.-1C.1 D.32.已知函数f (x )=12x 2+(1-m )x +ln x .(1)若函数f (x )存在单调递减区间,求实数m 的取值范畴;(2)设x 1,x 2(x 1<x 2)是函数f (x )的两个极值点,若m ≥72,求f (x 1)-f (x 2)的最小值.高考研究课:四、综合问题是难点,3大题型全冲关全国卷5年命题分析[典例] 一辆火车前行每小时电力的消耗费用与火车行驶速度的立方成正比,已知当速度为20 km/h 时,每小时消耗的电价值40元,其他费用每小时需400元,火车的最高速度为100 km/h ,火车以何速度行驶才能使从甲城开往乙城的总费用最少? 方法技巧利用导数解决生活中的优化问题的4步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y =f (x );(2)求函数的导数f ′(x ),解方程f ′(x )=0;(3)比较函数在区间端点和f ′(x )=0的点的函数值的大小,最大(小)者为最大(小)值; (4)回来实际问题作答. 即时演练1.已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x -234,则使该生产厂家猎取最大年利润的年产量为( )A .13万件B .11万件C.9万件D.7万件2.据环保部门测定,某处的污染指数与邻近污染源的强度成正比,与到污染源距离的平方成反比,比例常数为k(k >0).现已知相距18 km的A,B两家化工厂(污染源)的污染强度分别为a,b,它们连线上任意一点C处的污染指数y等于两化工厂对该处的污染指数之和.设AC=x(km).(1)试将y表示为x的函数;(2)若a=1,且x=6时,y取得最小值,试求b的值.题型二、利用导数研究函数的零点或方程根[典例] 已知函数f(x)=(x+a)e x,其中e是自然对数的底数,a∈R.(1)求函数f(x)的单调区间;(2)当a<1时,试确定函数g(x)=f(x-a)-x2的零点个数,并说明理由.方法技巧利用导数研究零点或方程根的方法研究方程根的情形,能够通过导数研究函数的单调性、最大值、最小值、变化趋势等,依照题目要求,画出函数图象的走势规律,标明函数极(最)值的位置,通过数形结合的思想去分析问题,能够使问题的求解有一个清晰、直观的整体展现. 即时演练1.已知函数f (x )=e 2x-ax 2+bx -1,其中a ,b ∈R ,e 为自然对数的底数,若f (1)=0,f ′(x )是f (x )的导函数,函数f ′(x )在区间(0,1)内有两个零点,则a 的取值范畴是( )A .(e 2-3,e 2+1) B .(e 2-3,+∞) C .(-∞,2e 2+2)D .(2e 2-6,2e 2+2)2.(2021·西安一模)已知函数f (x )=x +1+ax-a ln x .若函数y =f (x )的图象在x =1处的切线与直线2x +y -1=0平行.(1)求a 的值;(2)若方程f (x )=b 的区间[1,e]上有两个不同的实数根,求实数b 的取值范畴.题型二、利用导数研究与不等式有关的问题导数在不等式中的应用问题是每年高考的必考内容,且以解答题的形式考查,难度较大,属中高档题. 常见的命题角度有: 1证明不等式; 2不等式恒成立问题.角度一:证明不等式1.已知函数f (x )=ln x -ax 2+(2-a )x (a >0).(1)讨论函数f (x )的单调性;(2)证明:当0<x <1a时,f ⎝ ⎛⎭⎪⎫1a +x >f ⎝ ⎛⎭⎪⎫1a -x ;(3)设函数y =f (x )的图象与x 轴交于A ,B 两点,线段AB 的中点的横坐标为x 0,证明:f ′(x 0)<0.方法技巧利用导数证明不等式的方法能够从所证不等式的结构和特点动身,结合已有的知识利用转化与化归思想,构造一个新的函数,再借助导数确定函数的单调性,利用单调性实现问题的转化,从而使不等式得到证明,其一样步骤是:构造可导函数→研究单调性或最值→得出不等关系→整理得出结论.如:证明:f (x )>g (x )(x ∈D ),令F (x )=f (x )-g (x ),x ∈D ,只需证明F (x )min >0(x ∈D )即可,从而把证明不等式问题转化求F (x )min 问题.角度二:不等式恒成立问题2.(2021·四川高考)设函数f (x )=ax 2-a -ln x ,其中a ∈R.(1)讨论f (x )的单调性;(2)确定a 的所有可能取值,使得f (x )>1x-e 1-x在区间(1,+∞)内恒成立(e =2.718…为自然对数的底数).方法技巧1.利用导数研究不等式恒成立问题的思路第一要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范畴;也可分离变量,构造函数,直截了当把问题转化为函数的最值问题. 2.不等式成立(恒成立)问题常见转化方法(1)f (x )≥a 恒成立⇒f (x )min ≥a ,f (x )≥a 成立⇒f (x )max ≥a . (2)f (x )≤b 恒成立⇔f (x )max ≤b ,f (x )≤b 成立⇔f (x )min ≤b . (3)f (x )>g (x )恒成立F x =f x -g xF (x )min >0.(4)①∀x 1∈M ,∀x 2∈N ,f (x 1)>g (x 2)⇔f (x 1)min >g (x 2)max .②∀x 1∈M ,∃x 2∈N ,f (x 1)>g (x 2)⇔f (x 1)min >g (x 2)min .③∃x 1∈M ,∃x 2∈N ,f (x 1)>g (x 2)⇔f (x 1)max >g (x )min .④∃x 1∈M ,∀x 2∈N ,f (x 1)>g (x 2)⇔f (x 1)max >g (x 2)max .高考真题演练1.(2021·全国卷Ⅰ)已知函数f (x )=a e 2x+(a -2)e x-x .(1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范畴.2.(2021·全国卷Ⅲ)已知函数f (x )=x -1-a ln x .(1)若f (x )≥0,求a 的值;(2)设m 为整数,且关于任意正整数n ,⎝ ⎛⎭⎪⎫1+12·⎝ ⎛⎭⎪⎫1+122·…·⎝ ⎛⎭⎪⎫1+12n <m ,求m 的最小值.3.(2021·全国卷Ⅰ)已知函数f(x)=(x-2)e x+a(x-1)2有两个零点.(1)求a的取值范畴;(2)设x1,x2是f(x)的两个零点,证明:x1+x2<2.4.(2020·全国卷Ⅱ)设函数f(x)=e mx+x2-mx.(1)证明:f(x)在(-∞,0)单调递减,在(0,+∞)单调递增;(2)若关于任意x1,x2∈[-1,1],都有|f(x1)-f(x2)|≤e-1,求m的取值范畴.高考达标检测1.(2020·全国卷Ⅰ)设函数f (x )=a ln x +1-a 2x 2-bx (a ≠1),曲线y =f (x )在点(1,f (1))处的切线斜率为0.(1)求b ;(2)若存在x 0≥1,使得f (x 0)<aa -1,求a 的取值范畴.2.已知函数f (x )=ln x -a x +a x2(a ∈R).(1)若a =1,求函数f (x )的极值;(2)若f (x )在[1,+∞)内为单调增函数,求实数a 的取值范畴; (3)关于n ∈N *,求证:11+12+22+12+33+12+…+n n +12<ln(n +1).3.已知函数f (x )=sin x -x cos x (x ≥0).(1)求函数f (x )的图象在⎝⎛⎭⎪⎫π2,1处的切线方程;(2)若对任意x ∈(0,+∞),不等式f (x )<ax 3恒成立,求实数a 的取值范畴; (3)设m =∫π20f(x)d x ,g(x)=6m 4-πx 2f(x),证明:⎣⎢⎡⎦⎥⎤1+g ⎝ ⎛⎭⎪⎫13⎣⎢⎡⎦⎥⎤1+g ⎝ ⎛⎭⎪⎫132·…·⎣⎢⎡⎦⎥⎤1+g ⎝ ⎛⎭⎪⎫13n <e .4.(2021·天津高考)设a ∈Z ,已知定义在R 上的函数f (x )=2x 4+3x 3-3x 2-6x +a 在区间(1,2)内有一个零点x 0,g (x )为f (x )的导函数.(1)求g (x )的单调区间;(2)设m ∈[1,x 0)∪(x 0,2],函数h (x )=g (x )(m -x 0)-f (m ),求证:h (m )h (x 0)<0;(3)求证:存在大于0的常数A ,使得关于任意的正整数p ,q ,且pq∈[1,x 0)∪(x 0,2],满足⎪⎪⎪⎪⎪⎪p q-x 0≥1Aq 4.。
2021年高考数学一轮复习第14课时导数的概念及运算教学案教学目标:理解导数的实际背景,会求函数的切线;掌握导函数的概念,熟记基本初等函数的导数及导数的四则运算公式。
一、基础训练1.函数从到的平均变化率为 ,若用表示,表示,则平均变化率可以表示为 .2.设函数f (x )在(0,+∞)内可导,且f (e x )=x +e x ,则f ′(1)=________.3.函数y =x +1x 在[x ,x +Δx ]上的平均变化率Δy Δx=________;该函数在x =1处的导数是________.4. 如图,函数y =f (x )的图象在点P 处的切线方程是y =-x +8,则f (5)+f ′(5)=______.5.y =x +sin x 在点(0,0)处的切线方程是________.6.函数f (x )=x 3-3x ,若过点A (0,16)且与曲线y =f (x )相切的切线方程为y =ax +16,则实数a 的值是________.7已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 015(x )=________.8.函数f (x )的导函数为f ′(x ),且满足f (x )=3x 2+2x ·f ′(2),则f ′(5)=________.一、合作探究例1. 利用导数的定义求函数的导数。
(1)(2)变式训练1::1. 函数在区间上的平均变化率是2.求下列函数的导数(1) ; (2) ; (3) ; (4) 例2. (1)一质点的运动方程是(1)求时的速度;(2)求该质点运动的加速度.(2)一物体的运动方程是则物体在时的瞬时速度是m/s.例3. 已知直线l与曲线相切,分别求直线l 的方程,使之满足:(1)切点为;(2)经过点.变式训练3. (1)曲线在点处的切线方程为(2) 已知函数,则例4. 已知函数32()(1)(2)(,)f x x a x a a x b a b R =+--++∈(1) 若函数的图像经过原点,且在原点处的切线斜率为,求的值;(2) 若曲线存在两条垂直于y 轴的切线,求a 的取值范围.变式训练4: 已知直线l 与曲线相切,分别求l 的方程,使之满足:(1)切点为; (2)经过点; (3)平行于直线三、能力提升1. 半径为的圆受热均匀膨胀,若半径增加了,则圆的面积的平均膨胀率是 .2. 某港口在一天24小时内潮水的高度近似满足关系()53sin()(024)126S t t t ππ=+≤≤,其中S 的单位m ,t 的单位是h ,则18点时潮水起落的速度是 m/h .3. 已知点P 在曲线上,为曲线在点P 处的切线的倾斜角,则的取值范围是4. 设函数,曲线在点处的切线方程为则曲线在点处的切线方程是四、当堂训练、1.已知上一点及临近一点,则=2. 设函数1()(,)f x ax a b Z x b=+∈+,曲线在点处的切线方程为(1)求的解析式;(2)证明:曲线上任一点处的切线与直线和直线所围成的三角形的面积为定值,并求此定值.。
高考数学一轮复习 第十四讲 导数的概念及其运算 班级________ 姓名________ 考号________ 日期________ 得分________一、选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内.)1.下列结论不正确的是( )A .若y =3,则y ′=0B .若y =1x ,则y ′=-12xC .若y =-x ,则y ′=-12xD .若y =3x ,则y ′=3解析:∵y ′=⎝ ⎛⎭⎪⎫1x ′=(x -12)′=-12x -32=-12x3, ∴选B.答案:B评析:简单函数的求导,关键是将函数关系式合理地转化为可以直接应用公式的基本函数的模式.2.已知奇函数y =f (x )在区间(-∞,0]上的解析式为f (x )=x 2+x ,则切点横坐标为1的切线方程是( )A .x +y +1=0B .x +y -1=0C .3x -y -1=0D .3x -y +1=0解析:由题意得,x >0时,-x <0,f (-x )=(-x )2+(-x )=x 2-x .又因为f (x )为奇函数,所以f (x )=-f (-x )=-x 2+x .又函数f (x )过(1,0),k =f ′(1)=-1.所以所求的切线方程为y -0=-1×(x -1),即x +y -1=0.答案:B3.已知直线y =kx +1与曲线y =x 3+ax +b 切于点(1,3),则b 的值为( )A .3B .-3C .5D .-5解析:∵点(1,3)在直线y =kx +1上,∴k =2.∴2=f ′(1)=3×12+a ⇒a =-1.∴f (x )=x 3-x +b .∵点(1,3)在曲线上,∴b =3.故选A.答案:A评析:本题考查导数的几何意义和曲线方程求法的综合应用.4.(2010·江西)若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)=( )A .-1B .-2C .2D .0解析:∵f ′(x )=4ax 3+2bx ,∴f ′(-x )=-4ax 3-2bx =-f ′(x ),∴f ′(-1)=-f ′(1)=-2.答案:B5.(2010·全国Ⅱ)若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( )A .a =1,b =1B .a =-1,b =1C .a =1,b =-1D .a =-1,b =-1解析:求导得y ′=2x +a ,因此曲线y =x 2+ax +b 在点(0,b )处的切线l 的方程是x -y +1=0,所以切线l 的斜率k =1=y ′|x =0,且点(0,b )在切线l 上,于是有⎩⎪⎨⎪⎧ 0+a =10-b +1=0,解得⎩⎪⎨⎪⎧ a =1b =1.答案:A6.(2010·辽宁)已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( )A.⎝ ⎛⎭⎪⎫0,π4B.⎝ ⎛⎭⎪⎫π4,π2 C.⎝ ⎛⎭⎪⎫π2,3π4 D.⎣⎢⎡⎭⎪⎫3π4,π 解析:y ′=-4e x (e x +1)2=-4e x e 2x +2e x +1.设t =e x ∈(0,+∞),则y ′=-4t t 2+2t +1=-4⎝ ⎛⎭⎪⎫t +1t +2,∵t +1t ≥2,∴y ′∈[-1,0),α∈⎣⎢⎡⎭⎪⎫3π4,π. 答案:D二、填空题:(本大题共4小题,每小题6分,共24分,把正确答案填在题后的横线上.)7.曲线y =x 2-2x +a 与直线y =3x +1相切时,常数a 的值是________.解析:y ′=2x -2,令y ′=3得x =52, 代入y =3x +1得y =172,将⎝ ⎛⎭⎪⎫52,172代入y =x 2-2x +a 得a =294. 答案:2948.已知函数f (x )的导函数为f ′(x ),且满足f (x )=3x 2+2xf ′(2),则f ′(5)=________.解析:对f (x )=3x 2+2xf ′(2)求导数,得f ′(x )=6x +2f ′(2).令x =2,得f ′(2)=-12.再令x =5,得f ′(5)=6×5+2f ′(2)=6.答案:69.若曲线f (x )=ax 3+ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.解析:f ′(x )=3ax 2+1x, 因为存在垂直于y 轴的切线,则f ′(x )=0在x >0时有解,即3ax 2+1x=0有解, 即3a =-1x 3, ∵-1x 3<0, ∴当3a <0,即a <0时,方程有解,所以a 的取值范围为(-∞,0).答案:(-∞,0)10.(2010·江苏)函数y =x 2(x >0)的图象在点(a k ,a 2k )处的切线与x 轴的交点的横坐标为a k +1,其中k ∈N *.若a 1=16,则a 1+a 3+a 5的值是________.解析:∵y ′=2x ,∴过点(a k ,a 2k )处的切线方程为y -a 2k =2a k (x -a k ),又该切线与x轴的交点为(a k +1,0),所以a k +1=12a k ,即数列{a k }是等比数列,首项a 1=16,其公比q =12,∴a 3=4,a 5=1,∴a 1+a 3+a 5=21.答案:21三、解答题:(本大题共3小题,11、12题13分,13题14分,写出证明过程或推演步骤.)11.已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限.(1)求P 0的坐标;(2)若直线l ⊥l 1,且l 也过切点P 0,求直线l 的方程.解:(1)由y =x 3+x -2,得y ′=3x 2+1,由已知得3x 2+1=4,解之得x =±1.当x =1时,y =0;当x =-1时,y =-4.又∵点P 0在第三象限,∴切点P 0的坐标为(-1,-4).(2)∵直线l ⊥l 1,l 1的斜率为4,∴直线l 的斜率为-14. ∵l 过切点P 0,点P 0的坐标为(-1,-4),∴直线l 的方程为y +4=-14(x +1),即x +4y +17=0. 12.已知函数f (x )=x 3+x -16,(1)求曲线y =f (x )在点(2,-6)处的切线的方程;(2)直线l 为曲线y =f (x )的切线,且经过原点,求直线l 的方程及切点坐标;(3)如果曲线y =f (x )的某一切线与直线y =-14x +3垂直,求切点坐标与切线的方程. 分析:首先要判断已知点是否在曲线上,再根据切线的斜率即导数值列方程解决问题. 解:(1)∵f (2)=23+2-16=-6,∴点(2,-6)在曲线上.∵f ′(x )=(x 3+x -16)′=3x 2+1,∴在点(2,-6)处的切线的斜率为 k =f ′(2)=3×22+1=13.∴切线的方程为y =13(x -2)+(-6).即y =13x -32.(2)解法一:设切点为(x 0,y 0),则直线l 的斜率为f ′(x 0)=3x 20+1,∴直线l 的方程为:y =(3x 20+1)(x -x 0)+x 30+x 0-16. 又∵直线l 过点(0,0),∴0=(3x 20+1)(-x 0)+x 30+x 0-16,整理得x 30=-8,∴x 0=-2,y 0=(-2)3+(-2)-16=-26,∴k =3(-2)2+1=13,∴直线l 的方程为y =13x ,切点坐标为(-2,-26).解法二:设直线l 的方程为y =kx ,切点为(x 0,y 0), 则k =y 0-0x 0-0=x 30+x 0-16x 0. 又∵k =f ′(x 0)=3x 20+1, ∴x 30+x 0-16x 0=3x 20+1,解得x 0=-2, ∴y 0=(-2)3+(-2)-16=-26, k =3(-2)2+1=13.∴直线l 的方程为y =13x ,切点坐标为(-2,-26).(3)∵切线与直线y =-x 4+3垂直, ∴斜率k =4,∴设切点为(x 0,y 0),则f ′(x 0)=3x 20+1=4,∴x 0=±1,∴⎩⎪⎨⎪⎧ x 0=1y 0=-14或⎩⎪⎨⎪⎧ x 0=-1y 0=-18.即切点坐标为(1,-14)或(-1,-18).切线方程为y =4(x -1)-14或y =4(x +1)-18.即y =4x -18或y =4x -14.评析:解题过程中,很容易把所给的点当作曲线上的点,错误原因是没有把点代入方程进行检验.13.设函数f (x )=ax +1x +b(a ,b ∈Z ),曲线y =f (x )在点(2,f (2))处的切线方程为y =3.(1)求f (x )的解析式;(2)证明:函数y =f (x )的图象是一个中心对称图形,并求其对称中心;(3)证明:曲线y =f (x )上任一点的切线与直线x =1和直线y =x 所围的三角形的面积为定值,并求出此定值.解:(1)f ′(x )=a -1(x +b )2. 于是⎩⎪⎨⎪⎧ 2a +12+b =3,a -1(2+b )2=0,解得⎩⎪⎨⎪⎧ a =1,b =-1或⎩⎪⎨⎪⎧ a =94,b =-83.∵a ,b ∈Z ,∴f(x)=x +1x -1. (2)证明:已知函数y 1=x ,y 2=1x都是奇函数, ∴函数g(x)=x +1x也是奇函数,其图象是以原点为中心的中心对称图形.而f(x)=x +1x -1=(x -1)+1(x -1)+1, 可知f(x)的图象是由g(x)的图象沿x 轴正方向向右平移1个单位,再沿y 轴正方向向上平移1个单位得到的.故函数f(x)的图象是以点(1,1)为中心的中心对称图形.(3)证明:在曲线上任取一点⎝⎛⎭⎪⎫x 0,x 0+1x 0-1, 由f′(x 0)=1-1(x 0-1)2,知过此点的切线方程为 y -x 20-x 0+1x 0-1=⎣⎢⎡⎦⎥⎤1-1(x 0-1)2(x -x 0). 令x =1,得y =x 0+1x 0-1, ∴切线与直线x =1交点为⎝ ⎛⎭⎪⎫1,x 0+1x 0-1. 令y =x ,得x =2x 0-1,∴切线与直线y =x 交点为(2x 0-1,2x 0-1).直线x =1与y =x 交点为(1,1).从而所围的三角形的面积为12⎪⎪⎪⎪⎪⎪x 0+1x 0-1-1·|2x 0-1-1|=12⎪⎪⎪⎪⎪⎪2x 0-1·|2x 0-2|=2. ∴所围的三角形的面积为定值2.。
课后限时集训14导数的概念及运算 建议用时:45分钟一、选择题1.函数y =ln(2x 2+1)的导数是( ) A.12x 2+1B.4x2x 2+1C.4x2x 2+1ln 10D.42x 2+1log 2eB [y ′=12x 2+1·4x =4x2x 2+1,故选B.]2.(2019·成都模拟)已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(e)+lnx (其中e 为自然对数的底数),则f ′(e)=( )A .1B .-1C .-eD .-e -1D [由已知得f ′(x )=2f ′(e)+1x ,令x =e ,可得f ′(e)=2f ′(e)+1e ,则f ′(e)=-1e.故选D.]3.一质点沿直线运动,如果由始点起经过t 秒后的位移为s =13t 3-3t 2+8t ,那么速度为零的时刻是( )A .1秒末B .1秒末和2秒末C .4秒末D .2秒末和4秒末D [∵s ′(t )=t 2-6t +8,由导数的定义可知v =s ′(t ),令s ′(t )=0,得t =2或4,即2秒末和4秒末的速度为零,故选D.]4.(2019·贵阳模拟)曲线y =x ln x 在点(e ,e)处的切线方程为( ) A .y =2x -e B .y =-2x -e C .y =2x +eD .y =-x -1A [对y =x ln x 求导可得y ′=ln x +1,则曲线在点(e ,e)处的切线斜率为ln e +1=2,因此切线方程为y -e =2(x -e),即y =2x -e.故选A.]5.已知直线y =ax 是曲线y =ln x 的切线,则实数a =( )A.12 B.12eC.1eD.1e2 C [设切点坐标为(x 0,ln x 0),由y =ln x 的导函数为y ′=1x知切线方程为y -ln x 0=1x 0(x -x 0),即y =x x 0+ln x 0-1.由题意可知⎩⎪⎨⎪⎧a =1x 0,ln x 0-1=0,解得a =1e.故选C.]二、填空题6.已知函数y =f (x )及其导函数y =f ′(x )的图像如图所示,则曲线y =f (x )在点P 处的切线方程是________.x -y -2=0 [根据导数的几何意义及图像可知,曲线y =f (x )在点P 处的切线的斜率k =f ′(2)=1,又过点P (2,0),所以切线方程为x -y -2=0.]7.若曲线f (x )=ax 3+ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________. (-∞,0) [由题意,可知f ′(x )=3ax 2+1x ,又存在垂直于y 轴的切线,所以3ax 2+1x=0,即a =-13x3(x >0),故a ∈(-∞,0).]8.设函数f (x )=x 3+ax 2,若曲线y =f (x )在点P (x 0,f (x 0))处的切线方程为x +y =0,则点P 的坐标为______.(1,-1)或(-1,1) [由题意知,f ′(x )=3x 2+2ax ,所以曲线y =f (x )在点P (x 0,f (x 0))处的切线斜率为f ′(x 0)=3x 20+2ax 0,又切线方程为x +y =0,所以x 0≠0,且⎩⎪⎨⎪⎧3x 20+2ax 0=-1,x 0+x 30+ax 20=0,解得⎩⎪⎨⎪⎧x 0=-1,a =2或⎩⎪⎨⎪⎧x 0=1,a =-2,所以当⎩⎪⎨⎪⎧ x 0=1,a =-2时,点P 的坐标为(1,-1);当⎩⎪⎨⎪⎧x 0=-1,a =2时,点P 的坐标为(-1,1).]三、解答题9.已知函数f (x )=x 3-4x 2+5x -4.(1)求曲线f (x )在点(2,f (2))处的切线方程; (2)求经过点A (2,-2)的曲线f (x )的切线方程. [解] (1)∵f ′(x )=3x 2-8x +5,∴f ′(2)=1,又f (2)=-2,∴曲线在点(2,f (2))处的切线方程为y +2=x -2, 即x -y -4=0.(2)设曲线与经过点A (2,-2)的切线相切于点P (x 0,x 30-4x 20+5x 0-4), ∵f ′(x 0)=3x 20-8x 0+5,∴切线方程为y -(-2)=(3x 20-8x 0+5)(x -2), 又切线过点P (x 0,x 30-4x 20+5x 0-4),∴x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2),整理得(x 0-2)2(x 0-1)=0, 解得x 0=2或1,∴经过点A (2,-2)的曲线f (x )的切线方程为x -y -4=0或y +2=0. 10.已知函数f (x )=13x 3-2x 2+3x (x ∈R )的图像为曲线C .(1)求过曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.[解] (1)由题意得f ′(x )=x 2-4x +3, 则f ′(x )=(x -2)2-1≥-1,即过曲线C 上任意一点切线斜率的取值范围是[-1,+∞).(2)设曲线C 的其中一条切线的斜率为k ,则由已知(2)中条件并结合(1)中结论可知,⎩⎪⎨⎪⎧k ≥-1,-1k≥-1,解得-1≤k <0或k ≥1,故由-1≤x 2-4x +3<0或x 2-4x +3≥1, 得x ∈(-∞,2-2]∪(1,3)∪[2+2,+∞).1.(2018·全国卷Ⅰ)设函数f (x )=x 3+(a -1)x 2+ax .若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( )A .y =-2xB .y =-xC .y =2xD .y =xD [因为函数f (x )=x 3+(a -1)x 2+ax 为奇函数,所以f (-x )=-f (x ),所以(-x )3+(a -1)(-x )2+a (-x )=-[x 3+(a -1)x 2+ax ],所以2(a -1)x 2=0,因为x ∈R ,所以a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x .故选D.]2.曲线y =e x 在点(4,e 2)处的切线与坐标轴所围成的三角形的面积为( )A .92e 2B .4e 2C .2e 2D .e 2D [易知曲线y =e x 在点(4,e 2)处的切线斜率存在,设其为k .∵y ′=12e x ,∴k =12e=12e 2,∴切线方程为y -e 2=12e 2(x -4),令x =0,得y =-e 2,令y =0,得x =2,∴所求面积为S =12×2×|-e 2|=e 2.]3.若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =e x的切线,则b =________. 0或1 [设直线y =kx +b 与曲线y =ln x +2的切点为(x 1,y 1),与曲线y =e x的切点为(x 2,y 2),y =ln x +2的导数为y ′=1x ,y =e x 的导数为y ′=e x ,可得k =e x2=1x 1.又由k=y 2-y 1x 2-x 1=e x2-ln x 1-2x 2-x 1,消去x 2,可得(1+ln x 1)(x 1-1)=0,则x 1=1e或x 1=1,则直线y =kx +b 与曲线y =ln x +2的切点为⎝ ⎛⎭⎪⎫1e ,1或(1,2),与曲线y =e x 的切点为(1,e)或(0,1),所以k =e -11-1e=e 或k =1-20-1=1,则切线方程为y =e x 或y =x +1,可得b =0或1.]4.设函数f (x )=ax -bx,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0. (1)求f (x )的解析式;(2)证明曲线f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.[解] (1)方程7x -4y -12=0可化为y =74x -3,当x =2时,y =12.又因为f ′(x )=a +b x2,所以⎩⎪⎨⎪⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3,所以f (x )=x -3x.(2)证明:设P (x 0,y 0)为曲线y =f (x )上任一点,由y ′=1+3x2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0),即y -⎝ ⎛⎭⎪⎫x 0-3x 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0).令x =0,得y =-6x 0,所以切线与直线x =0的交点坐标为⎝ ⎛⎭⎪⎫0,-6x 0.令y =x ,得y =x=2x 0,所以切线与直线y =x 的交点坐标为(2x 0,2x 0).所以曲线y =f (x )在点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积S =12⎪⎪⎪⎪⎪⎪-6x 0|2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形面积为定值,且此定值为6.1.定义1:若函数f (x )在区间D 上可导,即f ′(x )存在,且导函数f ′(x )在区间D 上也可导,则称函数f (x )在区间D 上存在二阶导数,记作f ″(x )=[f ′(x )]′.定义2:若函数f (x )在区间D 上的二阶导数恒为正,即f ″(x )>0恒成立,则称函数f (x )在区间D 上为凹函数.已知函数f (x )=x 3-32x 2+1在区间D 上为凹函数,则x 的取值范围是________.⎝ ⎛⎭⎪⎫12,+∞ [因为f (x )=x 3-32x 2+1,所以f ′(x )=3x 2-3x ,f ″(x )=6x -3, 令f ″(x )>0得x >12,故x 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.]2.已知函数f (x )=ax 3+bx 2+cx 在x =±1处取得极值,且在x =0处的切线的斜率为-3.(1)求f (x )的解析式;(2)若过点A (2,m )可作曲线y =f (x )的三条切线,求实数m 的取值范围. [解] (1)f ′(x )=3ax 2+2bx +c ,依题意⎩⎪⎨⎪⎧f ′1=3a +2b +c =0,f ′-1=3a -2b +c =0⇒⎩⎪⎨⎪⎧b =0,3a +c =0.又f ′(0)=-3, 所以c =-3,所以a =1, 所以f (x )=x 3-3x . (2)设切点为(x 0,x 30-3x 0), 因为f ′(x )=3x 2-3, 所以f ′(x 0)=3x 20-3,所以切线方程为y -(x 30-3x 0)=(3x 20-3)(x -x 0).又切线过点A(2,m),所以m-(x30-3x0)=(3x20-3)(2-x0),所以m=-2x30+6x20-6,令g(x)=-2x3+6x2-6,则g′(x)=-6x2+12x=-6x(x-2),由g′(x)=0得x=0或x=2,g(x)极小值=g(0)=-6,g(x)极大值=g(2)=2,画出草图知,当-6<m<2时,g(x)=-2x3+6x2-6有三个解,所以m的取值范围是(-6,2).。