平面向量坐标运算
- 格式:doc
- 大小:191.50 KB
- 文档页数:5
第二讲 平面向量的基本定理及坐标表示【知识网络】1.平面向量的基本定理:如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任 一向量a ,有且仅有一对实数21,λλ,使2211e e λλ+=a ,不共线向量21,e e 叫做表示这一平面内 所有向量的一组基底。
2.平面向量的坐标表示:把一个向量分解为两个互相垂直的向量,叫做向量的正交分解,在平面 直角坐标系中分别取与x 轴、y 轴方向相同的两个单位向量j i ,作为基底,对于平面上一个向 量a ,有且只有一对实数y x 、,使得j i a y x +=,则有序实数对),(y x 叫做a 的坐标,记作a=),(y x .3.平面向量的坐标运算:),(),,(2221y x y x ==b a ;(1)),(2121y y x x ++=+b a ;),(2121y y x x --=-b a ; (2)2121y y x x ⋅+⋅=⋅b a ;(3)),(11y x =a λ,2221x x +=a知识点一:平面向量的共线【典例精析】例1、设两个非零向量21e e 和不共线.(1)如果21212128,23,e e e e e e --=+=-=,求证:D C A 、、三点共线; (2)如果D C A ke e e e e e 、、且,2,32,212121-=-=+=三点共线,求k 的值.【变式训练】1.设a 、b 是不共线的两个非零向量, (1)若OA →=2a -b ,OB →=3a +b ,OC →=a -3b ,求证:A 、B 、C 三点共线; (2)若8a +k b 与k a +2b 共线,求实数k 的值;知识点二:向量的平面坐标【典例精析】例1、已知A (-2,4),B (3,-1),C (-3,-4).设=a ,=b ,CA =c ,且CM =3c ,=-2b ,(1)求:3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n.(3)若CM =3,=2,求点M 、N 及的坐标.例2、平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1).回答下列问题:(1)若(a +k c )∥(2b -a ),求实数k;(2)设d =(x,y)满足(d -c )∥(a +b )且|d -c |=1,求d .例3、已知A 、B 、C 三点的坐标分别为(-1,0)、(3,-1)、(1,2),并且=31,=31.求证:∥.例4、设向量a =(1,-3),b =(-2,4),c =(-1,-2).若表示向量4a 、4b -2c 、2(a -c )、d 的有向线段首尾相接能构成四边形,求向量d 的坐标。
平面向量加、减运算的坐标表示讲解
平面向量的加法和减法运算可以通过坐标表示进行讲解。
首先,让我们考虑两个平面向量a和b,它们分别可以表示为(a1, a2)和
(b1, b2),其中a1、a2、b1和b2分别表示向量a和b在x轴和y
轴上的分量。
对于向量的加法,我们可以将两个向量a和b相加得到一个新
的向量c,表示为c = a + b。
这个新向量c的坐标表示为(c1, c2),其中c1等于a1加上b1,c2等于a2加上b2。
换句话说,c1和c2
分别表示了向量a和b在x轴和y轴上的分量之和,从而得到了向
量c的坐标表示。
对于向量的减法,我们可以将两个向量a和b相减得到一个新
的向量d,表示为d = a b。
这个新向量d的坐标表示为(d1, d2),
其中d1等于a1减去b1,d2等于a2减去b2。
同样地,d1和d2分
别表示了向量a和b在x轴和y轴上的分量之差,从而得到了向量
d的坐标表示。
总结起来,平面向量的加法和减法运算的坐标表示可以通过对
应分量的加法和减法来实现,这样可以更直观地理解向量之间的关系。
希望这样的讲解能够帮助你更好地理解平面向量的加减运算。
平面向量的坐标运算[学习目标] 1。
了解平面向量的正交分解,掌握向量的坐标表示.2.掌握两个向量和、差及数乘向量的坐标运算法则.3.正确理解向量坐标的概念,要把点的坐标与向量的坐标区分开来.知识点一 平面向量的坐标表示(1)向量的正交分解:把一个向量分解为两个互相垂直的向量,叫做把向量正交分解. (2)向量的坐标表示:在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i ,j 作为基底,对于平面内的一个向量a ,有且只有一对实数x ,y 使得a =x i +y j ,则有序数对(x ,y )叫做向量a 的坐标,a =(x ,y )叫做向量的坐标表示.(3)向量坐标的求法:在平面直角坐标系中,若A (x ,y ),则错误!=(x ,y ),若A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1).思考 根据下图写出向量a ,b ,c ,d 的坐标,其中每个小正方形的边长是1。
答案 a =(2,3),b =(-2,3),c =(-3,-2),d =(3,-3).知识点二 平面向量的坐标运算(1)若a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),即两个向量和的坐标等于这两个向量相应坐标的和.(2)若a=(x1,y1),b=(x2,y2),则a-b=(x1-x2,y1-y2),即两个向量差的坐标等于这两个向量相应坐标的差.(3)若a=(x,y),λ∈R,则λa=(λx,λy),即实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.(4)已知向量错误!的起点A(x1,y1),终点B(x2,y2),则错误!=(x2-x1,y2-y1).思考已知a=错误!,b=错误!,c=错误!,如下图所示,写出a,b,c的坐标,并在直角坐标系内作出向量a+b,a-b以及a-3c,然后写出它们的坐标.答案易知:a=(4,1),b=(-5,3),c=(1,1),错误!=a+b=(-1,4),错误!=a-b=(9,-2),错误!=a-3c=(1,-2).题型一平面向量的坐标表示例1已知边长为2的正三角形ABC,顶点A在坐标原点,AB边在x轴上,C在第一象限,D 为AC的中点,分别求向量错误!,错误!,错误!,错误!的坐标.解 如图,正三角形ABC 的边长为2,则顶点A (0,0),B (2,0),C (2cos60°,2sin 60°),∴C (1,错误!),D (错误!,错误!),∴错误!=(2,0),错误!=(1,错误!),错误!=(1-2,错误!-0)=(-1,错误!),错误!=(错误!-2,错误!-0)=(-错误!,错误!).跟踪训练1 在例1的基础上,若E 为AB 的中点,G 为三角形的重心时,如何求向量错误!,错误!,错误!,错误!的坐标?解 由于B (2,0),E (1,0),C (1,错误!),D (错误!,错误!),G (1,错误!),所以CE →=(1-1,0-错误!)=(0,-错误!),错误!=(1,错误!),错误!=(1-2,错误!-0)=(-1,错误!),错误!=(错误!-1,错误!-错误!)=(-错误!,错误!).题型二 平面向量的坐标运算例2 已知平面上三点A (2,-4),B (0,6),C (-8,10),求(1)错误!-错误!;(2)错误!+2错误!;(3)错误!-错误!错误!。
平面向量的坐标运算
1平面向量坐标运算
平面向量坐标运算是以数学方法来处理空间或空间的抽象的概念,主要用于解决平面物体的空间坐标的运算问题。
平面向量坐标运算实质上是基于平面数学(也称为二维几何)的基本原理的,它的核心思想是利用一个坐标轴来确定给定点的相对位置,然后通过一些图形化的操作,来描述和计算出平面上物体位置之间的相互关系。
平面向量坐标运算包括直角坐标,极坐标和双曲坐标三种核心坐标系。
其中,直角坐标是由一条横轴和一条纵轴的组合,通过横纵坐标的组合来确定一点在平面上的坐标;极坐标是由一个极轴,一个极点以及横纵坐标组合来确定一点在平面上的坐标;双曲坐标则是由两条曲线构成,来确定一点在平面上的坐标。
平面向量坐标运算通常用来解决三角恒等、矩阵乘法、求矢量和、求两点之间距离、斜率及方程、几何图形的建立等问题。
其中常用的计算有加法、减法、乘法、除法、叉积、内积等运算。
通过平面向量坐标运算,可以很方便和准确的计算分析出平面物体的坐标变化,并且可以很容易地求出物体彼此之间的距离、位置和方向,有利于我们进行几何图形的描述和分析。
平面向量坐标运算
【教材分析】:本课是在平面向量坐标运算、内积定义基础上学习的,主要知识是平面向量内积的坐标运算与平面内两点间的距离公式,是后面学习曲线方程的重要公式和推导依据,是进一步学习相关数学知识的重要基础。
【教学目标】
1. 掌握平面向量内积的坐标表示,会应用平面向量内积的知识解决平面内有关长度、两向量的夹角和垂直的问题.
2. 能够根据平面向量的坐标,判断两向量是否垂直,求两向量的夹角等。
3. 通过学习平面向量的坐标表示,使学生进一步了解数学知识的相同性,培养学生辩证思维能力.提高学生数学知识的应用能力。
【教学重点】:平面向量内积的坐标公式式,平面向量垂直的充要条件,平面内两点间距离公式的应用.
【教学难点】:平面向量内积的坐标公式的推导和应用。
【教学方法】本节课采用问题启发式教学和讲练结合的教学方法.
已知1e ,2e 是直角坐标平面上的基向量,如果a =(a 1,a 2),
b =(b 1
,b 2
),你能推导出a ·b 的坐标公式吗?
探究过程
a ·
b =(a 1
1e +a 2
2e )·(b 1
1e +b 2
2e )
=a 1b 11e ·1e +a 1b 21e ·2e +a 2b 11e ·2e +a 2b 22e ·2e ,
又因为
1e ·1e =1,2e ·2e =1,1e ·2e =0,
所以
a ·
b =a 1b 1
+a 2b 2
.
定理 在直角坐标平面xoy 中,如果a =(a 1,a 2),b =(b 1,b 2)则
a ·
b =a 1b 1
+a 2b 2
.
即:两个向量的内积等于它们对应坐标的乘积的和. 因此可以推出两向量垂直的充要条件为
a ⊥b
a 1
b 1+a 2 b 2=0;
问题:(1)若已知a =(a 1,a 2) ,你能用上面的定理求出| a | 吗?
解 因为
|a |2
=a ·a =(a 1,a 2)·(a 1,a 2)
=a 12+a 22
,
所以| a |=a 12
+a 22
.
这就是根据向量的坐标求向量长度的计算公式.
因此可推出两非零向量夹角余弦值公式为
cos ‹a ,b ›=
a 1
b 1+a 2b 2a 12
+a 2
2
b 12
+b 2
2
.
例1 设a =(3,-1),b =(1,-2),求:
【设计理念】
数学学习是一个知识理解、迁移、转化的过程,因此要实现教学的有效性,必须知识点的迁移、转化,引导学生充分利用自己已有的知识与经验,通过对问题的探究与解决,实现数学知识的转化,从而实现数学知识的归纳和应用,达成教学目标。