设计项目二 数字锁相频率合成器
- 格式:doc
- 大小:26.50 KB
- 文档页数:3
课程设计实验报告课程名称:电子系统设计题目名称:数字锁相频率合成器学生学院:信息工程学院专业班级:学号:学生姓名:指导教师:2014年 05 月31 日一、课程任务1、根据锁相环原理,确定电路形式,画出电路图;2、计算电路元件参数,正确选取元器件,利用Proteus软件进行仿真;3、画出原理图、PCB图;4、制作电路板,组装、焊接电路;5、调试、测试电路功能,撰写课程设计报告。
二、课程目的1、能够在设计中综合运用所学知识解决实际问题。
3、初步掌握工程设计的一般方法,具备一定的工程设计能力。
4.培养独立思考和独立解决问题的能力,培养科学精神和严谨的工作作风。
三、实验原理频率合成是指由一个或多个频率稳定度和精确度很高的参考信号源通过频率域的线性运算,产生具有同样稳定度和精确度的大量离散频率的过程。
用锁相环迫使压控振荡器 (VCO)的频率锁定在高稳定的参考频率上,从而获得多个稳定频率,故又称锁相式频率合成。
数字锁相式频率合成器的基本形式是由压控振荡器、鉴相器、可变分频器和环路滤波器组成。
压控振荡器的输出信号经可变分频器分频后在鉴相器内与参考信号比相。
当压控振荡器发生频率漂移时,鉴相器输出的控制电压也随之变化,从而使压控振荡器频率始终锁定在N倍的参考频率上,改变可变分频器的分频比,便可改变频率合成器的输出频率。
四、设计指标1利用锁相环设计的频率合成器:2要求:输入频率fi=100 Hz;3输出频率fO=100Hz~99.9 KHz;4倍频系数:N=1~999五、实验测试要求1.测VCO曲线,即压控振荡器曲线;2.测VCO中心频率f0;3.求VCO增益:K=Δf/ΔV;4.测锁相环锁定范围:fL~fH;5.求频率合成器的阶数。
六、Protues仿真七、模块电路图(1)CD4046锁相环模块(2)分频器模块(3)555波形发生模块(4)电源及电路保护模块八、设计过程(1)系统框架(2)振荡源设计555 定时器成本低,性能可靠,只需要外接几个电阻、电容,就可以实现多谐振荡器、单稳态触发器及施密特触发器等脉冲产生与变换电路。
基于锁相环的频率合成器的设计随着现代技术的进展,具有高稳定性和精确度的频率源已经成为通信、雷达、仪器仪表、高速计算机及导航系统的主要组成部分。
高性能的频率源可通过频率合成技术获得。
随着大规模的进展,锁相式频率合成技术占有越来越重要的地位。
由一个或几个高稳定度、高精确度的参考频率源通过数字锁相频率合成技术可获得高品质的离散频率源。
1 锁相环频率合成器的原理1.1 锁相环原理锁相环(PLL)是构成频率合成器的核心部件。
主要由相位(PD)、压控(VCO)、环路(LP)和参考频率源组成。
锁相环是一种利用外部输入的参考信号控制环路内部振荡信号反馈控制。
他的被控制量是相位,被控对象是压控振荡器。
1所示,假如锁相环路中压控振荡器的输出信号频率发生变幻,则输入到相位比较器的信号相位θv(t)和θR(t)必定会不同,使相位比较器输出一个与相位误差成比例的误差Vd(t),经环路滤波器输出一个缓慢变幻的直流电压Vc(t),来控制压控振荡器输出信号的相位,使输入和输出相位差减小,直到两信号之间的相位差等于常数。
此时,压控振荡器的输出信号频率和输入信号频率相等,且环路处于锁定状态。
1.2 锁相环频率合成器原理2所示,锁相环频率合成器是由参考频率源、参考分频器、相位比较器、环路滤波器、压控振荡器、可变分频器构成。
参考分频器对参考频率源举行分频,输出信号作为相位比较器参考信号。
可变分频器对压控振荡器的输出信号举行分频,分频之后返回到相位比较器输入端与参考信号举行比较。
当环路处于锁定时有f1=f2,由于f1=fr/M,f2=fo/N,所以有fo=Nfr/M。
只要转变可变分频器的分频第1页共3页。
锁相频率合成器的设计
锁相频率合成器是一种电子设备,用于产生高精度、稳定的时钟信号。
它的设计基于锁相环(PLL)的原理,能够将输入的参考时钟信号锁定到输出时钟信号的频率,从而实现精确的频率合成。
锁相频率合成器的基本组成包括相锁环、参考时钟源、振荡器、分频器、相位检测器和控制电路等部分。
其中,相锁环是核心部件,其工作原理为将参考时钟信号和振荡器输出的信号进行比较,通过相位检测器不断调整振荡器的频率和相位,使其与参考时钟信号同步。
在设计锁相频率合成器时,需要考虑多种因素,如稳定性、相位噪声、抖动、锁定时间、输入输出频率范围等。
为了实现高精度的频率合成,通常会采用高品质的元器件和优化的电路设计,同时还需要进行严格的测试和调试。
锁相频率合成器广泛应用于通信、测量、计算机和工业控制等领域,为各种设备和系统提供高精度的时钟信号支持。
随着技术的不断进步,锁相频率合成器的设计也在不断升级和完善,以满足更加严格的应用需求。
- 1 -。
锁相环频率合成器锁相环频率合成器是一种电路,主要用于产生高精度、稳定的频率信号。
它的工作原理是将一个参考信号与一个可调节的振荡器信号进行比较,通过调节振荡器信号的频率和相位,使得两个信号保持同步,从而实现对输出频率的控制。
锁相环频率合成器广泛应用于通讯、雷达、测量等领域。
一、锁相环基本结构锁相环主要由三个部分组成:相位检测器(Phase Detector)、低通滤波器(Low Pass Filter)和电压控制振荡器(Voltage Controlled Oscillator)。
1. 相位检测器相位检测器主要用于比较参考信号与振荡器信号之间的相位差。
常见的有两种类型:同步检测器和非同步检测器。
同步检测器适用于参考信号和振荡器信号具有固定的相位关系时,而非同步检测器则适用于相位关系不确定或者变化较快的情况。
2. 低通滤波器低通滤波器主要用于平滑输出电压,并消除高频噪声干扰。
它的作用是将相位检测器输出的误差信号进行滤波,得到一个直流电压信号,这个信号被用来控制振荡器的频率和相位。
3. 电压控制振荡器电压控制振荡器(VCO)是锁相环频率合成器中最重要的部分之一。
它可以产生可调节的频率信号,并且可以通过调节输入电压来改变输出频率。
VCO通常由一个反馈环路组成,其中参考信号和VCO输出信号经过比较后产生误差信号,通过低通滤波器后输入到VCO中,从而实现对输出频率的控制。
二、锁相环工作原理锁相环工作原理可以用以下几个步骤来描述:1. 参考信号与振荡器信号进行比较,产生误差信号;2. 误差信号经过低通滤波器平滑处理后输入到VCO中;3. VCO产生新的振荡器信号,并与参考信号进行比较;4. 如果两个信号之间存在相位差,则继续调整VCO输出频率和相位,直到两个信号同步为止;5. 输出的同步信号可以用于驱动其他系统或设备。
三、锁相环应用锁相环频率合成器在通讯、雷达、测量等领域有着广泛的应用。
以下是一些常见的应用场景:1. 时钟恢复在数字通信系统中,接收端需要恢复发送端的时钟信号。
*******************实践教学*******************兰州理工大学计算机与通信学院2012年春季学期《通信系统基础实验》设计项目实验报告设计题目:锁相式数字频率合成器实验报告专业班级:设计小组名单:指导教师:陈昊目录一、设计实验目的 (3)二、频率合成基本原理 (4)2.1频率合成的概念 (4)2.2频率合成器的主要技术指标 (4)2.3锁相频率合成器 (5)三、锁相环技术 (6)3.1 锁相环工作原理 (6)3.2 锁相环CD4046芯片介绍 (6)四、基于锁相环技术的倍频器 (10)4.1 HS191芯片介绍 (10)4.2 基于锁相环技术的倍频器的设计 (12)4.2.1 工作原理 (12)3.2.2 Proteus软件仿真 (13)4.2.3 硬件实现 (14)4.2.4 锁相环参数设计 (15)五、总结与心得 (17)六、参考文献 (18)七、元器件清单 (19)一、设计实验目的1. 掌握VCO压控振荡器的基本工作原理。
2. 加深对基本锁相环工作原理的理解。
3. 熟悉锁相式数字频率合成器的电路组成与工作原理.。
二、频率合成基本原理2.1频率合成的概念频率合成是指由一个或多个频率稳定度和精确度很高的参考信号源通过频率域的线性运算,产生具有同样稳定度和精确度的大量离散频率的过程。
实现频率合成的电路叫频率合成器,频率合成器是现代电子系统的重要组成部分。
在通信、雷达和导航等设备中,频率合成器既是发射机频率的激励信号源,又是接收机的本地振荡器;在电子对抗设备中,它可以作为干扰信号放生器;在测试设备中,可作为标准信号源,因此频率合成器被人们称为许多电子系统的“心脏”。
早期的频率合成是用多晶体直接合成,以后发展成用一个高稳定参考源来合成多个频率。
20世纪50年代出现了间接频率合成技术。
但在使用频段上,直到50年代中期仍局限于短波范围。
60年代中期,带有可变分频的数字锁相式频率合成器问世。
L波段数字锁相频率合成器设计的开题报告
一、课题背景
随着现代通信技术不断发展,高性能、高稳定性的数字信号处理设备需求日益增加。
其中数字锁相频率合成器作为一种实现高精度、高稳定性频率合成的重要设备,越来越受到人们的关注和重视。
在多种通讯系统中,如导航系统、雷达控制系统、数字广播系统和高速数据传输系统中,数字锁相频率合成器都是不可或缺的组成部分。
本设计的主要目标是实现一种基于L波段的数字锁相频率合成器,具有高稳定性、高精度、低相位噪声和低杂散信号等优点,可广泛应用于卫星通讯、移动通讯等领域。
二、研究内容和方法
1. 研究数字锁相的原理和L波段频率合成技术,分析数字锁相频率合成器的基本原理和结构。
2. 设计数字锁相频率合成器的主要电路部分,包括参考频率源、相频检测电路、数字控制电路、滤波器和VCO等。
3. 建立数字锁相频率合成器的数学模型,对其进行仿真和优化。
4. 制作数字锁相频率合成器的实验样机,对其进行测试,验证其设计参数的可行性和可靠性。
5. 进行实验数据分析,探讨数字锁相频率合成器的应用前景。
三、预期成果和意义
本次设计的预期成果是一款L波段数字锁相频率合成器样机。
采用数字锁相频率合成技术实现高稳定性、高精度、低相位噪声和低杂散信号的频率合成,并可广泛应用于多种通信系统中。
本设计还将对数字锁相频率合成器的结构和性能进行深入研究和分析,为相关领域的研究和应用提供一定的参考和帮助。
简单锁相频率合成器设计报告组别:第二组姓名:武艳磊陆祖送许志强时间:2007年7月31日简单锁相频率合成器摘要:随着通讯,宇航,和遥控遥测技术的不断发展,对信号频率的调控,稳定度和准确度的要求不断提高。
锁相频率合成器是利用锁相环的窄带跟踪特性,在石英晶体振荡器提供的基准频率源的作用下,产生一系列离散频率的仪器。
它主要有两个分频器CC4040,CC40103和一个锁相环路CD4046组成,首先有分频器R(CC4040)把基准频率源经R分频后送入签相器,而锁相环压控振荡器输出的频率经分频器N(CC40103)N分频后也送入签相器,然后由锁相环路输出需要的频率。
它的优点是系统结构简单,输出频率成分频谱纯度高,而且易于得到大量的离散频率,是一个较好频率转换系统。
关键词:锁相,签频,分频正文:一、系统设计方案一:直接式频率合成器,通过倍频器,分频器,混频器对信号进行加减乘除运算,得到各种所需频率。
直接式频率合成器的优点是转换时间短,并能产生任意小的频率增量,但是它也存在不可克服的缺点,用这种方法的频率范围将收到限制。
大量的倍频,混频等电路需要大量的滤波电路,使电路复杂化。
而且输出端的谐波,燥声和寄生频率难以抑制。
方案二:间接式频率合成器,主要是利用锁相环的频率跟踪特性来得到不同的频率,结构图框图如图1:它的优点是结构简单,输出频率成分频谱纯度高,而且容易得到大量的离散频率。
综上所述,为了更容易实现频率合成器的功能所以选择了方案二。
二、单元电路设计频率合成器的中心部分是CD4046锁相环路,其内部结构电路如下:CD4046工作原理如下:输入信号Ui从14脚输入后,经放大器A1进行放大、整形后加到相位比较器Ⅰ、Ⅱ的输入端,图3开关K拨至2脚,则比较器Ⅰ将从3脚输入的比较信号Uo与输入信号Ui作相位比较,从相位比较器输出的误差电压UΨ则反映出两者的相位差。
UΨ经R3、R4及C2滤波后得到一控制电压Ud加至压控振荡器VCO的输入端9脚,调整VCO的振荡频率f2,使f2迅速逼近信号频率f1。
课程设计题目:锁相式数字频率合成器的设计已知技术参数和设计要求:一、锁相式数字频率合成器设计方框图12344321晶体振荡器分频器1/N分频器1/M相位比较器压控振荡器可编程置数低通滤波器f sf f RoPLLo f /N1KHz2KHz 4KHz二、锁相式数字频率合成器设计要求1、 要求设计出数字锁相式频率合成器的完整电路。
2、 晶体振荡器部分要求用数字电路设计 (可以参考CD4060、74LS04等) 。
3、 要求1/M 分频器分别产生,1KH Z 、2KH Z、4KH Z的方波信号,并且通过开关分别选择其中之一接入锁相环的相位比较器输入端作为f R 。
4、 要求频率合成器输出的频率范围f 0分别为(0000~9999)×1KH Z 、(0000~9999)×2KH Z 、(0000~9999)×4KH Z ,并且设计出相对应的1/N 分频器(四位)。
5、锁相环型号:选择LM4046 、或CD4046。
石英晶体选择4.096MH Z 或8.192MH Z 等 ,其他集成电路及元器件根据设计要求自己选择。
6、 用Protel 99SE 或Protel DXP 画出锁相式数字频率合成器的原理方框图、电路图、仿真波形图(仿真1/N 分频器和1/M 分频器输出信号波形)、然后画出PCB 图。
7、 计算当F r =1KH Z 、2KH Z 、4KH Z 时1/M 分频器应该是多少分频,锁相式数字频率合成器输出频率计算:f 0=? (每个人计算f 0=?的要求见附录一电子表格)。
8、 主要参数测试:包括晶体振荡器输出频率;1/M 分频器输出频率;1/N 可编程分频器的测试;锁相环的扑捉带和同步带测试方法;锁相环压控振荡器的控制特性曲线测试方法,(以上测试要说明用何种仪器)。
做出误差分析。
9、 编写出数字锁相式频率合成器的课程设计报告。
工作量:1、数字锁相式频率合成器的总体设计。
设计项目二数字锁相频率合成器
一.训练目的
1.熟悉锁相环路的原理和特点,掌握VCO压控振荡器的工作原理与作用;
2.加深对基本锁相环工作原理的理解,巩固相关的理论知识;
3.熟悉锁相环式数字频率合成器的电路组成与工作原理,培养设计、制作、调试电路等一系列工程设计的能力。
4.掌握相关IC的性能参数及使用方法。
培养综合运用模电、数电、高频电子等理论知识为实际电路设计的应用能力。
二.预习要求与参考
1.认真预习有关锁相环及频率合成技术等方面的理论知识;熟悉锁相环和频率合成器的基本结构原理,熟悉相关芯片的性能参数及使用方法。
2.参考《高频电子电路》、《数字电子技术》、《模拟电子技术》、《集成电路大全》、《CMOS 集成电路》等书。
三.设计要求和设计指标
(一)设计指标
利用锁相环设计的频率合成器:
要求:输入频率f i=100 Hz;输出频率f O=100Hz~99.9 KHz;
倍频系数:N=1~999
参考芯片: 锁相环芯片CD4046 、可编程4位BCD码1/N计数器MCI4522。
(二)实验测试要求
1.测VCO曲线,即压控振荡器曲线;
2.测VCO中心频率f0;
3.求VCO增益:K=Δf/ΔV;
4.测锁相环锁定范围:f L~f H;
5.求频率合成器的阶数。
四.实验仪器设备和设计参考材料
1.实验仪器仪表
+5V稳压电源一台;示波器一台;
频率计一台;万用表一台;
信号发生器一台。
1.参考芯片及元件
名称参数数量(个)
芯片
CD4046 1 MC14522 1~3
电阻5.1KΩ 1 10KΩ 1 100KΩ 1 300KΩ12
电容
20pF 1 0.068F 1
拨码开关4位1~3
跳针—9
IC座—2~4
五.调试及结果测试步骤
1.用万用表检查各焊点及各连线。
2.检查芯片4046:将3、4脚短接,3脚与MCI4522断开,调14脚输入信号的频率,测4脚输出信号的频率,若其变化与14脚输入信号频率变化一致,则表明4046工作正常。
2.检查芯片MCI4522:从6脚送入频率为f i=900Hz的信号,预置MCI4522分频数为1001。
测MCI4522的12脚输出信号的频率,若为100Hz,则说明MCI4522焊接正确,工作正常。
3.测试整个电路:接上电源VDD,从CD4046的14脚送入频率f i为100Hz的信号,调MCI4522各预置端,设置不同的分频比N,分别测不同分频比时CD4046的4脚输出信号的频率f0,若N从1到999(3片4522)时,f0都为N与f i的乘积,则说明整个电路工作正常。
4.指标测量:测VCO曲线时,将CD4046芯片的14脚和3脚断开,从第9脚输入1~5V的直流电压,每隔0.5V测1次4脚的输出频率,画出VCO曲线;在Vd=Vcc/2=2.5V时,测量得到的中心工作频率f0。
5.根据上述测量结果,求VCO增益和频率合成器的阶数以及频率锁定范围。
六.考核形式
1.验收实际电路,对相关问题进行答辩;
2.撰写设计报告。
七.设计报告要求
1.设计思路、设计原理;
2.元件参数选择依据;
3.设计原理图和安装布线图;
4.实验设备与元件清单;
5.调试过程;
6.测试的曲线和指标指标,总结设计过程,分析设计结果;
7.心得体会
八.思考题
1.基本锁相环电路中,其同步带与捕捉带之间的关系如何?
2.在基本锁相环电路中,要扩大捕捉带,可采取什么措施?
3.若频率合成器输出频率范围从0.1到999.9kHz,则用MC14522做程序分频器,如何
连接?。