(新课程)高中数学《1.1.2 四种命题》教案 新人教A版选修2-1
- 格式:doc
- 大小:44.50 KB
- 文档页数:3
原命题若p 则q 否命题若┐p 则┐q逆命题若q 则p逆否命题若┐q 则┐p互为逆否互逆否互为逆否互互逆否互第二课时 1.1.2-1.1.3 四种命题及其关系教学要求:进一步理解命题的概念,了解命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系.教学重点:四种命题的概念及相互关系. 教学难点:四种命题的相互关系. 教学过程:一、复习准备:指出下列命题中的条件与结论,并判断真假: (1)矩形的对角线互相垂直且平分; (2)函数232y x x =-+有两个零点. 二、讲授新课:1. 教学四种命题的概念:(师生共析→学生说出答案→教师点评)②例1:写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假: (1)同位角相等,两直线平行; (2)正弦函数是周期函数;(3)线段垂直平分线上的点与这条线段两个端点的距离相等. (学生自练→个别回答→教师点评) 2. 教学四种命题的相互关系:①讨论:例1中命题(2)与它的逆命题、否命题、逆否命题间的关系. ②四种命题的相互关系图:③讨论:例1中三个命题的真假与它们的逆命题、否命题、逆否命题的真假间关系. ④结论一:原命题与它的逆否命题同真假;结论二:两个命题为互逆命题或互否命题,它们的真假性没有关系.⑤例 2 若222p q +=,则2p q +≤.(利用结论一来证明)(教师引导→学生板书→教师点评)3. 小结:四种命题的概念及相互关系.三、巩固练习:1. 练习:写出下列命题的逆命题、否命题及逆否命题,并判断它们的真假. (1)函数232y x x =-+有两个零点;(2)若a b >,则a c b c +>+; (3)若220x y +=,则,x y 全为0;(4)全等三角形一定是相似三角形; (5)相切两圆的连心线经过切点.2. 作业:教材P9页 第2(2)题 P10页 第3(1)题。
选修2-1 1.1.1 命题1.1.2四种命题(学案)【知识要点】1.命题;2.真命题、假命题;3. 四种命题.【学习要求】1. 了解命题的意义,能够判一个语句是否为命题;2. 了解“若p ,则q ”型的命题的意义,能够判断这种形式的命题的真假;3. 了解命题的逆命题、否命题和逆否命题的意义及其相互关系.【预习提纲】(根据以下提纲,预习教材第 2 页~第 6 页)1.在数学中,我们把用 、 或 表达的,可以 的 叫做命题,其中 的语句叫做真命题, 的语句叫做假命题.2.命题的数学形式:“若p ,则q ”,命题中的p 叫做命题的 ,q 叫做命题的 .3.四种命题的概念⑴对两个命题,如果一个命题的条件和结论分别是另个命题的结论和条件,那么我们把这样的两个命题叫做 ,其中一个命题叫做 .原命题为:“若p ,则q ”,则逆命题为:“ ”.⑵一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,我们把这样的两个命题叫做 ,其中一个命题叫做原命题,那么另一个命题叫做原命题的 .若原命题为:“若p ,则q ”,则否命题为:“ ”.⑶一个命题的条件和结论恰好是另个命题的结论的否定和条件的否定,我们把这样的两个命题叫做 ,其中一个命题叫做原命题,那么另一个命题叫做原命题的 .若原命题为:“若p ,则q ”,则逆否命题为:“ ”.4.注意:“若p ,则q ”型的命题只是命题的一种类型,还有大量的命题写不成这种形式,例如:“某些三角形没有外接圆.”这个命题就不能写成“若p ,则q ”的形式.判断一个语句是不是命题,分为两步:第一步看他是不是陈述语句,第二步看它能不能判断真假.【基础练习】1.下列语句不是命题的是( )(A)地球是太阳系的行星 (B )等腰三角形的两底角相等(C )今天会下雪吗? (D )正方形的四个内角均为直角2.下列语句中,是命题的个数是().①难道平行四边形的对角线不是互相平分吗?②3>x ;③若3>x ,则5>x ;④ x 是无理数.(A )1 (B )2 (C ) 3 (D)33.“全等三角形一定是相似三角形”的逆否命题( ).(A )不全等三角形不一定不是相似三角形 (B )不相似三角形不一定是全等三角形(C )不相似三角形一定不是全等三角形 (D )不全等三角形不一定是相似三角形4.命题)(B A x ∈的否命题是 .【典型例题】例1判断下列命题的真假. ⑴形如6b a + 的数是无理数.⑵正项等数列的公差大于零.⑶奇函数的图像关于原点对称.⑷能被2整除的数一定.变式训练1:设α,β为两个不同的平面,l ,m 为两条不同的直线,且βα⊆⊆m l ,,有如下两个命题:①若α∥β,则l ∥m ,②若m l ⊥,则βα⊥,那么( )(A )①是真命题,②是假命题 (B )①是假命题,②是真命题(C )①②都是真命题 (D )①②都是假命题例2 写出下列命题的逆命题、否命题与逆否命题,并判断它们的真假.(1) 负数的平方式正数;(2) 正方形的四条边相等.变式训练2:写出下列命题的逆命题、否命题、逆否命题.(1) 若022=+y x ,则y x ,全为0;(2) 若b a +是偶数,则b a ,都是偶数.1.命题“若b a >,则55->-b a ”的逆否命题是( ).(A )若b a <,则55-<-b a (B)若55->-b a ,则b a >(C )若b a ≤,则55-≤-b a (D )若55-≤-b a ,则b a ≤2.设ABC ∆的三边分别为,,,c b a 在命题“若222c b a ≠+,则ABC ∆不是直角三角形”及其逆命题中( ).(A)原命题真,逆命题假 (B )逆命题真,原命题假(C )两个命题都真 (D )两个命题都假3.平面α外有两条直线m 和n ,如果m 和n 在平面α内的射影分别是m '和n ',给出下列四个命题:①若n m '⊥',则n m ⊥;②若m '与n '相交,则m 与n 相交或重合;③若n m ⊥,则n m '⊥';④若m '与n '平行,则m 与n 平行或重合.其中不正确的命题的个数是( ).(A )1 (B )2 (C )3 (D )44.命题“两条对角线相等的四边形是矩形”是命题“矩形是两条对角线相等的四边形”的( ).(A)逆命题 (B )否命题 (C )逆否命题 (D )无关命题5.设b a ,为两条直线,βα,为两个平面,下列四个命题中,正确的命题是( ).(A )若b a ,与α所成的角相等,则a ∥b(B )若a ∥α,b ∥β,α∥β,则a ∥b(C )若,,βα⊂⊂b a a ∥b ,则α∥β(D )若βαβα⊥⊥⊥,,b a ,则b a ⊥6.已知n m ,是两条不同直线,γβα,,是三个不同平面,下列命题中正确的是( ).(A )若m ∥n ,α∥α,则m ∥n (B )若γβγα⊥⊥,,则α∥β(C )若m ∥β,n ∥β ,则α∥β (D )若,,αα⊥⊥n m 则m ∥n7.命题“若,0=ab 则0=a 或0=b ”的逆否命题是 .8.设有两个命题:①关于x 的不等式012>+mx 的解集是R ;②函数()x x f m log =是减函数.如果这两个命题中有且只有一个真命题,则实数m 的取值范围是 .9.写出下列命题的逆命题、否命题、逆否命题,并判断真假.(1)实数的平方式非负数;(2)弦的垂直平分线经过圆心,并平分弦所对的弧.10.判断命题“已知x a ,为实数,如果关于x 的不等式()021222≤++++a x a x 的解集非空,则1≥a ”的逆否命题的真假.1.判断一个语句是否为命题的方法:(1)凡是感叹句、疑问句、反问句、祈使句都不是命题.(2)陈述句中,凡是比喻、形容、肆意模糊不清的,都不是命题.2.关于“若p ,则q ”型的命题:(1)p 、q 可以是命题,也可以不是命题.如果p 、q 不是命题,那么p 、q 是含有变量的陈述句.(2)很多命题表面上不是“若p ,则q ”型的,但可以改写成“若p ,则q ”的形式,但也有很多命题是不能改写成“若p ,则q ”的形式的,这点必须注意.选修2-1 1.1.1 命题1.1.2四种命题(教案)【教学目标】1.理解命题的概念,会判断命题的真假;2.会写出命题的逆命题、否命题、逆否命题;【重点】命题的概念及命题的四种形式;【难点】写出原命题的逆命题、否命题、逆否命题;【预习提纲】(根据以下提纲,预习教材第 2 页~第 6 页)1.在数学中,我们把用 语言 、 符号 或 式子 表达的,可以 判断真假 的 陈述句 叫做命题,其中 判断为真 的语句叫做真命题, 判断为假 的语句叫做假命题.2.命题的数学形式:“若p ,则q ”,命题中的p 叫做命题的 条件 ,q 叫做命题的 结论 .3.四种命题的概念⑴对两个命题,如果一个命题的条件和结论分别是另个命题的结论和条件,那么我们把这样的两个命题叫做 互逆命题 ,其中一个命题叫做 原命题 .原命题为:“若p ,则q ”,则逆命题为:“若q ,则p ”.⑵一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,我们把这样的两个命题叫做 互否命题 ,其中一个命题叫做原命题,那么另一个命题叫做原命题的否命题 .若原命题为:“若p ,则q ”,则否命题为:“ 若p ⌝,则q ⌝ ”.⑶一个命题的条件和结论恰好是另个命题的结论的否定和条件的否定,我们把这样的两个命题叫做 互为逆否命题 ,其中一个命题叫做原命题,那么另一个命题叫做原命题的逆否命题 .若原命题为:“若p ,则q ”,则逆否命题为:“ 若q ⌝,则p ⌝ ”.4.注意:“若p ,则q ”型的命题只是命题的一种类型,还有大量的命题写不成这种形式,例如:“某些三角形没有外接圆.”这个命题就不能写成“若p ,则q ”的形式.判断一个语句是不是命题,分为两步:第一步看他是不是陈述语句,第二步看它能不能判断真假.【基础练习】1.下列语句不是命题的是( C )(A)地球是太阳系的行星 (B )等腰三角形的两底角相等(C )今天会下雪吗? (D )正方形的四个内角均为直角2.下列语句中,是命题的个数是( A ).①难道平行四边形的对角线不是互相平分吗?②3>x ;③若3>x ,则5>x ;④ x 是无理数.(A )1 (B )2 (C ) 3 (D)33.“全等三角形一定是相似三角形”的逆否命题( C ).(A )不全等三角形不一定不是相似三角形 (B )不相似三角形不一定是全等三角形(C )不相似三角形一定不是全等三角形 (D )不全等三角形不一定是相似三角形4.命题)(B A x ∈的否命题是 B x A x ∉∉或 .【典型例题】例1判断下列命题的真假.⑴形如6b a + 的数是无理数.⑵正项等数列的公差大于零.⑶奇函数的图像关于原点对称.⑷能被2整除的数一定.【审题要津】判断一个命题为假命题,只要举出一个反例即可,而要判断一个命题为真命题,一般要进行严格的逻辑推证.解:⑴假命题;⑵假命题;⑶真命题;⑷假命题.【方法总结】判断一个命题为假命题,只要举出一个反例即可.变式训练1:设α,β为两个不同的平面,l ,m 为两条不同的直线,且βα⊆⊆m l ,,有如下两个命题:①若α∥β,则l ∥m ,②若m l ⊥,则βα⊥,那么( D )(A )①是真命题,②是假命题 (B )①是假命题,②是真命题(C )①②都是真命题 (D )①②都是假命题例3 写出下列命题的逆命题、否命题与逆否命题,并判断它们的真假.(3) 负数的平方式正数;(4) 正方形的四条边相等.【审题要津】此题的题设和结论不很明显,因此首先将命题改写成“若p ,则q ”的形式,然后再写出它的逆命题、否命题与逆否命题.解:(1)逆命题:若一个数的平方是正数,则它是负数.(假命题)否命题:若一个数不是负数,则它的平方不是正数. (假命题)逆否命题:若一个数的平方不是正数,则它不是负数.(真命题)(2)逆命题:若一个四边形的四条边相等,则它是正方形.(假命题)否命题:若一个四边形不是正方形,则它的四条边不相等.(假命题)逆否命题:若一个四边形的四条边不相等,则它不是正方形.(真命题)【方法总结】(1)题还有另一种解答:原命题也可以写成:若一个数是负数的平方,则这个数是正数.逆命题:若一个数是正数,则它是负数的平方.否命题:若一个数不是负数的平方,则这个数不是正数.逆否命题:若一个数不是正数,则它不是负数的平方.变式训练2:写出下列命题的逆命题、否命题、逆否命题.(3) 若022=+y x ,则y x ,全为0;(4) 若b a +是偶数,则b a ,都是偶数.【审题要津】注意一些常见词语和其否定词语.“都是”的否定词语是“不都是”,“至多有一个”的否定词语是“至少有两个”.等等的转化.解:(1)逆命题:若y x ,全为0,则022=+y x .否命题:若022≠+y x ,则y x ,不全为0.逆否命题:若则y x ,不全为0,则022≠+y x .(2)逆命题:若b a ,都是偶数,则b a +是偶数.否命题:若b a +不是偶数,则b a ,不都是偶数.逆否命题:若b a ,不都是偶数,则b a +不是偶数.【方法总结】注意一些常见词语和其否定词语.1.命题“若b a >,则55->-b a ”的逆否命题是( D ).(A )若b a <,则55-<-b a (B)若55->-b a ,则b a >(C )若b a ≤,则55-≤-b a (D )若55-≤-b a ,则b a ≤2.设ABC ∆的三边分别为,,,c b a 在命题“若222c b a ≠+,则ABC ∆不是直角三角形”及其逆命题中( B ).(A)原命题真,逆命题假 (B )逆命题真,原命题假(C )两个命题都真 (D )两个命题都假3.平面α外有两条直线m 和n ,如果m 和n 在平面α内的射影分别是m '和n ',给出下列四个命题:①若n m '⊥',则n m ⊥;②若m '与n '相交,则m 与n 相交或重合;③若n m ⊥,则n m '⊥';④若m '与n '平行,则m 与n 平行或重合.其中不正确的命题的个数是( D ).(A )1 (B )2 (C )3 (D )44.命题“两条对角线相等的四边形是矩形”是命题“矩形是两条对角线相等的四边形”的( A ).(A)逆命题 (B )否命题 (C )逆否命题 (D )无关命题5.设b a ,为两条直线,βα,为两个平面,下列四个命题中,正确的命题是( D ).(A )若b a ,与α所成的角相等,则a ∥b(B )若a ∥α,b ∥β,α∥β,则a ∥b(C )若,,βα⊂⊂b a a ∥b ,则α∥β(D )若βαβα⊥⊥⊥,,b a ,则b a ⊥6.已知n m ,是两条不同直线,γβα,,是三个不同平面,下列命题中正确的是( D ).(A )若m ∥n ,α∥α,则m ∥n (B )若γβγα⊥⊥,,则α∥β(C )若m ∥β,n ∥β ,则α∥β (D )若,,αα⊥⊥n m 则m ∥n7.命题“若,0=ab 则0=a 或0=b ”的逆否命题是 若0≠a 且0≠b ,则0≠ab .8.设有两个命题:①关于x 的不等式012>+mx 的解集是R ;②函数()x x f m log =是减函数.如果这两个命题中有且只有一个真命题,则实数m 的取值范围是 10≥=m m 或 .9.写出下列命题的逆命题、否命题、逆否命题,并判断真假.(1)实数的平方式非负数;(2)弦的垂直平分线经过圆心,并平分弦所对的弧.【审题要津】当一个命题不是“若p ,则q ”的形式,首先要把它转化成“若p ,则q ”. 解:(1)逆命题:如果一个数的平方式非负数,则这个数是实数.(真命题)否命题:如果一个不是实数,则它的平方不是非负数.(真命题)逆否命题:如果一个数的平方不是非负数,则这个数不是实数.(真命题)(2)逆命题:如果一条直线经过圆心,且平分弦所对的弧,则这条直线是弦的垂直平分线.(真命题)否命题:如果一条直线不是弦的垂直平分线,则这条直线不过圆心或不平分弦所对的弧.(真命题)逆否命题:如果一条直线不经过圆心或不平分弦所对的弧,则这条直线不是弦的垂直平分线.(真命题)【方法总结】命题的改写,首要的是要把命题改成“若p ,则q ”,同时需要注意词语和其否定词语.10.判断命题“已知x a ,为实数,如果关于x 的不等式()021222≤++++a x a x 的解集非空,则1≥a ”的逆否命题的真假.【审题要津】首先写出其逆否命题.解:其逆否命题:若,1<a 则不等式()021222≤++++a x a x 解集是空集. ()()814241222-+=+⨯-+=∆a a a 又1<a ,0<∆∴既不等式()021222≤++++a x a x 解集是空集.所以逆否命题是真命题. 【方法总结】等以后可以不用写出等价命题,而是用它的等价命题.还可以用反证法.1.判断一个语句是否为命题的方法:(1)凡是感叹句、疑问句、反问句、祈使句都不是命题.(2)陈述句中,凡是比喻、形容、肆意模糊不清的,都不是命题.2.关于“若p,则q”型的命题:(1)p、q可以是命题,也可以不是命题.如果p、q不是命题,那么p、q是含有变量的陈述句.(2)很多命题表面上不是“若p,则q”型的,但可以改写成“若p,则q”的形式,但也有很多命题是不能改写成“若p,则q”的形式的,这点必须注意。
1.1.2四种命题 1.1.3四种命题的相互关系学生探究过程:1.复习引入初中已学过命题与逆命题的知识,请同学回顾:什么叫做命题的逆命题?2.思考、分析问题1:下列四个命题中,命题(1)与命题(2)、(3)、(4)的条件与结论之间分别有什么关系?(1)若f(x)是正弦函数,则f(x)是周期函数.(2)若f(x)是周期函数,则f(x)是正弦函数.(3)若f(x)不是正弦函数,则f(x)不是周期函数.(4)若f(x)不是周期函数,则f(x)不是正弦函数.3.归纳总结问题一通过学生分析、讨论可以得到正确结论.紧接结合此例给出四个命题的概念,(1)和(2)这样的两个命题叫做互逆命题,(1)和(3)这样的两个命题叫做互否命题,(1)和(4)这样的两个命题叫做互为逆否命题。
4.抽象概括定义1:一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们把这样的两个命题叫做互逆命题.其中一个命题叫做原命题,另一个命题叫做原命题的逆命题.让学生举一些互逆命题的例子。
定义2:一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,那么我们把这样的两个命题叫做互否命题.其中一个命题叫做原命题,另一个命题叫做原命题的否命题.让学生举一些互否命题的例子。
定义3:一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,那么我们把这样的两个命题叫做互为逆否命题.其中一个命题叫做原命题,另一个命题叫做原命题的逆否命题.让学生举一些互为逆否命题的例子。
小结:(1)交换原命题的条件和结论,所得的命题就是它的逆命题:(2)同时否定原命题的条件和结论,所得的命题就是它的否命题;(3)交换原命题的条件和结论,并且同时否定,所得的命题就是它的逆否命题.强调:原命题与逆命题、原命题与否命题、原命题与逆否命题是相对的。
5.四种命题的形式让学生结合所举例子,思考:若原命题为“若P,则q”的形式,则它的逆命题、否命题、逆否命题应分别写成什么形式?学生通过思考、分析、比较,总结如下:原命题:若P,则q.则:逆命题:若q,则P.否命题:若¬P,则¬q.(说明符号“¬”的含义:符号“¬”叫做否定符号.“¬p”表示p的否定;即不是p;非p)逆否命题:若¬q,则¬P.6.巩固练习写出下列命题的逆命题、否命题、逆否命题并判断它们的真假:(1)若一个三角形的两条边相等,则这个三角形的两个角相等;(2)若一个整数的末位数字是0,则这个整数能被5整除;(3)若x2=1,则x=1;(4)若整数a是素数,则是a奇数。
新课标人教A版高中数学选修2—1教案第一章常用逻辑用语1。
1命题及其关系1.1.1 命题(一)教学目标1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式;2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。
(二)教学重点与难点重点:命题的概念、命题的构成难点:分清命题的条件、结论和判断命题的真假教具准备:与教材内容相关的资料。
教学设想:通过学生的参与,激发学生学习数学的兴趣。
(三)教学过程学生探究过程:1.复习回顾初中已学过命题的知识,请同学们回顾:什么叫做命题?2.思考、分析下列语句的表述形式有什么特点?你能判断他们的真假吗?(1)若直线a∥b,则直线a与直线b没有公共点.(2)2+4=7.(3)垂直于同一条直线的两个平面平行.(4)若x2=1,则x=1.(5)两个全等三角形的面积相等.(6)3能被2整除.3.讨论、判断学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。
其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。
教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。
4.抽象、归纳定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.命题的定义的要点:能判断真假的陈述句.在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.5.练习、深化判断下列语句是否为命题?(1)空集是任何集合的子集.(2)若整数a是素数,则是a奇数.(3)指数函数是增函数吗?(4)若平面上两条直线不相交,则这两条直线平行.(5)=-2.(6)x>15.让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.解略.引申:以前,同学们学习了很多定理、推论,这些定理、推论是否是命题?同学们可否举出一些定理、推论的例子来看看?通过对此问的思考,学生将清晰地认识到定理、推论都是命题.过渡:同学们都知道,一个定理或推论都是由条件和结论两部分构成(结合学生所举定理和推论的例子,让学生分辨定理和推论条件和结论,明确所有的定理、推论都是由条件和结论两部分构成).紧接着提出问题:命题是否也是由条件和结论两部分构成呢?6。
1.1.2四种命题 1.1.3四种命题的相互关系
(一)教学目标
◆知识与技能:了解原命题、逆命题、否命题、逆否命题这四种命题的概念,掌握四种命题的形式和四种命题间的相互关系,会用等价命题判断四种命题的真假.
◆过程与方法:多让学生举命题的例子,并写出四种命题,培养学生发现问题、提出问题、分析问题、有创造性地解决问题的能力;培养学生抽象概括能力和思维能力.
◆情感、态度与价值观:通过学生的举例,激发学生学习数学的兴趣和积极性,培养他们的辨析能力以及培养他们的分析问题和解决问题的能力.
(二)教学重点与难点
重点:(1)会写四种命题并会判断命题的真假;(2)四种命题之间的相互关系.
难点:(1)命题的否定与否命题的区别;(2)写出原命题的逆命题、否命题和逆否命题;
(3)分析四种命题之间相互的关系并判断命题的真假.
教具准备:与教材内容相关的资料。
教学设想:通过学生的举例,激发学生学习数学的兴趣和积极性,培养他们的辨析能力以及培养他们的分析问题和解决问题的能力.
(三)教学过程
学生探究过程:
1.复习引入
初中已学过命题与逆命题的知识,请同学回顾:什么叫做命题的逆命题?
2.思考、分析
问题1:下列四个命题中,命题(1)与命题(2)、(3)、(4)的条件与结论之间分别有什么关系?
(1)若f(x)是正弦函数,则f(x)是周期函数.(2)若f(x)是周期函数,则f(x)是正弦函数.
(3)若f(x)不是正弦函数,则f(x)不是周期函数.(4)若f(x)不是周期函数,则f(x)不是正弦函数.
3.归纳总结
问题一通过学生分析、讨论可以得到正确结论.紧接结合此例给出四个命题的概念,(1)和(2)这样的两个命题叫做互逆命题,(1)和(3)这样的两个命题叫做互否命题,(1)和(4)这样的两个命题叫做互为逆否命题。
4.抽象概括
定义1:一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们把这样的两个命题叫做互逆命题.其中一个命题叫做原命题,另一个命题叫做原命题的逆命题.
让学生举一些互逆命题的例子。
定义2:一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,那么我们把这样的两个命题叫做互否命题.其中一个命题叫做原命题,另一个命题叫做原命题的否命题.
让学生举一些互否命题的例子。
定义3:一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,那么我们把这样的两个命题叫做互为逆否命题.其中一个命题叫做原命题,另一个命题叫做原命题的逆否命题.
让学生举一些互为逆否命题的例子。
小结:
(1)交换原命题的条件和结论,所得的命题就是它的逆命题:
(2)同时否定原命题的条件和结论,所得的命题就是它的否命题;
(3)交换原命题的条件和结论,并且同时否定,所得的命题就是它的逆否命题.
强调:原命题与逆命题、原命题与否命题、原命题与逆否命题是相对的。
5.四种命题的形式
让学生结合所举例子,思考:
若原命题为“若P,则q”的形式,则它的逆命题、否命题、逆否命题应分别写成什么形式?
学生通过思考、分析、比较,总结如下:
原命题:若P,则q.则:
逆命题:若q,则P.
否命题:若¬P,则¬q.(说明符号“¬”的含义:符号“¬”叫做否定符号.“¬p”表示
p的否定;即不是p;非p)
逆否命题:若¬q,则¬P.
6.巩固练习
写出下列命题的逆命题、否命题、逆否命题并判断它们的真假:
(1)若一个三角形的两条边相等,则这个三角形的两个角相等;
(2)若一个整数的末位数字是0,则这个整数能被5整除;
(3)若x2=1,则x=1;
(4)若整数a是素数,则是a奇数。
7.思考、分析
结合以上练习思考:原命题的真假与其它三种命题的真假有什么关系?
通过此问,学生将发现:
①原命题为真,它的逆命题不一定为真。
②原命题为真,它的否命题不一定为真。
③原命题为真,它的逆否命题一定为真。
原命题为假时类似。
由表格学生可以发现:原命题与逆否命题总是具有相同的真假性,逆命题与否命题也总是具有相同的真假性.
由此会引起我们的思考:
一个命题的逆命题、否命题与逆否命题之间是否还存在着一定的关系呢?
让学生结合所做练习分析原命题与它的逆命题、否命题与逆否命题四种命题间的关系.学生通过分析,将发现四种命题间的关系如下图所示:
8.总结归纳
由于逆命题和否命题也是互为逆否命题,因此四种命题的真假性之间的关系如下: (1)两个命题互为逆否命题,它们有相同的真假性;
(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.
由于原命题和它的逆否命题有相同的真假性,所以在直接证明某一个命题为真命题有困难时,可以通过证明它的逆否命题为真命题,来间接地证明原命题为真命题. 9.例题分析
例4: 证明:若p 2 + q 2
=2,则p + q ≤ 2.
分析:如果直接证明这个命题比较困难,可考虑转化为对它的逆否命题的证明。
将“若p 2 + q 2
=2,则p + q ≤ 2”视为原命题,要证明原命题为真命题,可以考
虑证明它的逆否命题“若p + q >2,则p 2 + q 2
≠2”为真命题,从而达到证明原命题为真命题的目的.
证明:若p + q >2,则 p 2
+ q
2
=
21[(p -q )2+(p +q )2]≥21(p +q )2>2
1×22
=2 所以p 2
+ q 2
≠2.
这表明,原命题的逆否命题为真命题,从而原命题为真命题。
练习巩固:证明:若a 2-b 2
+2a -4b -3≠0,则a -b ≠1. 10:教学反思
(1)逆命题、否命题与逆否命题的概念;
(2)两个命题互为逆否命题,他们有相同的真假性;
(3)两个命题为互逆命题或互否命题,他们的真假性没有关系; (4)原命题与它的逆否命题等价;否命题与逆命题等价. 11:作业 P9:习题1.1A组第2、3、4题。