贵州省遵义市2014年初中毕业生学业(升学)考试模拟试卷数学(一)
- 格式:doc
- 大小:1.82 MB
- 文档页数:8
机密★启用前遵义市汇仁中学2014初中毕业生学业(升学)统一考试模拟(二)数学试题卷(全卷总分150分,考试时间120分钟)汇仁中学 九年级 ( ) 班 姓名:__________ 钟泽鹏一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符号题目要求的,请用2B 铅笔把答题卡上对应题目的答案标号涂黑、涂满.)1. 计算的结果是( ) A. 5x B. 6x C. 5x -D. 6x -2. 根式23x )x (⋅-2)3(-的值是( ) A. –3 B. 3或-3C. 3D. 93. 把代数式x 9xy 2-分解因式,结果正确的是( ) A. )9y (x 2- B. 2)3y (x + C. )3y )(3y (x -+ D. )9y )(9y (x -+4. 定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V 数”如“947”就是一个“V 数”.若十位上的数字为2,则从1,3,4,5中任选两数,能与2组成“V 数”的概率是( )A .14B .310C . 12D .345.下列各图是在同一直角坐标系内,二次函数c x c a ax y +++=)(2与一次函数y =a x +c 的大致图像,有且只有一个是正确的,正确的是( )(A ) (B ) (C ) (D )6.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形图.如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为xcm , 那么x 满足的方程是( )。
A .x 2+130x-1400=0B .x 2+65x-350=0 C .x 2-130x-1400=0 D .x 2-65x-350=07.如图在矩形ABCD 中,AB=6,BC=8,连结AC ,△ABC 和△ADC 的内切圆分别为⊙O 1和⊙O 2,与AC 的切点分别为E 、F ,则EF 的长是( ).(A)2 (B)7.5 (C)13 (D)15 8. x y 、是实数,,若,则实数的值是3469032x y y axy x y a ++-+=-=( )A B C D ....14147474--9.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为32,2AC =, 则sin B 的值是( )A .23 B .32 C .34 D .4310.如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重叠无缝隙).若①②③④四个平行四边形面积的和为14 cm 2.四边形ABCD 面积是11 cm 2, 则①②③④四个平行四边形周长的总和为 ( )A .48 cmB .36 cmC .24 cmD .18 cm二、填空题(本题共8小题,每小题4分,共32分.答题请用0.5毫米黑色墨水的签字笔或钢笔直接答在答题卡的相应位置上.)11. 计算312-的结果是__________。
机密★启用前遵义市2014初中毕业生学业(升学)统一考试数学试题卷(全卷总分150分,考试时间120分钟)注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔将答案书写在答题卡规定的位置上. 4.所有题目必须在答题卡上作答,在试题卷上答题无效. 5.考试结束后,将试题卷和答题卡一并交回.一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符号题目要求的,请用2B 铅笔把答题卡上对应题目的答案标号涂黑、涂满.) 1.-3+(-5)的结果是A .-2 B.-8 C.8 D.2 2.观察下列图形,是中心对称图形的是3.“着力扩大投资,突破重点项目建设”是遵义经济社会发展的主要任务之一.据统计,遵义市2013年全社会固定资产投资达1762亿元,把1762亿这个数字用科学用科学记数法表示为A .8101762⨯ B. 1010762.1⨯ C. 1110762.1⨯ D. 1210762.1⨯4.如图,直线1l ∥2l ,若∠A =125,∠B = 85,则=∠+∠21A. 30B.35 C.36 D.40 5.计算2323x x ⋅的结果是A. 55x B. 56x C. 66x D. 96x6.已知抛物线bx ax y +=2和直线b ax y +=在同一坐标系内的图象如图所示,其中正确的是7.有一组数据7、11、12、7、7、8、11,下列说法错误的是A.中位数是7B.平均数是9C.众数是7D. 极差是5 8.若22=+b a ,2=ab .则22b a +的值为A.6B.4C.23D. 329.如图,边长为2的正方形ABCD 中,P 是CD 的中点,连接AP 并延长,交BC 的延长线于点F ,作△CPF 的外接圆⊙O ,连接BP 并延长交⊙O 于点E ,连接EF ,则EF 的长为A.23 B. 35C. 553D. 554 10.如图,已知△ABC 中,∠C =90,AC =BC =2,将△ABC 绕点A 顺时针方向旋转60到△C B A ''的位置,连接B C ',则B C '的长为A. 2-2B. 23 C. 1-3 D.1二、填空题(本题共8小题,每小题4分,共32分.答题请用黑色墨水笔或黑色签字笔直接答在答题卡的相应位置上.) 11.327+= ▲ .12.一个正多边形的每个外角都等于20,则这个正多边形的边数是 ▲ . 13.计算:aa a -+-111的结果是 ▲ . 14.关于x 的一元二次方程032=+-b x x 有两个不相等的实数根,则b 的取值范围是 ▲ . 15.有一圆锥,它的高为8cm ,底面半径为6cm ,则这个圆锥的侧面积是 ▲ 2cm (结果保留π). 16.有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90算一次,则滚动第2014次后,骰子朝下一面的点数是 ▲ .17.“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》.意思是说:如图,矩形城池ABCD ,东边城墙AB 长9里,南边城墙AD 长7里,东门点E 、南门点F 分别是AB 、AD 中点,EG ⊥AB ,FH ⊥AD ,EG =15里,HG 经过A 点,则FH = ▲ 里. 18.如图,反比例函数)0(>=k xk y 的图象与矩形ABCO 的两边相交于E ,F 两点.若E 是AB 的中点,2=∆BEF S ,则k 的值为 ▲ .三、解答题(本题共9小题,共88分.答题请用0.5毫米黑色墨水签字笔或钢笔书写在答题卡的相应位置上.解答是应写出必要的文字说明,证明过程或演算步骤.)19.(6分)计算:oo )3(45cos 2418π-----20.(8分)解不等式组⎪⎩⎪⎨⎧->+-≥+1321112x x x ,并把不等式组的解集在数轴上表示出来.21.(8分)如图,一楼房AB 后有一假山,其坡度为1=i :3,山坡坡面上E 点处有一休息亭,测得假山坡脚C 与楼房水平距离BC =25米,与亭子距离CE =20米.小丽从楼房顶测得E 点的俯角为45,求楼房AB 的高.(注:坡度i 是指坡面的铅直高度与水平宽度的比)22.(10分)小明、小军两同学做游戏,游戏规则是:一个不透明的文具袋中,装有型号完全相同的3支红笔和2支黑笔,两人先后从袋中取出一支笔(不放回),若两人所取笔的颜色相同,则小明胜,否则,小军胜.(1)请用树状图或列表法列出摸笔游戏所有可能的结果.(2)请计算小明获胜的概率,并指出本游戏规则是否公平,若不公平,你认为对谁有利. 23.(10分)今年5月,从全国旅游景区质量等级评审会上传来喜讯,我市“凤冈茶海之心”、“赤水佛光岩”、“仁怀中国酒文化城”三个景区加入国家“4A ”级景区大家庭.至此,全市“4A ”级景区已达13个.根据市民对13个景区名字的回答情况,按答数多少分为较为熟悉(A )、基本了解(B )、略有知晓(C )、知之甚少(D )四类进行统计,绘制了以下两幅统计图(不完整),请根据图中信息解答以下各题.(1)本次调查活动的样本容量是 ▲ .(2)调查中属“基本了解”的市民有 ▲ 人. (3)补全条形统计图. (4)“略有知晓”类占扇形统计图的圆心角是多少度?“知之甚少”类市民占被调查人数的百分比是多少?24.(10分)如图,□ABCD 中,BD ⊥AD ,∠A =45 ,E ,F 分别是AB ,CD 上的点,且BE =DF , 连接EF 交BD 于O . (1)求证:BO =DO ;(2)若EF ⊥AB ,延长EF 交AD 的延长线于G ,当1=FG 时,求AD 的长. 25.(10分)为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行”活动.自行车队从甲地出发,途径乙地短暂休息完成补给后,继续前行至目的地丙地.自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地.自行车队与邮政车行驶速度均保持不变,并且邮政车行驶速度是自行车队行驶速度的2.5倍.右图表示自行车队、邮政车离甲地的路程)km y (与自行车队离开甲地时间)h x (的函数关系图象,请根据图象提供的信息解答下列各题.(1)自行车队行驶的速度是 ▲ h km /. (2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?26.(12分)如图,直角梯形ABCD 中,AB ∥CD ,∠O DAB 90=.且∠O ABC 60=,AB =BC ,△ACD 的外接圆⊙O 交BC 于E 点,连接DE 并延长,交AC 于P 点,交AB 延长线于F . (1)求证:CF =DB(2)当3=AD 时,试求E 点到CF 的距离. 27.(14分)如图,二次函数c bx x y ++=234的图象与交于A (3,0)、B (-1,0),与y 轴交于点C .若点P ,Q 同时从A 点出发,都以每秒1个单位长度的速度分别沿AB ,AC 边运动,其中一点到达端点时,另一点也随即停止运动.(1)求该二次函数的解析式及点C 的坐标.(2)当点P 运动到B 点时,点Q 停止运动,这时,在x 轴上是否存在点E ,使得以A ,E ,Q 为顶点的三角形是等腰三角形.若存在,请求出E点的坐标,若不存在,请说明理由.(解题用图见答题卡)(3)当P ,Q 运动到t 秒时,△APQ 沿PQ 翻折,点A 恰好落在抛物线上D 点处,请判定此时四边形APDQ 的形状,并求出D 点坐标. (解题用图见答题卡)机密★启用前遵义市2014年初中毕业生学业(升学)统一考试数学参考答案二、填空题(每小题4分,共32分)11.34 12.18 13.-1 14.49<b 15.π60 16.3 17.1.05 (2021) 18.8三、解答题(共9小题,共88分)19.(6分)解:原式=1222423-⨯-- =12423---=522-(第1步中每对1个得1分)20.(8分)解:解不等式①得:1-≥x解不等式②得:4<x∴原不等式组的解集为41<≤-x 把不等式组的解集在数轴上表示为:21.(8分)解:过E 作EF ⊥BC 于F ,过A 作AG ∥BC ,交FE 的延长线于G 点.由题意可知:31==CF EF i ,设x EF =,则x CF 3=. ∴x CF EF CE 222=+=∴202=x ∴10=x∴310=CF ,10=EF . 由四边形ABFG 是矩形可得31025+=+==CF BC BF AG ,GF AB =在AGE Rt ∆中,310251)31025(tan +=⨯+=∠⋅=GAE AG EG ∴米))(31035(+=+==EF EG GF AB 22.①列表(6分)②(4分)由列表可知,摸出笔的可能共有20种,摸出两支同色笔的有8种,摸出不同颜色的有12种. ∴52104208===(小明胜)P . ∵2152<. ∴此游戏规则不公平,对小军有利. 23.(1)(2分)1500. (2)(2分)450.(3)(4分)如图.(画对1个得2分)(4)(2分)o o 144%40360=⨯,∴“略有知晓”类占扇形统计图的圆心角为o 144. %221500330=÷(或%22%8%30%401=---) ∴“知之甚少”类市民占被调查人数的%22.24.(1)(5分)∵四边形ABCD 是平行四边形, ∴AB ∥CD ,∴CDB ABD ∠=∠, 又DOF BOE ∠=∠(对顶角相等),. ∴BOE ∆≌DOF ∆.)(AAS∴DO BO =.(解法二:连接DE ,BF∵四边形ABCD 是平行四边形 ∴CD ∥AB 又∵BE DF =∴四边形DEBF 是平行四边形 ∴DO BO =). 25.(1)(2分)24, (2)(3分)设邮政车出发x 小时与自行车队首次相遇,则)12460+=x x ( 32=x答:邮政车出发32小时与自行车首次相遇.(3)(5分)解法一:设邮政车返程与自行车在次相遇地点距甲地xkm ,则邮政车已用时:260)135(135+-+x自行车已用时:24725.03-++x据题意得:2160)135(135++-+x =24725.03-++x解得:120=x答:邮政车返程与自行车在次相遇地点距甲地120km . (解法二:设FG :b kx y +=∵)135421(,F ,)0215(,G ∴⎪⎩⎪⎨⎧=+=+0215135421b k b k解得:450,60=-=b k∴45060+-=x y设EH :b kx y +=∵E (3.5,72),)135849(,H ∴⎪⎩⎪⎨⎧=+=+1358497227b k b k解得:12,24-==b k ∴1224-=x y联立⎩⎨⎧-=+-=122445060x y x y解得:⎪⎩⎪⎨⎧==120211y x∴邮政车返程与自行车在次相遇地点距甲地120km .)26.(1)(6分)证明:连接AE .∵BC =AB ,ABC ∠=o 60 ∴ABC ∆是等边三角形 ∵DC ∥AB ,DAB ∠=o 90 ∴ADC ∠=o 90∴AC 是⊙O 的直径 ∴AEC ∠=o 90∴CE =BE (三线合一) 又∵1∠=2∠,3∠=4∠ ∴DCE ∆≌FBE ∆ ∴BC =BF∴四边形BFCD 是平行四边形 ∴BD =CF (2)(6分)解法一:过E 作EG ⊥CF 于G 点∴ABC ∆是等边三角形∴CAB ∠=o 60 ∴DAC ∠=o 30∵ADC Rt ∆中,AD =3. ∴1333tan =⨯=∠⋅=DAC AD DC 22==DC AC ∴AB =2∴BD =7∵四边形BFCD 是平行四边形 ∴1==CD BF ,CF =BD =7又∵BFCD CEF S S 平行四边形41=∆ ∴AD BF GE CF ⋅=⋅⋅4121即3141721⨯⨯=⋅⨯GE 1421=GE ∴E 点到CF 的距离为1421(解法二:作EG ⊥CF ,垂足为G ,∵BAD ∠=o 90,BAC ∠=o 60 ∴CAD ∠=o 30 又∵AE 是等边三角形BC 边上的高 ∴CAE ∠=o 30∴CE CD =,又AC 是直径 ∴AC ⊥DE∴FEG ∆∽FCP ∆. ∴CFEFCP EG = ∵2121==CD CP ,3==DE EF , CF =DB =7.∵3217⋅=⋅EG ,即1421=EG ∴E 到CF 的距离为1421)27.(1)(4分)解法一: 43834)3)(1(342--=-+=x x x x y)4,0(-C(解法二:⎪⎩⎪⎨⎧=++=+-0312034c b c b 解得⎪⎩⎪⎨⎧-=-=438c b438342--=x x y ) (2)(4分)存在分三种情况讨论如下:①以A 为圆心,AQ 为半径画弧,交x 轴于点1E ,2E .AQ =4,OA =3,1OE =1,2AE =3+4=7. ∴)0,1(1-E ,)0,7(2E②以Q 为圆心,QA 为半径画弧,交x 轴于3E ,4E (与A 点重合,不合题意)过Q 作QN ⊥x 轴于点N ,则QN ∥y 轴, AC AQ AO AN = 即 543=AN ,∴512=AN , 535123=-=ON ,5123==NA NE ,∴59535123=-=OE ,)059(3,-E.③作AQ 的中垂线交x 轴于点5E ,垂足为G ,AG E 5∠=CAO ∠,5AGE ∠=COA ∠=o 90.∴AG E 5∆∽CAO ∆ ∴AO AG CA AE =5即3255=AE , 3105=AE ,3133105=-=OE∴)0,31(5-E 综上,这样的点有四个,)0,1(1-E ,)0,7(2E ,)059(3,-E ,)0,31(5-E . (3)(6分)四边形APDQ 是菱形.解法一:过D 作DH ⊥x 轴于点H ,设运动的时间为t 秒,则 PD =PA =t .∵PD ∥AC ,∴DPH ∠=OAC ∠,DHP ∠=AOC ∠=o 90.∴DHP ∆∽COA ∆, ∴OA HPAC DP CO DH ==, ∵54322=+=AC ,即354HPt DH ==, ∴t DH 54=,t HP 53=,∵t OP -=3,∴358)3(53-=--=t t t OH∴)54,583(t t D --∵点D 在抛物线上,∴)3583)(1583(3454--+-=-t t t解得01=t (舍去),641452=t 8564145583583-=⨯-=-t ,1629641455454-=⨯-=-t∴)1629,85(--D(解法二:过D 作DH ⊥x 轴于点H ,设运动的时间为t 秒,PD =PA =t . ∵PD ∥AC ,∴DPH ∠=AOC ∠在AOC Rt ∆中, 53cos =∠AOC ,54sin =∠AOC ,∴53cos cos =∠=∠=AOC DPH PD HP即53=t HP ,t HP 53=,54sin sin =∠=∠=AOC DPH t DH ,t DH 54=.以下同解法1.)。
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:在0,﹣2,5,,﹣0.3中,负数的个数是()A. 1 B. 2 C. 3 D. 4试题2:下列图形中,是轴对称图形的是()A.B.C.D.试题3:据有关资料显示,2014年通过国家科技支撑计划,遵义市获得国家级科技专项重点项目资金5533万元,将5533万用科学记数法可表示为()A. 5.533×108B. 5.533×107C. 5.533×106D.55.33×106试题4:如图,直线l1∥l2,∠1=62°,则∠2的度数为()A.152°B.118°C.28°D.62°试题5:下列运算正确的是()A.4a﹣a=3 B.2(2a﹣b)=4a﹣bC.(a+b)2=a2+b2D.(a+2)(a﹣2)=a2﹣4试题6:下列几何体的主视图与其他三个不同的是()A.B.C.D.试题7:若x=3是分式方程﹣=0的根,则a的值是()试题8:不等式3x﹣1>x+1的解集在数轴上表示为()A.B.C.D.试题9:已知点A(﹣2,y1),B(3,y2)是反比例函数y=(k<0)图象上的两点,则有()A.y1<0<y2B.y2<0<y1C.y1<y2<0 D.y2<y1<0试题10:如果一组数据x1,x2,…,x n的方差是4,则另一组数据x1+3,x2+3,…,x n+3的方差是()A. 4 B.7 C.8 D.19试题11:如图,四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC、DC上的点,当△AEF的周长最小时,∠EAF的度数为()试题12:将正方形ABCD绕点A按逆时针方向旋转30°,得正方形AB1C1D1,B1C1交CD于点E,A B=,则四边形AB1ED的内切圆半径为()A.B.C.D.试题13:使二次根式有意义的x的取值范围是.试题14:如果单项式﹣xy b+1与x a﹣2y3是同类项,那么(a﹣b)2015= .试题15:2015年1月20日遵义市政府工作报告公布:2013年全市生产总值约为1585亿元,经过连续两年增长后,预计2015年将达到2180亿元.设平均每年增长的百分率为x,可列方程为.试题16:我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图(1)).图(2)由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若正方形EFGH的边长为2,则S1+S2+S3= .试题17:按一定规律排列的一列数依次为:,,,,…,按此规律,这列数中的第10个数与第16个数的积是.试题18:如图,在圆心角为90°的扇形OAB中,半径OA=2cm,C为的中点,D、E分别是OA、OB的中点,则图中阴影部分的面积为cm2.试题19:计算:(3.14﹣π)0﹣﹣|﹣3|+4sin60°.试题20:先化简,再求值:,其中a=2.试题21:如图是某儿童乐园为小朋友设计的滑梯平面图.已知BC=4米,AB=6米,中间平台宽度DE=1米,EN、DM、CB为三根垂直于AB的支柱,垂足分别为N、M、B,∠EAB=31°,DF⊥BC于F,∠CDF=45°.求DM和BC的水平距离BM的长度.(结果精确到0.1米,参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)试题22:有甲、乙两个不透明的盒子,甲盒子中装有3张卡片,卡片上分别写着3cm、7cm、9cm;乙盒子中装有4张卡片,卡片上分别写着2cm、4cm、6cm、8cm;盒子外有一张写着5cm的卡片.所有卡片的形状、大小都完全相同.现随机从甲、乙两个盒子中各取出一张卡片,与盒子外的卡片放在一起,用卡片上标明的数量分别作为一条线段的长度.(1)请用树状图或列表的方法求这三条线段能组成三角形的概率;(2)求这三条线段能组成直角三角形的概率.试题23:遵义市某中学为了搞好“创建全国文明城市”的宣传活动,对本校部分学生(随机抽查)进行了一次相关知识了解程度的调查测试(成绩分为A、B、C、D、E五个组,x表示测试成绩).通过对测试成绩的分析,得到如图所示的两幅不完整的统计图.请你根据图中提供的信息解答以下问题:(1)参加调查测试的学生为人;(2)将条形统计图补充完整;(3)本次调查测试成绩中的中位数落在组内;(4)若测试成绩在80分以上(含80分)为优秀,该中学共有学生2600人,请你根据样本数据估计全校学生测试成绩为优秀的总人数.试题24:在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.试题25:某工厂生产一种产品,当产量至少为10吨,但不超过55吨时,每吨的成本y(万元)与产量x(吨)之间是一次函数关系,函数y与自变量x的部分对应值如表:x(吨)10 20 30y(万元/吨)45 40 35(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)当投入生产这种产品的总成本为1200万元时,求该产品的总产量;(注:总成本=每吨成本×总产量)(3)市场调查发现,这种产品每月销售量m(吨)与销售单价n(万元/吨)之间满足如图所示的函数关系,该厂第一个月按同一销售单价卖出这种产品25吨.请求出该厂第一个月销售这种产品获得的利润.(注:利润=售价﹣成本)试题26:如图,△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,交CA的延长线于点E,连接AD、DE.(1)求证:D是BC的中点;(2)若DE=3,BD﹣AD=2,求⊙O的半径;(3)在(2)的条件下,求弦AE的长.试题27:如图,抛物线y=a x2+bx+c(a≠0)与x轴交于A(﹣4,0),B(2,0),与y轴交于点C(0,2).(1)求抛物线的解析式;(2)若点D为该抛物线上的一个动点,且在直线AC上方,当以A、C、D为顶点的三角形面积最大时,求点D的坐标及此时三角形的面积;(3)以AB为直径作⊙M,直线经过点E(﹣1,﹣5),并且与⊙M相切,求该直线的解析式.试题1答案: B试题2答案: A试题3答案: B试题4答案: D试题5答案: D试题6答案: C试题7答案: A试题8答案: C试题9答案: B试题10答案:A试题11答案:D试题12答案:B试题13答案:x≥试题14答案:1试题15答案: 1585(1+x)2=2180 试题16答案:12试题17答案:试题18答案: (π+-)试题19答案:-2试题20答案:试题21答案: 试题22答案:试题23答案: 400C试题24答案: 试题25答案: 试题26答案: 试题27答案:。
2014年贵州省遵义市中考数学一模试卷一、选择题(本大题10个小题,每小题3分,共30分)1.(3分)﹣2的相反数是()A.﹣B.﹣2C.D.22.(3分)计算﹣12a6÷(3a2)的结果是()A.﹣4a3B.﹣4a8C.﹣4a4D.﹣a43.(3分)不等式2x+8≤0的解集在数轴上表示正确的是()A.B.C.D.4.(3分)温家宝总理有一句名言:“多么小的问题,乘以13亿,都会变得很大,多么大的经济总量,除以13亿,都会变得很小”.如果每人每天浪费0.01千克粮食,我国13亿人每天就浪费粮食()A.1.3×105千克B.1.3×106千克C.1.3×107千克D.1.3×108千克5.(3分)用数学的方式理解“当窗理云鬓,对镜贴花黄”和“坐地日行八万里”(只考虑地球的自转),其中蕴含的图形运动是()A.平移和旋转B.对称和旋转C.对称和平移D.旋转和平移6.(3分)如图,在△ABC中,AB是⊙O的直径,∠B=60°,∠C=70°,则∠BOD的度数是()A.90°B.100°C.110°D.120°7.(3分)如图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是()A.B.C.D.8.(3分)如图,两块完全重合的正方形纸片,如果上面的一块绕正方形的中心O逆时针0°~90°的旋转,那么旋转时露出的△ABC的面积(S)随着旋转角度(n)的变化而变化,下面表示S与n关系的图象大致是()A.B.C.D.9.(3分)求1+2+22+23+…+22013的值,可令S=1+2+22+23+…+22013,则2S=2+22+23+24+…+22014,因此2S﹣S=22014﹣1.仿照以上推理,计算出1+5+52+53+…+52013的值为()A.52013﹣1B.52014﹣1C.D.10.(3分)如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为()A.12B.9C.6D.4二、填空题:(本大题8个小题,每小题4分,共24分)11.(4分)写出一个比﹣1小的无理数是.12.(4分)因式分解:2x2﹣8=.13.(4分)若x+y=3,xy=1,则x2+y2=.14.(4分)在综合实践课上,六名同学做的作品的数量(单位:件)分别是:5,7,3,x,6,4;若这组数据的平均数是5,则这组数据的中位数是件.15.(4分)如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=35°,那么∠2是度.16.(4分)如图,邻边不等的矩形花圃ABCD,它的一边AD利用已有的围墙,另外三边所围的栅栏的总长度是6m.若矩形的面积为4m2,则AB的长度是m(可利用的围墙长度超过6m).17.(4分)如图,在正方形ABCD中,以A为顶点作等边△AEF,交BC边于E,交DC边于F;又以A为圆心,AE的长为半径作.若△AEF的边长为2,则阴影部分的面积约是.(结果精确到0.01)18.(4分)在直角坐标系中,正方形A1B1C1O、A2B2C2C1、…、A n B n∁n C n﹣1按如图所示的方式放置,其中点A1、A2、A3、…、A n均在一次函数y=kx+b的图象上,点C1、C2、C3、…、∁n均在x轴上.若点B1的坐标为(1,1),点B2的坐标为(3,2),则点A n的坐标为.三、解答题(本题有9小题,共88分)19.(6分)计算.20.(8分)先化简,再求值:,其中.21.(8分)如图,分别延长▱ABCD的边BA、DC到点E、H,使得AE=AB,CH=CD,连接EH,分别交AD、BC于点F、G.求证:△AEF≌△CHG.22.(10分)在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y.(1)用列表法表示出(x,y)的所有可能出现的结果;(2)求小明、小华各取一次小球所确定的点(x,y)落在反比例函数y=的图象上的概率;(3)求小明、小华各取一次小球所确定的数x,y满足y<的概率.23.(10分)某商场为缓解我市“停车难”问题,拟建造地下停车库,图6是该地下停车库坡道入口的设计示意图,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小明认为CD的长就是所限制的高度,而小亮认为应该以CE的长作为限制的高度.小明和小亮谁说的对?请你判断并计算出正确的结果.(结果精确到0.1m)(sin18°≈0.309,cos18°≈0.951,tan18°≈0.325,sin72°≈0.951,cos72°≈0.309,tan18°≈3.708)24.(10分)林城市对教师试卷讲评课中学生参与的深度和广度进行评价,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制了如图两幅不完整的统计图,请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)请将条形统计图补充完整;(3)如果全市有16万名初中学生,那么在试卷讲评课中,“独立思考”的学生约有多少万人?25.(10分)潼南绿色无公害蔬菜基地有甲、乙两种植户,他们种植了A、B两类蔬菜,两种植户种植的两类蔬菜的种植面积与总收入如下表:说明:不同种植户种植的同类蔬菜每亩平均收入相等.(1)求A、B两类蔬菜每亩平均收入各是多少元?(2)某种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有租地方案.26.(12分)如图,在矩形ABCD中,AB=6米,BC=8米,动点P以2米/秒的速度从点A出发,沿AC向点C移动,同时动点Q以1米/秒的速度从点C 出发,沿CB向点B移动,设P、Q两点移动t秒(0<t<5)后,四边形ABQP 的面积为S米2.(1)求面积S与时间t的关系式;(2)在P、Q两点移动的过程中,四边形ABQP与△CPQ的面积能否相等?若能,求出此时点P的位置;若不能,请说明理由.27.(14分)如图,在平面直角坐标系xOy中,一抛物线的顶点坐标是(0,1),且过点(﹣2,2),平行四边形OABC的顶点A、B在此抛物线上,AB与y 轴相交于点M.已知点C的坐标是(﹣4,0),点Q(x,y)是抛物线上任意一点.(1)求此抛物线的解析式及点M的坐标;(2)在x轴上有一点P(t,0),若PQ∥CM,试用x的代数式表示t;(3)在抛物线上是否存在点Q,使得△BAQ的面积是△BMC的面积的2倍?若存在,求此时点Q的坐标.2014年贵州省遵义市中考数学一模试卷参考答案与试题解析一、选择题(本大题10个小题,每小题3分,共30分)1.(3分)﹣2的相反数是()A.﹣B.﹣2C.D.2【解答】解:﹣2的相反数是2,故选:D.2.(3分)计算﹣12a6÷(3a2)的结果是()A.﹣4a3B.﹣4a8C.﹣4a4D.﹣a4【解答】解:﹣12a6÷(3a2)=(﹣12÷3)•(a6÷a2)=﹣4a4.故选:C.3.(3分)不等式2x+8≤0的解集在数轴上表示正确的是()A.B.C.D.【解答】解:2x+8≤0,解得:x≤﹣4,结合选项可得D选项符合题意.故选:D.4.(3分)温家宝总理有一句名言:“多么小的问题,乘以13亿,都会变得很大,多么大的经济总量,除以13亿,都会变得很小”.如果每人每天浪费0.01千克粮食,我国13亿人每天就浪费粮食()A.1.3×105千克B.1.3×106千克C.1.3×107千克D.1.3×108千克【解答】解:13亿=1 300 000 000,1 300 000 000×0.01=1.3×107千克,故13亿人每天就浪费粮食1.3×107千克.故选:C.5.(3分)用数学的方式理解“当窗理云鬓,对镜贴花黄”和“坐地日行八万里”(只考虑地球的自转),其中蕴含的图形运动是()A.平移和旋转B.对称和旋转C.对称和平移D.旋转和平移【解答】解:根据对称和旋转定义可知:“当窗理云鬓,对镜贴花黄”是对称;“坐地日行八万里”是旋转.故选:B.6.(3分)如图,在△ABC中,AB是⊙O的直径,∠B=60°,∠C=70°,则∠BOD的度数是()A.90°B.100°C.110°D.120°【解答】解:∵∠B=60°,∠C=70°,∴∠A=50°,∴∠BOD=100°,故选:B.7.(3分)如图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是()A.B.C.D.【解答】解:从左面看可得到2列正方形从左往右的个数依次为2,3,故选D.8.(3分)如图,两块完全重合的正方形纸片,如果上面的一块绕正方形的中心O逆时针0°~90°的旋转,那么旋转时露出的△ABC的面积(S)随着旋转角度(n)的变化而变化,下面表示S与n关系的图象大致是()A.B.C.D.【解答】解:旋转时露出的△ABC的面积(S)随着旋转角度(n)的变化由小到大再变小.故选:B.9.(3分)求1+2+22+23+…+22013的值,可令S=1+2+22+23+…+22013,则2S=2+22+23+24+…+22014,因此2S﹣S=22014﹣1.仿照以上推理,计算出1+5+52+53+…+52013的值为()A.52013﹣1B.52014﹣1C.D.【解答】解:设S=1+5+52+53+ (52013)则5S=5+52+53+ (52014)所以,5S﹣S=52014﹣1,S=.故选:D.10.(3分)如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为()A.12B.9C.6D.4【解答】解:∵OA的中点是D,点A的坐标为(﹣6,4),∴D(﹣3,2),∵双曲线y=经过点D,∴k=﹣3×2=﹣6,∴△BOC的面积=|k|=3.又∵△AOB的面积=×6×4=12,∴△AOC的面积=△AOB的面积﹣△BOC的面积=12﹣3=9.故选:B.二、填空题:(本大题8个小题,每小题4分,共24分)11.(4分)写出一个比﹣1小的无理数是﹣、﹣1.101001…,﹣π(答案不唯一).【解答】解:﹣、﹣1.101001…,﹣π这些无理数的绝对值均大于﹣1的绝对值.故答案为:﹣、﹣1.101001…,﹣π(答案不唯一).12.(4分)因式分解:2x2﹣8=2(x+2)(x﹣2).【解答】解:2x2﹣8=2(x+2)(x﹣2).13.(4分)若x+y=3,xy=1,则x2+y2=7.【解答】解:x2+y2=x2+2xy+y2﹣2xy,=(x+y)2﹣2xy,=9﹣2,=7.14.(4分)在综合实践课上,六名同学做的作品的数量(单位:件)分别是:5,7,3,x,6,4;若这组数据的平均数是5,则这组数据的中位数是5件.【解答】解:由平均数的定义知,得x=5,将这组数据按从小到大排列为3,4,5,5,6,7,由于有偶数个数,取最中间两个数的平均数,其中位数为.故答案为:5.15.(4分)如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=35°,那么∠2是55度.【解答】解:如图,∵∠1=35°,∴∠3=90°﹣∠1=55°,∵直尺两边平行,∴∠2=∠3=55°(两直线平行,同位角相等).故答案为:55°.16.(4分)如图,邻边不等的矩形花圃ABCD,它的一边AD利用已有的围墙,另外三边所围的栅栏的总长度是6m.若矩形的面积为4m2,则AB的长度是1m(可利用的围墙长度超过6m).【解答】解:设AB长为x米,则BC长为(6﹣2x)米.依题意,得x(6﹣2x)=4.整理,得x2﹣3x+2=0.解方程,得x1=1,x2=2.所以当x=1时,6﹣2x=4;当x=2时,6﹣2x=2(舍去).答:AB的长为1米.故答案为:1.17.(4分)如图,在正方形ABCD中,以A为顶点作等边△AEF,交BC边于E,交DC边于F;又以A为圆心,AE的长为半径作.若△AEF的边长为2,则阴影部分的面积约是0.64.(结果精确到0.01)【解答】解:∵AE=AF,AB=AD,∴△ABE≌△ADF(Hl),∴BE=DF,∴EC=CF,又∵∠C=90°,∴△ECF是等腰直角三角形,∴EC=EF cos45°=2×=,∴S△ECF=××=1,又∵S扇形AEF =π22=π,S△AEF=×2×2sin60°=×2×2×=,又∵S弓形EGF =S扇形AEF﹣S△AEF=π﹣,∴S阴影=S△ECF﹣S弓形EGF=1﹣(π﹣)≈0.64.故答案为0.64.18.(4分)在直角坐标系中,正方形A1B1C1O、A2B2C2C1、…、A n B n∁n C n﹣1按如图所示的方式放置,其中点A1、A2、A3、…、A n均在一次函数y=kx+b的图象上,点C1、C2、C3、…、∁n均在x轴上.若点B1的坐标为(1,1),点B2的坐标为(3,2),则点A n的坐标为(2n﹣1﹣1,2n﹣1).【解答】解:∵B1的坐标为(1,1),点B2的坐标为(3,2),∴正方形A1B1C1O边长为1,正方形A2B2C2C1边长为2,∴A1的坐标是(0,1),A2的坐标是:(1,2),代入y=kx+b得,解得:.则直线的解析式是:y=x+1.∵A1B1=1,点B2的坐标为(3,2),∴A1的纵坐标是1,A2的纵坐标是2.在直线y=x+1中,令x=3,则纵坐标是:3+1=4=22;则A4的横坐标是:1+2+4=7,则A4的纵坐标是:7+1=8=23;据此可以得到A n的纵坐标是:2n﹣1,横坐标是:2n﹣1﹣1.故点A n的坐标为(2n﹣1﹣1,2n﹣1).故答案是:(2n﹣1﹣1,2n﹣1).三、解答题(本题有9小题,共88分)19.(6分)计算.【解答】解:原式=9+4×1﹣2+1,(4分)=9+4﹣2+1,=12(6分).20.(8分)先化简,再求值:,其中.【解答】解:原式=﹣×=+=+==.当x=时,原式==.21.(8分)如图,分别延长▱ABCD的边BA、DC到点E、H,使得AE=AB,CH=CD,连接EH,分别交AD、BC于点F、G.求证:△AEF≌△CHG.【解答】证明:在▱ABCD中,AB∥CD,AB=CD,∴∠E=∠H,∠EAF=∠D,∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,∴∠EAF=∠HCG,∵AE=AB,CH=CD,∴AE=CH,在△AEF与△CHG中,∴△AEF≌△CHG(ASA).22.(10分)在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y.(1)用列表法表示出(x,y)的所有可能出现的结果;(2)求小明、小华各取一次小球所确定的点(x,y)落在反比例函数y =的图象上的概率;(3)求小明、小华各取一次小球所确定的数x,y满足y<的概率.【解答】解:(1)列表如下:(2)共有16种情况,乘积为4的,即落在反比例函数y=的图象上的情况有3种,所以概率是;(3)乘积小于4的,即满足y<的情况有5种,所以概率是.23.(10分)某商场为缓解我市“停车难”问题,拟建造地下停车库,图6是该地下停车库坡道入口的设计示意图,其中,AB⊥BD,∠BAD=18°,C在BD 上,BC=0.5m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小明认为CD的长就是所限制的高度,而小亮认为应该以CE的长作为限制的高度.小明和小亮谁说的对?请你判断并计算出正确的结果.(结果精确到0.1m)(sin18°≈0.309,cos18°≈0.951,tan18°≈0.325,sin72°≈0.951,cos72°≈0.309,tan18°≈3.708)【解答】解:在△ABD中,∠ABD=90°,∠BAD=18°,BA=10m∴tan∠BAD=∴BD=10×tan 18°∴CD=BD﹣BC≈10×0.325﹣0.5≈2.75(m)在△ABD中,∠CDE=90°﹣∠BAD=72°∵CE⊥ED∴sin∠CDE=∴CE=sin∠CDE×CD=sin72°×2.75≈0.951×2.75≈2.6(m)∴小亮说得对,答:小亮说得对,CE为2.6m.24.(10分)林城市对教师试卷讲评课中学生参与的深度和广度进行评价,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制了如图两幅不完整的统计图,请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了560名学生;(2)请将条形统计图补充完整;(3)如果全市有16万名初中学生,那么在试卷讲评课中,“独立思考”的学生约有多少万人?【解答】解:(1)224÷40%=560名;(2)讲解题目的学生数为:560﹣84﹣168﹣224=560﹣476=84,补全统计图如图;(3)×16=4.8万,答:在试卷讲评课中,“独立思考”的学生约有4.8万人.25.(10分)潼南绿色无公害蔬菜基地有甲、乙两种植户,他们种植了A、B两类蔬菜,两种植户种植的两类蔬菜的种植面积与总收入如下表:说明:不同种植户种植的同类蔬菜每亩平均收入相等.(1)求A、B两类蔬菜每亩平均收入各是多少元?(2)某种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有租地方案.【解答】解:(1)设A、B两类蔬菜每亩平均收入分别是x元,y元.由题意得:,解得:,答:A、B两类蔬菜每亩平均收入分别是3000元,3500元.(2)设用来种植A类蔬菜的面积a亩,则用来种植B类蔬菜的面积为(20﹣a)亩.由题意得:,解得:10<a≤14.∵a取整数为:11、12、13、14.∴租地方案为:26.(12分)如图,在矩形ABCD中,AB=6米,BC=8米,动点P以2米/秒的速度从点A出发,沿AC向点C移动,同时动点Q以1米/秒的速度从点C 出发,沿CB向点B移动,设P、Q两点移动t秒(0<t<5)后,四边形ABQP 的面积为S米2.(1)求面积S与时间t的关系式;(2)在P、Q两点移动的过程中,四边形ABQP与△CPQ的面积能否相等?若能,求出此时点P的位置;若不能,请说明理由.【解答】解:(1)过点P作PE⊥BC于ERt△ABC中,AC==10(米)由题意知:AP=2t,CQ=t,则PC=10﹣2t由AB⊥BC,PE⊥BC得PE∥AB∴即:=,∴PE=(10﹣2t)=﹣t+6又∵S△ABC=×6×8=24∴S=S△ABC ﹣S△PCQ=24﹣•t•(﹣t+6)=t2﹣3t+24即:S=t2﹣3t+24(8分)(2)假设四边形ABQP与△CPQ的面积相等,则有:t2﹣3t+24=12即:t2﹣5t+20=0∵b2﹣4ac=(﹣5)2﹣4×1×20<0∴方程无实根∴在P、Q两点移动的过程中,四边形ABQP与△CPQ的面积不能相等.27.(14分)如图,在平面直角坐标系xOy中,一抛物线的顶点坐标是(0,1),且过点(﹣2,2),平行四边形OABC的顶点A、B在此抛物线上,AB与y 轴相交于点M.已知点C的坐标是(﹣4,0),点Q(x,y)是抛物线上任意一点.(1)求此抛物线的解析式及点M的坐标;(2)在x轴上有一点P(t,0),若PQ∥CM,试用x的代数式表示t;(3)在抛物线上是否存在点Q,使得△BAQ的面积是△BMC的面积的2倍?若存在,求此时点Q的坐标.【解答】解:(1)∵抛物线的顶点坐标是(0,1),且过点(﹣2,2),故设其解析式为y=ax2+1,则有:2=(﹣2)2×a+1,得a =,∴此抛物线的解析式为:y =x2+1,∵四边形OABC是平行四边形,∴AB=OC=4,AB∥OC,又∵y轴是抛物线的对称轴,∴点A与B是抛物线上关于y轴的对称点,则MA=MB=2,即点A的横坐标是2,则其纵坐标y =×22+1=2,即点A(2,2),故点M(0,2).(2)作QH⊥x轴,交x轴于点H.则∠QHP=∠MOC=90°,∵PQ∥CM,∴∠QPH=∠MCO,∴△PQH∽△CMO,∴,第21页(共22页)第22页(共22页)即,而y =x 2+1, ∴(x 2+1),∴t =﹣x 2+x ﹣2;(3)设△ABQ 的边AB 上的高为h , ∵S △BCM =BM •OM =2,∴S △ABQ =2S △BCM =AB ×h =4, ∴h =2,∴点Q 的纵坐标为4,代入y =x 2+1, 得x =±2,∴存在符合条件的点Q ,其坐标为(2,4),(﹣2,4).。
2014年贵州省遵义市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.﹣3+(﹣5)的结果是()A.﹣2 B.﹣8 C.8D.22.观察下列图形,是中心对称图形的是()A.B.C.D.3.“着力扩大投资,突破重点项目建设”是遵义经济社会发展的主要任务之一.据统计,遵义市2013年全社会固定资产投资达1762亿元,把1762亿元这个数字用科学记数法表示为()A.1762×108B.1.762×1010C.1.762×1011D.1.762×10124.如图,直线l1∥l2,∠A=125°,∠B=85°,则∠1+∠2=()A.30°B.35°C.36°D.40°第4题图第9题图第10题图5.计算3x3•2x2的结果是()A.5x5B.6x5C.6x6D.6x96.已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象如图,其中正确的是()A.B.C.D.7.有一组数据7、11、12、7、7、8、11.下列说法错误的是()A.中位数是7 B.平均数是9 C.众数是7 D.极差是58.若a+b=2,ab=2,则a2+b2的值为()A.6 B.4C.3D.29.如图,边长为2的正方形ABCD中,P是CD的中点,连接AP并延长交BC的延长线于点F,作△CPF的外接圆⊙O,连接BP并延长交⊙O于点E,连接EF,则EF的长为()A.B.C.D.10.如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为()A.2﹣B.C.﹣1 D.1二、填空题(本题共8小题,每小题4分,共32分)11.+=.12.正多边形的一个外角等于20°,则这个正多边形的边数是.13.计算:+的结果是.14.关于x的一元二次方程x2﹣3x+b=0有两个不相等的实数根,则b的取值范围是.15.有一圆锥,它的高为8cm,底面半径为6cm,则这个圆锥的侧面积是cm2.(结果保留π)16.有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2014次后,骰子朝下一面的点数是.17.“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E、南门点F分别是AB,AD的中点,EG⊥AB,FE⊥AD,EG=15里,HG经过A点,则FH= 里.18.如图,反比例函数y=(k>0)的图象与矩形ABCO的两边相交于E,F两点,若E是AB的中点,S△BEF=2,则k的值为.三、解答题(本题共9小题,共88分)19.(6分)计算:﹣|﹣4|﹣2cos45°﹣(3﹣π)0.20.(8分)解不等式组:,并把不等式组的解集在数轴上表示出来.21.(8分)如图,一楼房AB后有一假山,其坡度为i=1:,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)22.(10分)小明、小军两同学做游戏,游戏规则是:一个不透明的文具袋中,装有型号完全相同的3支红笔和2支黑笔,两人先后从袋中取出一支笔(不放回),若两人所取笔的颜色相同,则小明胜,否则,小军胜.(1)请用树形图或列表法列出摸笔游戏所有可能的结果;(2)请计算小明获胜的概率,并指出本游戏规则是否公平,若不公平,你认为对谁有利.23.(10分)今年5月,从全国旅游景区质量等级评审会上传来喜讯,我市“风冈茶海之心”、“赤水佛光岩”、“仁怀中国酒文化城”三个景区加入国家“4A”级景区.至此,全市“4A”级景区已达13个.某旅游公司为了了解我市“4A”级景区的知名度情况,特对部分市民进行现场采访,根据市民对13个景区名字的回答情况,按答数多少分为熟悉(A),基本了解(B)、略有知晓(C)、知之甚少(D)四类进行统计,绘制了一下两幅统计图(不完整),请根据图中信息解答以下各题:(1)本次调查活动的样本容量是;(2)调查中属于“基本了解”的市民有人;(3)补全条形统计图;(4)“略有知晓”类占扇形统计图的圆心角是多少度?“知之甚少”类市民占被调查人数的百分比是多少?24.(10分)如图,▱ABCD中,BD⊥AD,∠A=45°,E、F分别是AB,CD上的点,且BE=DF,连接EF交BD于O.(1)求证:BO=DO;(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AD的长.25.(10分)为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行”活动.自行车队从甲地出发,途径乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,并且邮政车行驶速度是自行车队行驶速度的2.5倍,如图表示自行车队、邮政车离甲地的路程y(km)与自行车队离开甲地时间x(h)的函数关系图象,请根据图象提供的信息解答下列各题:(1)自行车队行驶的速度是24km/h;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?26.(12分)如图,直角梯形ABCD中,AB∥CD,∠DAB=90°,且∠ABC=60°,AB=BC,△ACD的外接圆⊙O交BC于E点,连接DE并延长,交AC于P点,交AB延长线于F.(1)求证:CF=DB;(2)当AD=时,试求E点到CF的距离.27.(14分)如图,二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0),与y轴交于点C.若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动.(1)求该二次函数的解析式及点C的坐标;(2)当点P运动到B点时,点Q停止运动,这时,在x轴上是否存在点E,使得以A,E,Q为顶点的三角形为等腰三角形?若存在,请求出E点坐标;若不存在,请说明理由.(3)当P,Q运动到t秒时,△APQ沿PQ翻折,点A恰好落在抛物线上D点处,请判定此时四边形APDQ的形状,并求出D点坐标.贵州省遵义市2014年中考数学试卷答案1.B 2.C 3.C 4.A 5.B 6.D 7.A 8.B 9.D 10.C11.4.12.18.13.﹣1.14.b<.15.60π.16.3.17. 1.05.18.8.19.解:原式=3﹣4﹣﹣1=2﹣5.20.解:由①得,x≥﹣1,由②得,x<4,故此不等式组的解集为:﹣1≤x<4.在数轴上表示为:.21.解:过点E作EF⊥BC的延长线于F,EH⊥AB于点H,在Rt△CEF中,∵i===tan∠ECF,∴∠ECF=30°,∴EF=CE=10米,CF=10米,∴BH=EF=10米,HE=BF=BC+CF=(25+10)米,在Rt△AHE中,∵∠HAE=45°,∴AH=HE=(25+10)米,∴AB=AH+HB=(35+10)米.答:楼房AB的高为(35+10)米.22.解:(1)列表得:红1 红2 红3 黑1 黑2红1 红1红2 红1红3 红1黑1 红1黑2红2 红2红1 红2红3 红2黑1 红2黑2红3 红3红1 红3红2 红3黑1 红3黑2黑1 黑1红1 黑1红2 黑1红3 黑1黑2黑2 黑2红1 黑2红2 黑2红3 黑2黑1(2)共20种等可能的情况,其中颜色相同的有8种,则小明获胜的概率为=,小军获胜的概率为1﹣=,∵<,∴不公平,对小军有利.23.解:(1)120÷8%=1500;(2)略有知晓(C)的人数为:1500×40%=600人,“基本了解”(B)的人数为:1500﹣120﹣600﹣330=1500﹣1050=450人;(3)补全统计图如图所示;(4)“略有知晓”类:360°×40%=144°,“知之甚少”类:×100%=22%.故答案为:(1)1500;(2)450.24.(1)证明:∵四边形ABCD是平行四边形,∴DC=AB,DC∥AB,∴∠ODF=∠OBE,在△ODF与△OBE中∴△ODF≌△OBE(AAS)∴BO=DO;(2)解:∵BD⊥AD,∴∠ADB=90°,∵∠A=45°,∴∠DBA=∠A=45°,∵EF⊥AB,∴∠G=∠A=45°,∴△ODG是等腰直角三角形,∵AB∥CD,EF⊥AB,∴DF⊥OG,∴OF=FG,△DFG是等腰直角三角形,∵△ODF≌△OBE(AAS)∴OE=OF,∴GF=OF=OE,即2FG=EF,∵△DFG是等腰直角三角形,∴DF=FG=1,∴DG==,∵AB∥CD,∴=,即=,∴AD=2,25.解:(1)由题意得自行车队行驶的速度是:72÷3=24km/h.故答案为:24;(2)由题意得邮政车的速度为:24×2.5=60km/h.设邮政车出发a小时两车相遇,由题意得24(a+1)=60a,解得:a=.答:邮政车出发小时与自行车队首次相遇;(3)由题意,得邮政车到达丙地的时间为:135÷60=,∴邮政车从丙地出发的时间为:135=,∴B(,135),C(7.5,0).自行车队到达丙地的时间为:135÷24+0.5=+0.5=,∴D(,135).设BC的解析式为y1=k1+b1,由题意得,∴,∴y1=﹣60x+450,设ED的解析式为y2=k2x+b2,由题意得,解得:,∴y2=24x﹣12.当y1=y2时,﹣60x+450=24x﹣12,解得:x=5.5.y1=﹣60×5.5+450=120.答:邮政车在返程途中与自行车队再次相遇时的地点距离甲地120km.26.(1)证明:连结AE,如图,∵∠ABC=60°,AB=BC,∴△ABC为等边三角形,∵AB∥CD,∠DAB=90°,∴∠ADC=∠DAB=90°,∴AC为⊙O的直径,∴∠AEC=90°,即AE⊥BC,∴BE=CE,CD∥BF,∴∠DCE=∠FBF,在△DCE和△FBE中,,∴△DCE≌△FBE(ASA),∴DE=FE,∴四边形BDCF为平行四边形,∴CF=DB;(2)解:作EH⊥CF于H,如图,∵△ABC为等边三角形,∴∠BAC=60°,∴∠DAC=30°,在Rt△ADC中,AD=,∴DC=AD=1,AC=2CD=2,∴AB=AC=2,BF=CD=1,∴AF=3,在Rt△ABD中,BD==,在Rt△ADF中,DF==2,∴CF=BD=,EF=DF=,∵AE⊥BC,∴∠CAE=∠BAE=30°,∴∠EDC=∠CAE=30°,而∠DCA=∠BAC=60°,∴∠DPC=90°,在Rt△DPC中,DC=1,∠CDP=30°,∴PC=DC=,∵∠HFE=∠PFC,∴Rt△FHE∽Rt△FPC,∴=,即=,∴EH=,即E点到CF的距离为.27.解:(1)∵二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0),∴,解得,∴y=x2﹣x﹣4.∴C(0,﹣4).(2)存在.如图1,过点Q作QD⊥OA于D,此时QD∥OC,∵A(3,0),B(﹣1,0),C(0,﹣4),O(0,0)∴AB=4,OA=3,OC=4,∴AC==5,AQ=4.∵QD∥OC,∴,∴,∴QD=,AD=.①作AQ的垂直平分线,交AO于E,此时AE=EQ,即△AEQ为等腰三角形,设AE=x,则EQ=x,DE=AD﹣AE=﹣x,∴在Rt△EDQ中,(﹣x)2+()2=x2,解得x=,∴OA﹣AE=3﹣=﹣,∴E(﹣,0).②以Q为圆心,AQ长半径画圆,交x轴于E,此时QE=QA=4,∵ED=AD=,∴AE=,∴OA﹣AE=3﹣=﹣,∴E(﹣,0).③当AE=AQ=4时,∵OA﹣AE=3﹣4=﹣1,∴E(﹣1,0).综上所述,存在满足条件的点E,点E的坐标为(﹣,0)或(﹣,0)或(﹣1,0).(3)四边形APDQ为菱形,D点坐标为(﹣,﹣).理由如下:如图2,D点关于PQ与A点对称,过点Q作,FQ⊥AP于F,∵AP=AQ=t,AP=DP,AQ=DQ,∴AP=AQ=QD=DP,∴四边形AQDP为菱形,∵FQ∥OC,∴,∴,∴AF=,FQ=,∴Q(3﹣,﹣),∵DQ=AP=t,∴D(3﹣﹣t,﹣),∵D在二次函数y=x2﹣x﹣4上,∴﹣=(3﹣t)2﹣(3﹣t)﹣4,∴t=,或t=0(与A重合,舍去),∴D(﹣,﹣).2015年贵州省遵义市中考数学试卷一、选择题(本题共12小题,每小题3分,共36分)1.在0,﹣2,5,,﹣0.3中,负数的个数是()A.1 B.2C.3D.42.观察下列图形,是轴对称图形的是()3.据有关资料显示,2014年通过国家科技支撑计划,遵义市获得国家级科技专项重点项目资金5533万元,将5533万用科学记数法可表示为()A.5.533×108B.5.533×107C.5.533×106D.55.33×1064.如图,直线l1∥l2,∠1=62°,则∠2的度数为()A.152°B.118°C.28°D.62°5.下列运算正确的是()A.4a﹣a=3 B.2(2a﹣b)=4a﹣b C.(a+b)2=a2+b2D.(a+2)(a﹣2)=a2﹣4 6.下列几何体的主视图与其他三个不同的是()A.B.C.D.7.若x=3是分式方程﹣=0的根,则a的值是()A.5 B.﹣5 C.3D.﹣38.不等式3x﹣1>x+1的解集在数轴上表示为()A.B.C.D.9.已知点A(﹣2,y1),B(3,y2)是反比例函数y=(k<0)图象上的两点,则有()A.y1<0<y2B.y2<0<y1C.y1<y2<0 D.y2<y1<010.如果一组数据x1,x2,…,x n的方差是4,则另一组数据x1+3,x2+3,…,x n+3的方差是()A.4 B.7C.8D.1911.如图,四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC、DC上的点,当△AEF的周长最小时,∠EAF的度数为()A.50°B.60°C.70°D.80°12.将正方形ABCD绕点A按逆时针方向旋转30°,得正方形AB1C1D1,B1C1交CD于点E,AB=,则四边形AB1ED的内切圆半径为()A.B.C.D.二、填空题(本题共6小题,每小题4分,共24分)13.使二次根式有意义的x的取值范围是.14.如果单项式﹣xy b+1与x a﹣2y3是同类项,那么(a﹣b)2015=.15.2015年1月20日遵义市政府工作报告公布:2013年全市生产总值约为1585亿元,经过连续两年增长后,预计2015年将达到2180亿元.设平均每年增长的百分率为x,可列方程为.16.我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图(1)).图(2)由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若正方形EFGH的边长为2,则S1+S2+S3=.17.按一定规律排列的一列数依次为:,,,,…,按此规律,这列数中的第10个数与第16个数的积是.18.如图,在圆心角为90°的扇形OAB中,半径OA=2cm,C为的中点,D、E分别是OA、OB的中点,则图中阴影部分的面积为cm2.三、解答题(本题共9小题,共90分)19.(6分)计算:(3.14﹣π)0﹣﹣|﹣3|+4sin60°.20.(8分)先化简,再求值:,其中a=2.21.(8分)如图是某儿童乐园为小朋友设计的滑梯平面图.已知BC=4米,AB=6米,中间平台宽度DE=1米,EN、DM、CB为三根垂直于AB的支柱,垂足分别为N、M、B,∠EAB=31°,DF⊥BC于F,∠CDF=45°.求DM和BC的水平距离BM的长度.(结果精确到0.1米,参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)22.(10分)有甲、乙两个不透明的盒子,甲盒子中装有3张卡片,卡片上分别写着3cm、7cm、9cm;乙盒子中装有4张卡片,卡片上分别写着2cm、4cm、6cm、8cm;盒子外有一张写着5cm的卡片.所有卡片的形状、大小都完全相同.现随机从甲、乙两个盒子中各取出一张卡片,与盒子外的卡片放在一起,用卡片上标明的数量分别作为一条线段的长度.(1)请用树状图或列表的方法求这三条线段能组成三角形的概率;(2)求这三条线段能组成直角三角形的概率.23.(10分)遵义市某中学为了搞好“创建全国文明城市”的宣传活动,对本校部分学生(随机抽查)进行了一次相关知识了解程度的调查测试(成绩分为A、B、C、D、E五个组,x表示测试成绩).通过对测试成绩的分析,得到如图所示的两幅不完整的统计图.请你根据图中提供的信息解答以下问题:(1)参加调查测试的学生为人;(2)将条形统计图补充完整;(3)本次调查测试成绩中的中位数落在组内;(4)若测试成绩在80分以上(含80分)为优秀,该中学共有学生2600人,请你根据样本数据估计全校学生测试成绩为优秀的总人数.24.(10分)在Rt △ABC 中,∠BAC=90°,D 是BC 的中点,E 是AD 的中点,过点A 作AF ∥BC 交BE 的延长线于点F .(1)求证:△AEF ≌△DEB ; (2)证明四边形ADCF 是菱形;(3)若AC=4,AB=5,求菱形ADCF 的面积.25.(12分)某工厂生产一种产品,当产量至少为10吨,但不超过55吨时,每吨的成本y (万元)与(2)当投入生产这种产品的总成本为1200万元时,求该产品的总产量;(注:总成本=每吨成本×总产量)(3)市场调查发现,这种产品每月销售量m (吨)与销售单价n (万元/吨)之间满足如图所示的函数关系,该厂第一个月按同一销售单价卖出这种产品25吨.请求出该厂第一个月销售这种产品获得的利润.(注:利润=售价﹣成本)26.(12分)如图,△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,交CA的延长线于点E,连接AD、DE.(1)求证:D是BC的中点;(2)若DE=3,BD﹣AD=2,求⊙O的半径;(3)在(2)的条件下,求弦AE的长.27.(14分)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣4,0),B(2,0),与y轴交于点C (0,2).(1)求抛物线的解析式;(2)若点D为该抛物线上的一个动点,且在直线AC上方,当以A、C、D为顶点的三角形面积最大时,求点D的坐标及此时三角形的面积;(3)以AB为直径作⊙M,直线经过点E(﹣1,﹣5),并且与⊙M相切,求该直线的解析式.2015年贵州省遵义市中考数学试卷答案1.B 2.A 3.B 4.D 5.D 6.C 7.A8.C 9.B 10.A 11.D 12.B 13.x≥.14.1.15.1585(1+x)2=2180.16.12.17..18.(π+﹣).19.解:(3.14﹣π)0﹣﹣|﹣3|+4sin60°=1﹣2﹣3+2=﹣2.20.解:=×﹣=﹣=,当a=2时,原式==4.21.解:设BM=x米.∵∠CDF=45°,∠CFD=90°,∴CF=DF=x米,∴BF=BC﹣CF=(4﹣x)米.∴EN=DM=BF=(4﹣x)米.∵AB69米,DE=1米,BM=DF=x米,∴AN=AB﹣MN﹣BM=(5﹣x)米.在△AEN中,∠ANE=90°,∠EAN=31°,∴EN=AN•tan31°.即4﹣x=(5﹣x)×0.6,∴x=2.5,答:DM和BC的水平距离BM的长度为2.5米.22.解:(1)画树状图得:∵共有12种等可能的结果,这三条线段能组成三角形的有7种情况,∴这三条线段能组成三角形的概率为:;(2)∵这三条线段能组成直角三角形的只有:3cm,4cm,5cm;∴这三条线段能组成直角三角形的概率为:.23.解:(1)参加调查测试的学生总数是:40÷10%=400(人),故答案是:400;(2)B组的人数是:400×35%=140(人),则E组的人数是:400﹣40﹣140﹣120﹣80=20(人).;(3)中位数落在C组.故答案是:C;(4)全校学生测试成绩为优秀的总人数是:2600×(10%+35%)=1170(人).24.(1)证明:①∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS);(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.∵DB=DC,∴AF=CD.∵AF∥BC,∴四边形ADCF是平行四边形,∵,∠BAC=90°,D是BC的中点,E是AD的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(3)解:设菱形DC边上的高为h,∴RT△ABC斜边BC边上的高也为h,∵BC==,∴DC=BC=,∴h==,菱形ADCF的面积为:DC•h=×=10.25.解:(1)设y关于x的函数解析式为y=kx+b,将(10,45)(20,40)代入解析式得:,解得:∴y=﹣0.5x+50,(10≤x≤55).(2)当投入生产这种产品的总成本为1200万元时,即x(﹣0.5x+50)=1200,解得:x1=40,x2=60,∵10≤x≤55,∴x=40,∴该产品的总产量为40吨.(3)设每月销售量m(吨)与销售单价n(万元/吨)之间的函数关系式为m=k1n+b1,把(40,30),(55,15)代入解析式得:解得:,∴m=﹣n+70,当m=25时,n=45,在y=﹣0.5x+50,(10≤x≤55)中,当x=25时,y=37.5,∴利润为:25×(45﹣37.5)=187.5(万元).26.(1)证明:∵AB是圆O的直径,∴AD⊥BC,∵AB=AC,∴BD=DC;(2)解:∵AB=AC,∠B=∠C,∵∠B=∠E,∴∠E=∠C,∴BD=DC=DE=3,∵BD﹣AD=2,∴AD=1,在RT△ABD中,AB==,∴⊙O的半径为;(3)解:∵AB=AC=,BD=DC=3,∴BC=6,∵AC•EC=DC•BC,∴•EC=3×6,∴EC=,∴AE=EC﹣AC=﹣=.27.解:(1)如图1,由题可得:,解得:,∴抛物线的解析式为y=﹣x2﹣x+2;(2)过点D作DH⊥AB于H,交直线AC于点G,如图2.设直线AC的解析式为y=kx+t,则有,解得:,∴直线AC的解析式为y=x+2.设点D的横坐标为m,则点G的横坐标也为m,∴DH=﹣m2﹣m+2,GH=m+2,∴DG=﹣m2﹣m+2﹣m﹣2=﹣m2﹣m,∴S△ADC=S△ADG+S△CDG=DG•AH+DG•OH=DG•AO=2DG=﹣m2﹣2m=﹣(m2+4m)=﹣(m2+4m+4﹣4)=﹣[(m+2)2﹣4]=﹣(m+2)2+2.∴当m=﹣2时,S△ADC取到最大值2.此时y D=﹣×(﹣2)2﹣×(﹣2)+2=2,即点D的坐标为(﹣2,2);(3)设过点E的直线与⊙M相切于点F,与x轴交于点N,连接MF,如图3,则有MF⊥EN.∵A(﹣4,0),B(2,0),∴AB=6,MF=MB=MA=3,∴点M的坐标为(﹣4+3,0)即M(﹣1,0).∵E(﹣1,﹣5),∴ME=5,∠EMN=90°.在Rt△MFE中,EF===4.∵∠MEF=∠NEM,∠MFE=∠EMN=90°,∴△MEF∽△NEM,∴=,∴=,∴NM=,∴点N的坐标为(﹣1+,0)即(,0)或(﹣1﹣,0)即(﹣,0).设直线EN的解析式为y=px+q.①当点N的坐标为(,0)时,,解得:,∴直线EN的解析式为y=x﹣.②当点N的坐标为(﹣,0)时,同理可得:直线EN的解析式为y=﹣x﹣.综上所述:所求直线的解析式为y=x﹣或y=﹣x﹣.2016年贵州省遵义市中考数学试卷一、选择题(本题共12小题,每小题3分,共36分)1.在﹣1,﹣2,0,1这4个数中最小的一个是()A.﹣1 B.0 C.﹣2 D.12.如图是由5个完全相同是正方体组成的立体图形,它的主视图是()A.B.C.D.3.2015年我市全年房地产投资约为317亿元,这个数据用科学记数法表示为()A.317×108B.3.17×1010C.3.17×1011D.3.17×10124.如图,在平行线a,b之间放置一块直角三角板,三角板的顶点A,B分别在直线a,b上,则∠1+∠2的值为()A.90°B.85°C.80°D.60°5.下列运算正确的是()A.a6÷a2=a3B.(a2)3=a5C.a2•a3=a6D.3a2﹣2a2=a26.已知一组数据:60,30,40,50,70,这组数据的平均数和中位数分别是()A.60,50 B.50,60 C.50,50 D.60,607.已知反比例函数y=(k>0)的图象经过点A(1,a)、B(3,b),则a与b的关系正确的是()A.a=b B.a=﹣b C.a<b D.a>b8.如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件不正确的是()A.AB=AD B.AC⊥BD C.AC=BD D.∠BAC=∠DAC9.三个连续正整数的和小于39,这样的正整数中,最大一组的和是()A.39 B.36 C.35 D.3410.如图,半圆的圆心为O,直径AB的长为12,C为半圆上一点,∠CAB=30°,的长是()A.12πB.6πC.5πD.4π11.如图,正方形ABCD的边长为3,E、F分别是AB、CD上的点,且∠CFE=60°,将四边形BCFE 沿EF翻折,得到B′C′FE,C′恰好落在AD边上,B′C′交AB于点G,则GE的长是()A.3﹣4 B.4﹣5 C.4﹣2D.5﹣212.如图,矩形ABCD中,AB=4,BC=3,连接AC,⊙P和⊙Q分别是△ABC和△ADC的内切圆,则PQ的长是()A.B.C. D.2二、填空题(本大题共6小题,每小题4分,共24分)13.计算的结果是.14.如图,在△ABC中,AB=BC,∠ABC=110°,AB的垂直平分线DE交AC于点D,连接BD,则∠ABD=度.15.已知x1,x2是一元二次方程x2﹣2x﹣1=0的两根,则+=.16.字母a,b,c,d各代表正方形、线段、正三角形、圆四个图形中的一种,将它们两两组合,并用字母连接表示,如表是三种组合与连接的对应表,由此可推断图形的连接方式为.17.如图,AC⊥BC,AC=BC,D是BC上一点,连接AD,与∠ACB的平分线交于点E,连接BE.若S△ACE=,S△BDE=,则AC=.18.如图①,四边形ABCD中,AB∥CD,∠ADC=90°,P从A点出发,以每秒1个单位长度的速度,按A→B→C→D的顺序在边上匀速运动,设P点的运动时间为t秒,△PAD的面积为S,S关于t的函数图象如图②所示,当P运动到BC中点时,△PAD的面积为.三、解答题(本题共9小题,共90分)19.计算:(π﹣2016)0+|1﹣|+2﹣1﹣2sin45°.20.先化简(﹣),再从1,2,3中选取一个适当的数代入求值.21.某新农村乐园设置了一个秋千场所,如图所,秋千拉绳OB的长为3m,静止时,踏板到地面距离BD的长为0.6m(踏板厚度忽略不计).为安全起见,乐园管理处规定:儿童的“安全高度”为hm,成人的“安全高度”为2m(计算结果精确到0.1m)(1)当摆绳OA与OB成45°夹角时,恰为儿童的安全高度,则h=m(2)某成人在玩秋千时,摆绳OC与OB的最大夹角为55°,问此人是否安全?(参考数据:≈1.41,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)22.2016年5月9日﹣11日,贵州省第十一届旅游产业发展大会在准一市茅台镇举行,大会推出五条遵义精品旅游线路:A红色经典,B醉美丹霞,C生态茶海,D民族风情,E避暑休闲.某校摄影小社团在“祖国好、家乡美”主题宣传周里,随机抽取部分学生举行“最爱旅游路线”投票活动,参与者每人选出一条心中最爱的旅游路线,社团对投票进行了统计,并绘制出如下不完整的条形统计图和扇形统计图,请解决下列问题.(1)本次参与投票的总人数是人.(2)请补全条形统计图.(3)扇形统计图中,线路D部分的圆心角是度.(4)全校2400名学生中,请你估计,选择“生态茶海”路线的人数约为多少?23.如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A、B、C中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D、E、F中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.(1)若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是.(2)若甲、乙均可在本层移动.①用树形图或列表法求出黑色方块所构拼图是轴对称图形的概率.②黑色方块所构拼图是中心对称图形的概率是.24.如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q两点.(1)求证:CP=AQ;(2)若BP=1,PQ=2,∠AEF=45°,求矩形ABCD的面积.25.上网流量、语音通话是手机通信消费的两大主体,目前,某通信公司推出消费优惠新招﹣﹣“定制套餐”,消费者可根据实际情况自由定制每月上网流量与语音通话时间,并按照二者的阶梯资费标准缴【小提示:阶梯定价收费计算方法,如600分钟语音通话费=0.15×500+0.12×=87元】(1)甲定制了600MB的月流量,花费48元;乙定制了2GB的月流量,花费120.4元,求a,b的值.(注:1GB=1024MB)(2)甲的套餐费用为199元,其中含600MB的月流量;丙的套餐费用为244.2元,其中包含1GB的月流量,二人均定制了超过1000分钟的每月通话时间,并且丙的语音通话时间比甲多300分钟,求m 的值.26.如图,△ABC中,∠BAC=120°,AB=AC=6.P是底边BC上的一个动点(P与B、C不重合),以P为圆心,PB为半径的⊙P与射线BA交于点D,射线PD交射线CA于点E.(1)若点E在线段CA的延长线上,设BP=x,AE=y,求y关于x的函数关系式,并写出x的取值范围.(2)当BP=2时,试说明射线CA与⊙P是否相切.(3)连接PA,若S△APE=S△ABC,求BP的长.27.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣8,3),B(﹣4,0),C(﹣4,3),∠ABC=α°.抛物线y=x2+bx+c经过点C,且对称轴为x=﹣,并与y轴交于点G.(1)求抛物线的解析式及点G的坐标;(2)将Rt△ABC沿x轴向右平移m个单位,使B点移到点E,然后将三角形绕点E顺时针旋转α°得到△DEF.若点F恰好落在抛物线上.①求m的值;②连接CG交x轴于点H,连接FG,过B作BP∥FG,交CG于点P,求证:PH=GH.2016年贵州省遵义市中考数学试卷答案1.C.2.C.3.B.4.A.5.D.6.C.7.D.8.C.9.B.10.D.11.C.12.B.13.﹣2.14.35.15.﹣2.16.a⊕c.17.2.18.5.19.解:(π﹣2016)0+|1﹣|+2﹣1﹣2sin45°=1+﹣1+﹣2×=1+﹣1+﹣=.20.解:(﹣)==•=,∵a﹣2≠0,a+2≠0,∴a≠±2,∴当a=1时,原式=﹣3.21.解:(1)在Rt△ANO中,∠ANO=90°,∴cos∠AON=,∴ON=OA•cos∠AON,∵OA=OB=3m,∠AON=45°,∴ON=3•cos45°≈2.12m,∴ND=3+0.6﹣2.12≈1.5m,∴h=ND=AF≈1.5m;故答案为:1.5.(2)如图,过C点作CM⊥DF,交DF于点M,在Rt△CEO中,∠CEO=90°,∴cos∠COE=,∴OE=OC•cos∠COF,∵OB=OC=3m,∠CON=55°,∴OE=3•cos55°≈1.72m,∴ED=3+0.6﹣1.72≈1.9m,∴CM=ED≈1.9m,∵成人的“安全高度”为2m,∴成人是安全的.22.解:(1)本次参与投票的总人数=24÷20%=120(人);故答案为:120;(2)B类人数=120﹣24﹣30﹣18﹣12=36(人),补全条形统计图为:(3)扇形统计图中,线路D部分的圆心角=360°×=54°,故答案为:54;(4)2400×=600,所以估计,选择“生态茶海”路线的人数约为600人.23.解:(1)若乙固定在E处,移动甲后黑色方块构成的拼图一共有3种可能,其中有两种情形是轴对称图形,所以若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是.故答案为.(2)①由树状图可知,黑色方块所构拼图是轴对称图形的概率==.②黑色方块所构拼图中是中心对称图形有两种情形,①甲在B处,乙在F处,②甲在C处,乙在E处,所以黑色方块所构拼图是中心对称图形的概率是.故答案为.24.(1)证明:∵四边形ABCD是矩形,∴∠A=∠ABC=∠C=∠ADC=90°,AB=CD,AD=BC,AB∥CD,AD∥BC,∴∠E=∠F,∵BE=DF,∴AE=CF,在△CFP和△AEQ中,,∴△CFP≌△AEQ(ASA),∴CP=AQ;(2)解:∵AD∥BC,∴∠PBE=∠A=90°,∵∠AEF=45°,∴△BEP、△AEQ是等腰直角三角形,∴BE=BP=1,AQ=AE,∴PE=BP=,∴EQ=PE+PQ=+2=3,∴AQ=AE=3,∴AB=AE﹣BE=2,∵CP=AQ,AD=BC,∴DQ=BP=1,∴AD=AQ+DQ=3+1=4,∴矩形ABCD的面积=AB•AD=2×4=8.25.解:(1)依题意得:,解得:.∴a的值为0.15元/MB,b的值为0.05元/MB.(2)设甲的套餐中定制x(x>1000)分钟的每月通话时间,则丙的套餐中定制(x+300)分钟的每月通话时间,丙定制了1GB的月流量,需花费100×0.15+×0.07+×0.05=69.2(元),依题意得:,解得:m=0.08.答:m的值为0.08元/分钟.26.解:(1)过A作AF⊥BC于F,过P作PH⊥AB于H,∵∠BAC=120°,AB=AC=6,∴∠B=∠C=30°,∵PB=PD,∴∠PDB=∠B=30°,CF=AC•cos30°=6×=3,∴∠ADE=30°,∴∠DAE=∠CPE=60°,∴∠CEP=90°,∴CE=AC+AE=6+y,∴PC==,∵BC=6,∴PB+CP=x+=6,∴y=﹣x+3,∵BD=2BH=x<6,∴x<2,∴x的取值范围是0<x<2;(2)∵BP=2,∴CP=4,∴PE=PC=2=PB,∴射线CA与⊙P相切;(3)当D点在线段BA上时,连接AP,∵S△ABC=BC•AF=××3=9,∵S△APE=AE•PE=y•×(6+y)=S△ABC=,解得:y=,代入y=﹣x+3得x=4﹣.当D点BA延长线上时,PC=EC=(6﹣y),∴PB+CP=x+(6﹣y)=6,∴y=x﹣3,∵∠PEC=90°,∴PE===(6﹣y),∴S△APE=AE•PE=x•=y•(6﹣y)=S△ABC=,解得y=或,代入y=x﹣3得x=3或5.综上可得,BP的长为4﹣或3或5.解得:∴抛物线的解析式为:y=x2+x,点G(0,﹣);(2)①过F作FM⊥y轴,交DE于M,交y轴于N,由题意可知:AC=4,BC=3,则AB=5,FM=,∵Rt△ABC沿x轴向右平移m个单位,使B点移到点E,∴E(﹣4+m,0),OE=MN=4﹣m,FN=﹣(4﹣m)=m﹣,在Rt△FME中,由勾股定理得:EM==,∴F(m﹣,),∵F抛物线上,∴=(m﹣)2+(m﹣)﹣,5m2﹣8m﹣36=0,m1=﹣2(舍),;②易求得FG的解析式为:y=x﹣,CG解析式为:y=﹣x﹣,∴x﹣=0,x=1,则Q(1,0),﹣x﹣=0,x=﹣1.5,则H(﹣1.5,0),∴BH=4﹣1.5=2.5,HQ=1.5+1=2.5,∴BH=QH,∵BP∥FG,∴∠PBH=∠GQH,∠BPH=∠QGH,∴△BPH≌△QGH,∴PH=GH.2017年贵州省遵义市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.﹣3的相反数是()A.﹣3 B.3 C.D.2.2017年遵义市固定资产总投资计划为2580亿元,将2580亿用科学记数法表示为()A.2.58×1011B.2.58×1012C.2.58×1013D.2.58×10143.把一张长方形纸片按如图①、图②的方式从右向左连续对折两次后得到图③,再在图③中挖去一个如图所示的三角形小孔,则重新展开后得到的图形是()A. B.C.D.4.下列运算正确的是()A.2a5﹣3a5=a5 B.a2•a3=a6 C.a7÷a5=a2D.(a2b)3=a5b35.我市某连续7天的最高气温为:28°,27°,30°,33°,30°,30°,32°,这组数据的平均数和众数分别是()A.28°,30°B.30°,28°C.31°,30°D.30°,30°6.把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为()A.45°B.30°C.20°D.15°7.不等式6﹣4x≥3x﹣8的非负整数解为()A.2个B.3个C.4个D.5个8.已知圆锥的底面面积为9πcm2,母线长为6cm,则圆锥的侧面积是()A.18πcm2 B.27πcm2C.18cm2D.27cm29.关于x的一元二次方程x2+3x+m=0有两个不相等的实数根,则m的取值范围为()A.m≤B.m C.m≤D.m10.如图,△ABC的面积是12,点D、E、F、G分别是BC、AD、BE、CE的中点,则△AFG的面积是()A.4.5 B.5 C.5.5 D.611.如图,抛物线y=ax2+bx+c经过点(﹣1,0),对称轴l如图所示.则下列结论:①abc>0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正确的结论是()A.①③B.②③C.②④D.②③④12.如图,△ABC中,E是BC中点,AD是∠BAC的平分线,EF∥AD交AC于F.若AB=11,AC=15,则FC的长为()A.11 B.12 C.13 D.14二、填空题(本大题共6小题,每小题4分,共24分)13.+=.14.一个正多边形的一个外角为30°,则它的内角和为.15.按一定规律排列的一列数依次为:,1,,,,,…,按此规律,这列数中的第100个数是.16.明代数学家程大位的《算法统宗》中有这样一个问题(如图),其大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,请问:所分的银子共有两.(注:明代时1斤=16两,故有“半斤八两”这个成语)17.如图,AB是⊙O的直径,AB=4,点M是OA的中点,过点M的直线与⊙O交于C、D两点.若∠CMA=45°,则弦CD的长为.18.如图,点E、F在函数y=的图象上,直线EF分别与x轴、y轴交于点A、B,且BE:BF=1:3,则△EOF的面积是.三、解答题(本大题共9小题,共90分)19.(6分)计算:|﹣2|+(4﹣π)0﹣+(﹣1)﹣2017.20.(8分)化简分式:(﹣)÷,并从1,2,3,4这四个数中取一个合适的数作为x的值代入求值.21.(8分)学校召集留守儿童过端午节,桌上摆有甲、乙两盘粽子,每盘中盛有白粽2个,豆沙粽1个,肉粽1个(粽子外观完全一样).(1)小明从甲盘中任取一个粽子,取到豆沙粽的概率是;(2)小明在甲盘和乙盘中先后各取了一个粽子,请用树状图或列表法求小明恰好取到两个白粽子的概率.22.(10分)乌江快铁大桥是快铁渝黔线的一项重要工程,由主桥AB和引桥BC两部分组成(如图所示),建造前工程师用以下方式做了测量:无人机在A处正上方97m处的P点,测得B处的俯角为30°(当时C处被小山体阻挡无法观测).无人机飞行到B处正上方的D处时能看到C处,此时测得C处俯角为80°36′.(1)求主桥AB的长度;(2)若两观察点P、D的连线与水平方向的夹角为30°,求引桥BC的长.(长度均精确到1m,参考数据:≈1.73,sin80°36′≈0.987,cos80°36′≈0.163,tan80°36′≈6.06)。
贵州省遵义市2014年中考数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.(3分)(2014•遵义)﹣3+(﹣5)的结果是()A.﹣2 B.﹣8 C.8D.2考点:有理数的加法.分析:根据同号两数相加,取相同的符号,并把绝对值相加,可得答案.解答:解:原式=﹣(3+5)=﹣8.故选:B.点评:本题考查了有理数的加法,先确定和的符号,再进行绝对值得运算.2.(3分)(2014•遵义)观察下列图形,是中心对称图形的是()A.B.C.D.考点:中心对称图形分析:根据中心对称图形的概念对各选项分析判断后利用排除法求解.解答:解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选:C.点评:本题考查了中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)(2014•遵义)“着力扩大投资,突破重点项目建设”是遵义经济社会发展的主要任务之一.据统计,遵义市2013年全社会固定资产投资达1762亿元,把1762亿元这个数字用科学记数法表示为()A.1762×108B.1.762×1010C.1.762×1011D.1.762×1012考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将1762亿用科学记数法表示为:1.762×1011.故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2014•遵义)如图,直线l1∥l2,∠A=125°,∠B=85°,则∠1+∠2=()A.30°B.35°C.36°D.40°考点:平行线的性质.分析:过点A作l1的平行线,过点B作l2的平行线,根据两直线平行,内错角相等可得∠3=∠1,∠4=∠2,再根据两直线平行,同旁内角互补求出∠CAB+∠ABD=180°,然后计算即可得解.解答:解:如图,过点A作l1的平行线,过点B作l2的平行线,∴∠3=∠1,∠4=∠2,∵l1∥l2,∴AC∥BD,∴∠CAB+∠ABD=180°,∴∠3+∠4=125°+85°﹣180°=30°,∴∠1+∠2=30°.故选A.点评:本题考查了平行线的性质,熟记性质并作辅助线是解题的关键.5.(3分)(2014•遵义)计算3x3•2x2的结果是()A.5x5B.6x5C.6x6D.6x9考点:单项式乘单项式.分析:根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.解答:解:3x3•2x2=6x5,故选B.点评:本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.6.(3分)(2014•遵义)已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象如图,其中正确的是()A.B.C.D.考点:二次函数的图象;一次函数的图象.分析:本题可先由二次函数图象得到字母系数的正负,再与一次函数和反比例函数的图象相比较看是否一致.逐一排除.解答:解:A、由二次函数的图象可知a<0,此时直线y=ax+b经过二、四象限,故A可排除;B、二次函数的图象可知a<0,对称轴在y轴的右侧,可知a、b异号,b>0,此时直线y=ax+b经过一、二、四象限,故B可排除;C、二次函数的图象可知a>0,此时直线y=ax+b经过一、三,故C可排除;正确的只有D.故选:D.点评:此题主要考查了一次函数图象与二次函数图象,应该识记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.7.(3分)(2014•遵义)有一组数据7、11、12、7、7、8、11.下列说法错误的是()A.中位数是7 B.平均数是9 C.众数是7 D.极差是5考点:极差;加权平均数;中位数;众数.分析:根据中位数、平均数、极差、众数的概念求解.解答:解:这组数据按照从小到大的顺序排列为:7、7、7、8、11、11、12,则中位数为:8,平均数为:=9,众数为:7,极差为:12﹣7=5.故选A.点评:本题考查了中位数、平均数、极差、众数的知识,掌握各知识点的概念是解答本题的关键.8.(3分)(2014•遵义)若a+b=2,ab=2,则a2+b2的值为()A.6B.4C.3D.2考点:完全平方公式.分析:利用a2+b2=(a+b)2﹣2ab代入数值求解.解答:解:a2+b2=(a+b)2﹣2ab=8﹣4=4,故选:B.点评:本题主要考查了完全平方公式的应用,解题的关键是牢记完全平方公式,灵活运用它的变化式.9.(3分)(2014•遵义)如图,边长为2的正方形ABCD中,P是CD的中点,连接AP并延长交BC的延长线于点F,作△CPF的外接圆⊙O,连接BP并延长交⊙O于点E,连接EF,则EF的长为()A.B.C.D.考点:相似三角形的判定与性质;正方形的性质;圆周角定理.分析:先求出CP、BF长,根据勾股定理求出BP,根据相似得出比例式,即可求出答案.解答:解:∵四边形ABCD是正方形,∴∠ABC=∠PCF=90°,CD∥AB,∵F为CD的中点,CD=AB=BC=2,∴CP=1,∵PC∥AB,∴△FCP∽△FBA,∴==,∴BF=4,∴CF=4﹣2=2,由勾股定理得:BP==,∵四边形ABCD是正方形,∴∠BCP=∠PCF=90°,∴PF是直径,∴∠E=90°=∠BCP,∵∠PBC=∠EBF,∴△BCP∽△BEF,∴=,∴=,∴EF=,故选D.点评:本题考查了正方形的性质,圆周角定理,相似三角形的性质和判定的应用,主要考查学生的推理能力和计算能力,题目比较好,难度适中.10.(3分)(2014•遵义)如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A 顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为()A.2﹣B.C.﹣1 D.1考点:旋转的性质.分析:连接BB′,根据旋转的性质可得AB=AB′,判断出△ABB′是等边三角形,根据等边三角形的三条边都相等可得AB=BB′,然后利用“边边边”证明△ABC′和△B′BC′全等,根据全等三角形对应角相等可得∠ABC′=∠B′BC′,延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD﹣C′D计算即可得解.解答:解:如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD⊥AB′,∵∠C=90°,AC=BC=,∴AB==2,∴BD=2×=,C′D=×2=1,∴BC′=BD﹣C′D=﹣1.故选C.点评:本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.二、填空题(本题共8小题,每小题4分,共32分)11.(4分)(2014•遵义)+=4.考点:二次根式的加减法.分析:先化简,然后合并同类二次根式.解答:解:原式=3+=4.故答案为;4.点评:本题考查了二次根式的加减法,掌握二次根式的化简是解答本题的关键.12.(4分)(2014•遵义)正多边形的一个外角等于20°,则这个正多边形的边数是18.考点:多边形内角与外角.分析:根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.解答:解:因为外角是20度,360÷20=18,则这个多边形是18边形.点评:根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.13.(4分)(2014•遵义)计算:+的结果是﹣1.考点:分式的加减法.专题:计算题.分析:原式变形后利用同分母分式的减法法则计算即可得到结果.解答:解:原式=﹣==﹣1.故答案为:﹣1.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.14.(4分)(2014•遵义)关于x的一元二次方程x2﹣3x+b=0有两个不相等的实数根,则b 的取值范围是b<.考点:根的判别式.专题:计算题.分析:根据判别式的意义得到△=(﹣3)2﹣4b>0,然后解不等式即可.解答:解:根据题意得△=(﹣3)2﹣4b>0,解得b<.故答案为b<.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.15.(4分)(2014•遵义)有一圆锥,它的高为8cm,底面半径为6cm,则这个圆锥的侧面积是60πcm2.(结果保留π)考点:圆锥的计算.分析:先根据圆锥的底面半径和高求出母线长,圆锥的侧面积是展开后扇形的面积,计算可得.解答:解:圆锥的母线==10cm,圆锥的底面周长2πr=12πcm,圆锥的侧面积=lR=×12π×10=60πcm2.故答案为60π.点评:本题考查了圆锥的计算,圆锥的高和圆锥的底面半径圆锥的母线组成直角三角形,扇形的面积公式为lR.16.(4分)(2014•遵义)有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2014次后,骰子朝下一面的点数是3.考点:专题:正方体相对两个面上的文字;规律型:图形的变化类.分析:观察图象知道点数三和点数四相对,点数二和点数五相对且四次一循环,从而确定答案.解答:解:观察图象知道点数三和点数四相对,点数二和点数五相对且四次一循环,∵2014÷4=503…2,∴滚动第2014次后与第二次相同,∴朝下的点数为3,故答案为:3.点评:本题考查了正方体相对两个面上的文字及图形的变化类问题,解题的关键是发现规律.17.(4分)(2014•遵义)“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E、南门点F分别是AB,AD的中点,EG⊥AB,FE⊥AD,EG=15里,HG经过A点,则FH= 1.05里.考点:相似三角形的应用.分析:首先根据题意得到△GEA∽△AFH,然后利用相似三角形的对应边的比相等列出比例式求得答案即可.解答:解:EG⊥AB,FE⊥AD,HG经过A点,∴FA∥EG,EA∥FH,∴∠HFA=∠AEG=90°,∠FHA=∠EAG,∴△GEA∽△AFH,∴.∵AB=9里,DA=7里,EG=15里,∴FA=3.5里,EA=4.5里,∴,解得:FH=1.05里.故答案为:1.05.点评:本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形,难度不大.18.(4分)(2014•遵义)如图,反比例函数y=(k>0)的图象与矩形ABCO的两边相交于E,F两点,若E是AB的中点,S△BEF=2,则k的值为8.考点:反比例函数系数k的几何意义.分析:设E(a,),则B纵坐标也为,代入反比例函数的y=,即可求得F的横坐标,则根据三角形的面积公式即可求得k的值.解答:解:设E(a,),则B纵坐标也为,E是AB中点,所以F点横坐标为2a,代入解析式得到纵坐标:,BF=﹣=,所以F也为中点,S△BEF=2=,k=8.故答案是:8.点评:本题考查了反比例函数的性质,正确表示出BF的长度是关键.三、解答题(本题共9小题,共88分)19.(6分)(2014•遵义)计算:﹣|﹣4|﹣2cos45°﹣(3﹣π)0.考点:实数的运算;零指数幂;特殊角的三角函数值.分析:本题涉及零指数幂、绝对值、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=3﹣4﹣﹣1=2﹣5.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.(8分)(2014•遵义)解不等式组:,并把不等式组的解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.解答:解:由①得,x≥﹣1,由②得,x<4,故此不等式组的解集为:﹣1≤x<4.在数轴上表示为:.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(8分)(2014•遵义)如图,一楼房AB后有一假山,其坡度为i=1:,山坡坡面上E 点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.专题:应用题.分析:过点E作EF⊥BC的延长线于F,EH⊥AB于点H,根据CE=20米,坡度为i=1:,分别求出EF、CF的长度,在Rt△AEH中求出AH,继而可得楼房AB的高.解答:解:过点E作EF⊥BC的延长线于F,EH⊥AB于点H,在Rt△CEF中,∵i===tan∠ECF,∴∠ECF=30°,∴EF=CE=10米,CF=10米,∴BH=EF=10米,HE=BF=BC+CF=(25+10)米,在Rt△AHE中,∵∠HAE=45°,∴AH=HE=(25+10)米,∴AB=AH+HB=(35+10)米.答:楼房AB的高为(35+10)米.点评:本题考查了解直角三角形的应用,涉及仰角俯角及坡度坡角的知识,构造直角三角形是解题关键.22.(10分)(2014•遵义)小明、小军两同学做游戏,游戏规则是:一个不透明的文具袋中,装有型号完全相同的3支红笔和2支黑笔,两人先后从袋中取出一支笔(不放回),若两人所取笔的颜色相同,则小明胜,否则,小军胜.(1)请用树形图或列表法列出摸笔游戏所有可能的结果;(2)请计算小明获胜的概率,并指出本游戏规则是否公平,若不公平,你认为对谁有利.考点:游戏公平性;列表法与树状图法.分析:(1)列表将所有等可能的结果一一列举出来即可;(2)根据列表里有概率公式求得小明获胜的概率即可判断是否公平.解答:解:(1)列表得:红1 红2 红3 黑1 黑2红1 红1红2 红1红3 红1黑1 红1黑2红2 红2红1 红2红3 红2黑1 红2黑2红3 红3红1 红3红2 红3黑1 红3黑2黑1 黑1红1 黑1红2 黑1红3 黑1黑2黑2 黑2红1 黑2红2 黑2红3 黑2黑1(2)共20种等可能的情况,其中颜色相同的有8种,则小明获胜的概率为=,小军获胜的概率为1﹣=,∵<,∴不公平,对小军有利.点评:本题考查了列表法与列树状图的知识,解题的关键是正确的列出表格或树状图.23.(10分)(2014•遵义)今年5月,从全国旅游景区质量等级评审会上传来喜讯,我市“风冈茶海之心”、“赤水佛光岩”、“仁怀中国酒文化城”三个景区加入国家“4A”级景区.至此,全市“4A”级景区已达13个.某旅游公司为了了解我市“4A”级景区的知名度情况,特对部分市民进行现场采访,根据市民对13个景区名字的回答情况,按答数多少分为熟悉(A),基本了解(B)、略有知晓(C)、知之甚少(D)四类进行统计,绘制了一下两幅统计图(不完整),请根据图中信息解答以下各题:(1)本次调查活动的样本容量是1500;(2)调查中属于“基本了解”的市民有450人;(3)补全条形统计图;(4)“略有知晓”类占扇形统计图的圆心角是多少度?“知之甚少”类市民占被调查人数的百分比是多少?考点:条形统计图;扇形统计图.专题:图表型.分析:(1)用熟悉(A)的人数除以所占的百分比,计算即可得解;(2)先求出略有知晓(C)的人数,然后列式计算即可得解;(3)根据(2)的计算补全图形统计图即可;(4)用“略有知晓”C所占的百分比乘以360°计算即可,再根据知之甚少(D)的人数列式计算即可求出所占的百分比.解答:解:(1)120÷8%=1500;(2)略有知晓(C)的人数为:1500×40%=600人,“基本了解”(B)的人数为:1500﹣120﹣600﹣330=1500﹣1050=450人;(3)补全统计图如图所示;(4)“略有知晓”类:360°×40%=144°,“知之甚少”类:×100%=22%.故答案为:(1)1500;(2)450.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(10分)(2014•遵义)如图,▱ABCD中,BD⊥AD,∠A=45°,E、F分别是AB,CD 上的点,且BE=DF,连接EF交BD于O.(1)求证:BO=DO;(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AD的长.考点:平行四边形的性质;全等三角形的判定与性质;等腰直角三角形.分析:(1)通过证明△ODF与△OBE全等即可求得.(2)由△ADB是等腰直角三角形,得出∠A=45°,因为EF⊥AB,得出∠G=45°,所以△ODG与△DFG都是等腰直角三角形,从而求得DG的长和EF=2,然后平行线分线段成比例定理即可求得.解答:(1)证明:∵四边形ABCD是平行四边形,∴DC=AB,DC∥AB,∴∠ODF=∠OBE,在△ODF与△OBE中∴△ODF≌△OBE(AAS)∴BO=DO;(2)解:∵BD⊥AD,∴∠ADB=90°,∵∠A=45°,∴∠DBA=∠A=45°,∵EF⊥AB,∴∠G=∠A=45°,∴△ODG是等腰直角三角形,∵AB∥CD,EF⊥AB,∴DF⊥OG,∴OF=FG,△DFG是等腰直角三角形,∵△ODF≌△OBE(AAS)∴OE=OF,∴GF=OF=OE,即2FG=EF,∵△DFG是等腰直角三角形,∴DF=FG=1,∴DG==,∵AB∥CD,∴=,∴AD=2,点评:本题考查了全等三角形的判定和性质,等腰直角三角形的判定和性质,平行线的性质以及平行线分行段定理.25.(10分)(2014•遵义)为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行”活动.自行车队从甲地出发,途径乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,并且邮政车行驶速度是自行车队行驶速度的2.5倍,如图表示自行车队、邮政车离甲地的路程y(km)与自行车队离开甲地时间x(h)的函数关系图象,请根据图象提供的信息解答下列各题:(1)自行车队行驶的速度是24km/h;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?考点:一次函数的应用.分析:(1)由速度=路程÷时间就可以求出结论;(2)由自行车的速度就可以求出邮政车的速度,再由追击问题设邮政车出发a小时两车相遇建立方程求出其解即可;(3)由邮政车的速度可以求出B的坐标和C的坐标,由自行车的速度就可以D的坐标,由待定系数法就可以求出BC,ED的解析式就可以求出结论.解答:解:(1)由题意得自行车队行驶的速度是:72÷3=24km/h.故答案为:24;(2)由题意得邮政车的速度为:24×2.5=60km/h.设邮政车出发a小时两车相遇,由题意得24(a+1)=60a,答:邮政车出发小时与自行车队首次相遇;(3)由题意,得邮政车到达丙地的时间为:135÷60=,∴邮政车从丙地出发的时间为:135=,∴B(,135),C(7.5,0).自行车队到达丙地的时间为:135÷24+0.5=+0.5=,∴D(,135).设BC的解析式为y1=k1+b1,由题意得,∴,∴y1=﹣60x+450,设ED的解析式为y2=k2x+b2,由题意得,解得:,∴y2=24x﹣12.当y1=y2时,﹣60x+450=24x﹣12,解得:x=5.5.y1=﹣60×5.5+450=120.答:邮政车在返程途中与自行车队再次相遇时的地点距离甲地120km.点评:本题考查了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一次函数与一元一次方程的运用,解答时求出函数的解析式是关键.26.(12分)(2014•遵义)如图,直角梯形ABCD中,AB∥CD,∠DAB=90°,且∠ABC=60°,AB=BC,△ACD的外接圆⊙O交BC于E点,连接DE并延长,交AC于P点,交AB延长线于F.(1)求证:CF=DB;(2)当AD=时,试求E点到CF的距离.考点:圆的综合题.专题:综合题.分析:(1)连结AE,由∠ABC=60°,AB=BC可判断△ABC为等边三角形,由AB∥CD,∠DAB=90°得∠ADC=∠DAB=90°,则根据圆周角定理可得到AC为⊙O的直径,则∠AEC=90°,即AE⊥BC,根据等边三角形的性质得BE=CE,再证明△DCE≌△FBE,得到DE=FE,于是可判断四边形BDCF为平行四边形,根据平行四边形的性质得CF=DB;(2)作EH⊥CF于H,由△ABC为等边三角形得∠BAC=60°,则∠DAC=30°,在Rt △ADC中,根据含30度的直角三角形三边的关系得DC=AD=1,AC=2CD=2,则AB=AC=2,BF=CD=1,AF=3,然后利用勾股定理计算出BD=,DF=2,所以CF=BD=,EF=DF=,接着根据等边三角形的性质由AE⊥BC得∠CAE=∠BAE=30°,根据圆周角定理得∠EDC=∠CAE=30°,而∠DCA=∠BAC=60°,得到∠DPC=90°,在Rt△DPC中,根据含30度的直角三角形三边的关系得PC=DC=,再证明Rt△FHE∽Rt△FPC,利用相似比可计算出EH.解答:(1)证明:连结AE,如图,∵∠ABC=60°,AB=BC,∴△ABC为等边三角形,∵AB∥CD,∠DAB=90°,∴∠ADC=∠DAB=90°,∴AC为⊙O的直径,∴∠AEC=90°,即AE⊥BC,∴BE=CE,CD∥BF,∴∠DCE=∠FBF,在△DCE和△FBE中,,∴△DCE≌△FBE(ASA),∴DE=FE,∴四边形BDCF为平行四边形,∴CF=DB;(2)解:作EH⊥CF于H,如图,∵△ABC为等边三角形,∴∠BAC=60°,∴∠DAC=30°,在Rt△ADC中,AD=,∴DC=AD=1,AC=2CD=2,∴AB=AC=2,BF=CD=1,∴AF=3,在Rt△ABD中,BD==,在Rt△ADF中,DF==2,∴CF=BD=,EF=DF=,∵AE⊥BC,∴∠CAE=∠BAE=30°,∴∠EDC=∠CAE=30°,而∠DCA=∠BAC=60°,∴∠DPC=90°,在Rt△DPC中,DC=1,∠CDP=30°,∴PC=DC=,∵∠HFE=∠PFC,∴Rt△FHE∽Rt△FPC,∴=,即=,∴EH=,即E点到CF的距离为.点评:本题考查了圆的综合题:熟练掌握圆周角定理、等边三角形的性质和平行四边形的判定与性质;会运用三角形全等的知识解决线段相等的问题;会运用勾股定理和相似比进行几何计算.27.(14分)(2014•遵义)如图,二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0),与y轴交于点C.若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动.(1)求该二次函数的解析式及点C的坐标;(2)当点P运动到B点时,点Q停止运动,这时,在x轴上是否存在点E,使得以A,E,Q为顶点的三角形为等腰三角形?若存在,请求出E点坐标;若不存在,请说明理由.(3)当P,Q运动到t秒时,△APQ沿PQ翻折,点A恰好落在抛物线上D点处,请判定此时四边形APDQ的形状,并求出D点坐标.考点:二次函数综合题.分析:(1)将A,B点坐标代入函数y=x2+bx+c中,求得b、c,进而可求解析式及C坐标.(2)等腰三角形有三种情况,AE=EQ,AQ=EQ,AE=AQ.借助垂直平分线,画圆易得E大致位置,设边长为x,表示其他边后利用勾股定理易得E坐标.(3)注意到P,Q运动速度相同,则△APQ运动时都为等腰三角形,又由A、D对称,则AP=DP,AQ=DQ,易得四边形四边都相等,即菱形.利用菱形对边平行且相等等性质可用t表示D点坐标,又D在E函数上,所以代入即可求t,进而D可表示.解答:解:(1)∵二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0),∴,解得,∴y=x2﹣x﹣4.∴C(0,﹣4).(2)存在.如图1,过点Q作QD⊥OA于D,此时QD∥OC,∵A(3,0),B(﹣1,0),C(0,﹣4),O(0,0)∴AB=4,OA=3,OC=4,∴AC==5,AQ=4.∵QD∥OC,∴,∴,∴QD=,AD=.①作AQ的垂直平分线,交AO于E,此时AE=EQ,即△AEQ为等腰三角形,设AE=x,则EQ=x,DE=AD﹣AE=﹣x,∴在Rt△EDQ中,(﹣x)2+()2=x2,解得x=,∴OA﹣AE=3﹣=﹣,∴E(﹣,0).②以Q为圆心,AQ长半径画圆,交x轴于E,此时QE=QA=4,∵ED=AD=,∴AE=,∴OA﹣AE=3﹣=﹣,∴E(﹣,0).③当AE=AQ=4时,∵OA﹣AE=3﹣4=﹣1,∴E(﹣1,0).综上所述,存在满足条件的点E,点E的坐标为(﹣,0)或(﹣,0)或(﹣1,0).(3)四边形APDQ为菱形,D点坐标为(﹣,﹣).理由如下:如图2,D点关于PQ与A点对称,过点Q作,FQ⊥AP于F,∵AP=AQ=t,AP=DP,AQ=DQ,∴AP=AQ=QD=DP,∴四边形AQDP为菱形,∵FQ∥OC,∴,∴,∴AF=,FQ=,∴Q(3﹣,﹣),∵DQ=AP=t,∴D(3﹣﹣t,﹣),∵D在二次函数y=x2﹣x﹣4上,∴﹣=(3﹣t)2﹣(3﹣t)﹣4,∴t=,或t=0(与A重合,舍去),∴D(﹣,﹣).点评:本题考查了二次函数性质、利用勾股定理解直角三角形及菱形等知识,总体来说题意复杂但解答内容都很基础,是一道值得练习的题目.。
2014年贵州省遵义市遵义县小升初数学试卷一、认真填空.(每空1分,共23分)1.(2分)一个数由九个亿、一百六十个万和二千八百个一组成.这个数写作.读作.2.(2分)3.5时=分3吨50千克=吨.3.(1分)一个三角形最小的一个内角是50°,如果按角分类,这是一个三角形.4.(4分)÷6==:10=0.5=%.5.(1分)一个5mm长的零件画在图上是20cm,这幅图的比例尺是.6.(2分)一个不透明的口袋里在大小一样的红、白、黄三种颜色的小球各5个,至少要摸出个才能保证有两个球的颜色相同,摸到黄球的可能性是.7.(1分)一个比例里,两个外项正好互为倒数,其中一个内项是12.5,另一个内项是.8.(2分)如果A=2×3×8,B=2×3×2,那么A与B的最大公因数是,最小公倍数是.9.(1分)水结成冰后,体积增加,冰化成水后体积减少.10.(1分)一个两位小数四舍五入保留一位小数后是4.6,这个两位小数最大是.11.(2分)三个连续自然数,中间的一个是n,其余两个分别是和.12.(2分)张欢坐在教室的第四列第三行,用(4,3)表示,用(1,6)表示的李云同学是坐在第列第行.13.(2分)鸡和兔关在同一个笼子里,共有8个头,26只脚,问:笼里有鸡只.二、明辨是非.(正确的划√,错误的划×.共5分)14.(1分)吨煤,用去,还剩吨..(判断对错)15.(1分)王师傅加工99个零件,全部合格,合格率为100%..(判断对错)16.(1分)在半径2厘米的圆周长与面积一样大..(判断对错)17.(1分)最小的自然数是0..(判断对错)18.(1分)中位数就是中间的一个数..(判断对错)三、慎重选择.(将正确答案的番号填入括号,共10分)19.(2分)下列图形是轴对称图形的是()A.梯形B.平行四边形C.正方形20.(2分)可以清楚地表示数量的增减变化的统计图是()A.折线统计图B.条形统计图C.扇形统计图21.(2分)一项工程,甲单独做要8天完成,乙单独要10天完成,甲与乙的工作效率比是()A.4:5 B.5:4 C.3:222.(2分)一桶矿泉水大约是18()A.L B.mL C.㎡23.(2分)下面哪个图形不能折成一个正方体.()A.B.C.四、细心计算.(共26分)24.(8分)直接写出得数.162÷8≈10÷1%=﹣= 6.9﹣6=308×9≈﹣=0÷÷=243+157=25.(9分)怎样简便就怎样算.8×7×1.25×8.8+1.2×723﹣(325+123)26.(9分)解方程,解比例.x:=:3x=2102x+4.7=24.7.27.(3分)(1)画出三角形ABC的BC边上的高.(2)根据如图中提供的信息,不用测量任何数据,画一个与三角形ABC面积相等的三角形.六、看图计算.(共8分)28.(4分)求下面图形的面积.29.(4分)求下列图形的体积.(单位:米)七、解决问题.(每题5分,共25分)30.(5分)四年级同学参加管弦乐队的有86人,比参加科技小组的4倍多6人,参加科技小组的有几人?(用方程解)31.(5分)学校食堂有一桶油,用了40%,还剩24千克,这桶油有了多少千克?32.(5分)一支铺路队正在铺一段公路,上午工作3.5小时,每小时铺47米,下午了203.5米,全天共铺多少米?33.(5分)一个广场用方砖铺地,如果用面积是50平方分米的方砖,需要2000块,如果改用面积是100平方分米的方砖,需要多少块?34.(5分)体育馆的环形跑道长800米,小明和小华在同一起跑线上,同时相反方向起跑,小明每分钟跑120米,小华每分钟跑130米,经过多少时间两人在跑道上第一次相遇?2014年贵州省遵义市遵义县小升初数学试卷参考答案与试题解析一、认真填空.(每空1分,共23分)1.(2分)一个数由九个亿、一百六十个万和二千八百个一组成.这个数写作901602800.读作九亿零一百六十二千八百.【解答】解:这个数写作:901602800;901602800读作:九亿零一百六十二千八百;故答案为:901602800,九亿零一百六十二千八百.2.(2分)3.5时=210分3吨50千克= 3.05吨.【解答】解:3.5时=210分3吨50千克=3.05吨;故答案为:210,3.05.3.(1分)一个三角形最小的一个内角是50°,如果按角分类,这是一个锐角三角形.【解答】解:另外两角的和=180°﹣50°=130°假设一个角是90°,则另外一个角的度数小于50°,这与题干“一个三角形最小的内角是50°”相违背,所以另外两个角都应小于90°,这个三角形应该是一个锐角三角形.故答案为:锐角.4.(4分)3÷6==5:10=0.5=50%.【解答】解:3÷9==5:10=0.5=50%.故答案为:3,2,5,50.5.(1分)一个5mm长的零件画在图上是20cm,这幅图的比例尺是40:1.【解答】解:20cm:5mm=200mm:5mm=40:1答:这幅图的比例尺是40:1.故答案为:40:1.6.(2分)一个不透明的口袋里在大小一样的红、白、黄三种颜色的小球各5个,至少要摸出4个才能保证有两个球的颜色相同,摸到黄球的可能性是.【解答】解:3+1=4(个)5÷(5×3)=5÷15=答;至少要摸出4个才能保证有两个球的颜色相同,摸到黄球的可能性是.故答案为:4;.7.(1分)一个比例里,两个外项正好互为倒数,其中一个内项是12.5,另一个内项是0.8.【解答】解:一个比例的两个外项互为倒数,乘积是1,根据两内项的积等于两外项的积,可知两个内项的积也是1,又其中一个内项是1.25,那么另一个内项是:1÷1.25=0.8;故答案为:0.8.8.(2分)如果A=2×3×8,B=2×3×2,那么A与B的最大公因数是6,最小公倍数是96.【解答】解:如果A=2×3×8,B=2×3×2,那么A与B的最大公因数是2×3=6,最小公倍数是2×2×3×8=96.故答案为:6,96.9.(1分)水结成冰后,体积增加,冰化成水后体积减少.【解答】解:把水的体积看做单位“1”,冰的体积对应的分率:1+=;冰化成水后体积减少:(﹣1)÷=×=.答:冰化成水后体积减少.故答案为:.10.(1分)一个两位小数四舍五入保留一位小数后是4.6,这个两位小数最大是4.64.【解答】解:“四舍”得到的4.6最大是4.64,“五入”得到的4.6最小是4.55;故答案为:4.64.11.(2分)三个连续自然数,中间的一个是n,其余两个分别是n﹣1和n+1.【解答】解:因为这三个自然数是连续的,中间的一个是n,所以和它相邻的前一个是n﹣1,后一个是n+1.故答案为:n﹣1,n+1.12.(2分)张欢坐在教室的第四列第三行,用(4,3)表示,用(1,6)表示的李云同学是坐在第1列第6行.【解答】解:张欢坐在教室的第四列第三行,用(4,3)表示,用(1,6)表示的李云同学是坐在第1列第6行.故答案为:1,6.13.(2分)鸡和兔关在同一个笼子里,共有8个头,26只脚,问:笼里有鸡3只.【解答】解:兔:(26﹣8×2)÷(4﹣2)=10÷2=5(只)鸡:8﹣5=3只)答:笼里有鸡3只.故答案为:3.二、明辨是非.(正确的划√,错误的划×.共5分)14.(1分)吨煤,用去,还剩吨.错误.(判断对错)【解答】解:(1),=,=(吨).答:还剩吨.故答案为:错误.15.(1分)王师傅加工99个零件,全部合格,合格率为100%.√.(判断对错)【解答】解:×100%=100%,答:合格率为100%;故答案为;√.16.(1分)在半径2厘米的圆周长与面积一样大.×.(判断对错)【解答】解:周长:2×3.14×2=12.56(厘米);面积:3.14×22=3.14×4=12.56(平方厘米).答:半径2厘米的圆,周长是12.56厘米,面积是12.56平方厘米.因为周长和面积不是同类量,所以它们无法进行比较.故答案为:×.17.(1分)最小的自然数是0.正确.(判断对错)【解答】解:最小的自然数是0,说法正确.故答案为:正确.18.(1分)中位数就是中间的一个数.×.(判断对错)【解答】解:将一组数据按照从小到大或从大到小的顺序排列,如果数据个数是奇数,则处于最中间位置的数就是这组数据的中位数;如果数据个数是偶数,则中间两个数据的平均数是这组数据的中位数,所以原题说法错误.故答案为:×.三、慎重选择.(将正确答案的番号填入括号,共10分)19.(2分)下列图形是轴对称图形的是()A.梯形B.平行四边形C.正方形【解答】解:根据轴对称图形的意义可知,在梯形、平行四边形、正方形中,只要正方形沿一条直线对折后,直线两旁的部分能完全重合,所以,正方形一定是轴对称图形;故选:C.20.(2分)可以清楚地表示数量的增减变化的统计图是()A.折线统计图B.条形统计图C.扇形统计图【解答】解:可以清楚地表示数量的增减变化的统计图是折线统计图;故选:B.21.(2分)一项工程,甲单独做要8天完成,乙单独要10天完成,甲与乙的工作效率比是()A.4:5 B.5:4 C.3:2【解答】解:甲与乙工作效率的比(1÷8):(1÷10)=10:8=5:4;答:甲与乙的工作效率的比是5:4.故选:B.22.(2分)一桶矿泉水大约是18()A.L B.mL C.㎡【解答】解:一桶矿泉水大约是18升;故选:A.23.(2分)下面哪个图形不能折成一个正方体.()A.B.C.【解答】解:根据正方体展开图的特征,选项A不属于正方体展开图,不能折成一个长方体;选项B、选项C属于正方体展开图,都能折成正方体.故选:A.四、细心计算.(共26分)24.(8分)直接写出得数.162÷8≈10÷1%=﹣= 6.9﹣6=308×9≈﹣=0÷÷=243+157=【解答】解:162÷8≈160÷8=2010÷1%=1000﹣= 6.9﹣6=0.9308×9≈300×9=2700﹣=0÷÷=0243+157=40025.(9分)怎样简便就怎样算.8×7×1.25×8.8+1.2×723﹣(325+123)【解答】解:(1)8×7×1.25 =(8×1.25)×7=10×7=70(2)×8.8+1.2×=×(8.8+1.2)=×10=2(3)723﹣(325+123)=723﹣325﹣123=723﹣123﹣325=600﹣325=27526.(9分)解方程,解比例.x:=:3x=2102x+4.7=24.7.【解答】解:(1)x:=:x=×x=x=x=(2)3x=2103x÷3=210÷3x=70(3)2x+4.7=24.72x+4.7﹣4.7=24.7﹣4.72x=202x÷2=20÷2x=1027.(3分)(1)画出三角形ABC的BC边上的高.(2)根据如图中提供的信息,不用测量任何数据,画一个与三角形ABC面积相等的三角形.【解答】解:根据题干分析,作图如下:六、看图计算.(共8分)28.(4分)求下面图形的面积.【解答】解:(4+12)×5÷2=16×5÷2=8×5=40(平方分米)答:图形的面积是40平方分米.29.(4分)求下列图形的体积.(单位:米)【解答】解:如图:3.14×(6÷2)2×4+3.14×(6÷2)2×4 = 3.14×9×4+3.14×9×4=37.68+113.04=150.72(立方米),答:它的体积是150.72立方米.七、解决问题.(每题5分,共25分)30.(5分)四年级同学参加管弦乐队的有86人,比参加科技小组的4倍多6人,参加科技小组的有几人?(用方程解)【解答】解:设参加科技小组的有x人,4x+6=864x=80x=20,答:参加科技小组的有20人.31.(5分)学校食堂有一桶油,用了40%,还剩24千克,这桶油有了多少千克?【解答】解:24÷(1﹣40%)=24÷0.6=40(千克)答:这桶油有了40千克.32.(5分)一支铺路队正在铺一段公路,上午工作3.5小时,每小时铺47米,下午了203.5米,全天共铺多少米?【解答】解:47×3.5+203.5=164.5+203.5=368(米)答:全天共铺368米.33.(5分)一个广场用方砖铺地,如果用面积是50平方分米的方砖,需要2000块,如果改用面积是100平方分米的方砖,需要多少块?【解答】解:设需要x块100x=50×2000100x=100000x=1000答:需要1000块.34.(5分)体育馆的环形跑道长800米,小明和小华在同一起跑线上,同时相反方向起跑,小明每分钟跑120米,小华每分钟跑130米,经过多少时间两人在跑道上第一次相遇?【解答】解:800÷(120+130)=800÷250=3.2(分钟)答:经过3.2时间两人在跑道上第一次相遇.。
2014年遵义市初中数学毕业学业(升学)模拟试卷(有答案)遵义市初中毕业生学业(升学)考试模拟试卷数学(二)(全卷共150分,考试时间120分钟)一、选择题(本大题10个小题,每小题3分,共30分).1.-5的倒数是()A.-5B.5C.-15D.152.据贵州招商引资网消息,为加快新蒲新区经济发展,新区政府拟建遵义新蒲新区现代高效农业示范园区,共计划投入资金3.7亿元,3.7亿用科学记数法可表示为()A.3.7×109B.3.7×108C.0.37×1010D.37×1073.计算:()A.B.C.D.4.如1所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是()5.将图2所示的直角梯形绕直线l旋转一周,得到的立体图开是()6.方程,当时,m的取值范围是()A、B、C、D、7.如图是一个圆锥形冰淇淋,已知它的母线长是5cm,高是4cm,则这个圆锥形冰淇淋的底面面积是()A.B.C.D.8.为了建设社会主义新农村,我市积极推进“行政村通畅工程”.张村和王村之间的道路需要进行改造,施工队在工作了一段时间后,因暴雨被迫停工几天,不过施工队随后加快了施工进度,按时完成了两村之间的道路改造.下面能反映该工程尚未改造的道路里程y(公里)与时间x(天)的函数关系的大致图象是()9.如图,在等边△ABC中,AB、AC都是圆O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N,如果MN=1,那么△ABC的面积为()A.3B.10.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2014个格子中的数为()3abc﹣12…A.3B.2C.0D.﹣1二、填空题(本大题8个小题,每小题4分,共24分).11.计算:.12.函数y=1x-2中,自变量x的取值范围是.13.一元二次方程的解是.14.分解因式:a3﹣a=..15.如图,将一副三角板按图示的方法叠在一起,则图中等于度.16.如图在一次“寻宝”游戏中,寻宝人找到了如图所示两个标志点A(2,1)、B(4,-1),这两个标志点到“宝藏”点的距离都是10,则“宝藏”点的坐标是.17.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF﹣S△BEF=.18.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数的图象上.若点A的坐标为(﹣2,﹣2),则k的值为.三、解答题(本题有9小题,共88分)19.(6分)计算:20.(8分)先化简再求值:,并从不等式<<tan解中选一个你喜欢的数代入,求原分式的值.21.(8分)如图,一巡逻艇航行至海面处时,得知其正北方向上处一渔船发生故障.已知港口处在处的北偏西方向上,距处20海里;处在A处的北偏东方向上.求之间的距离(结果精确到0.1海里).参考数据:22.(10分)为庆祝建党92周年,某校团委计划在“七•一”前夕举行“唱响红歌”班级歌咏比赛,要确定一首喜欢人数最多的歌曲为每班必唱歌曲。
2024年贵州省遵义市数学初一上学期模拟试题及答案指导一、选择题(本大题有10小题,每小题3分,共30分)1、(1)下列数中,不是有理数的是:A、0.3B、-5C、πD、2/3答案:C解析:有理数是可以表示为两个整数之比的数,即分数形式。
选项A、B、D都可以表示为分数形式,而π(圆周率)是一个无理数,不能表示为两个整数之比。
2、(2)下列各数中,绝对值最小的是:A、-2B、-1C、0D、1答案:C解析:绝对值表示一个数距离0的距离,不考虑数的正负。
选项A、B、D的绝对值分别为2、1、1,而0的绝对值也是0,所以绝对值最小的是0。
3、一个长方体的长、宽、高分别是2cm、3cm、4cm,那么这个长方体的体积是多少立方厘米?A. 24立方厘米B. 36立方厘米C. 48立方厘米D. 50立方厘米答案:A 解析:长方体的体积计算公式为V = 长× 宽× 高。
将给定的长、宽、高代入公式,得到V = 2cm × 3cm × 4cm = 24立方厘米。
因此,正确答案是A。
4、一个圆的半径增加了20%,那么这个圆的面积增加了多少百分比?A. 20%B. 40%C. 44%D. 80%答案:C 解析:圆的面积计算公式为A = πr²,其中r是圆的半径。
如果半径增加了20%,新的半径为1.2r(原来的100%加上增加的20%)。
新圆的面积为A’ = π(1.2r)² = π(1.44r²)。
面积的增加量为A’ - A = π(1.44r²) - πr² = π(0.44r ²)。
面积增加的百分比是增加量除以原面积,即(π(0.44r²) / πr²) × 100% = 0.44 × 100% = 44%。
因此,正确答案是C。
5、一个长方形的长是10cm,宽是5cm,那么它的周长是多少平方厘米?选项:A、25B、50C、100D、150 答案:B 解析:长方形的周长计算公式为:周长= 2 × (长 + 宽)。
贵州遵义数学解析-2014初中毕业学业考试试卷一、选择题(本题共10小题,每小题3分,共30分)1.(3分)(2014•遵义)﹣3+(﹣5)的结果是()A.﹣2 B.﹣8 C.8D.2考点:有理数的加法.分析:根据同号两数相加,取相同的符号,并把绝对值相加,可得答案.解答:解:原式=﹣(3+5)=﹣8.故选:B.点评:本题考查了有理数的加法,先确定和的符号,再进行绝对值得运算.2.(3分)(2014•遵义)观察下列图形,是中心对称图形的是()A.B.C.D.考点:中心对称图形.分析:根据中心对称图形的概念对各选项分析判断后利用排除法求解.解答:解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选:C.点评:本题考查了中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)(2014•遵义)“着力扩大投资,突破重点项目建设”是遵义经济社会发展的主要任务之一.据统计,遵义市2013年全社会固定资产投资达1762亿元,把1762亿元这个数字用科学记数法表示为()A.1762×108B.1.762×1010C.1.762×1011D.1.762×1012考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将1762亿用科学记数法表示为:1.762×1011.故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2014•遵义)如图,直线l1∥l2,∠A=125°,∠B=85°,则∠1+∠2=()A.30°B.35°C.36°D.40°考点:平行线的性质.分析:过点A作l1的平行线,过点B作l2的平行线,根据两直线平行,内错角相等可得∠3=∠1,∠4=∠2,再根据两直线平行,同旁内角互补求出∠CAB+∠ABD=180°,然后计算即可得解.解答:解:如图,过点A作l1的平行线,过点B作l2的平行线,∴∠3=∠1,∠4=∠2,∵l1∥l2,∴AC∥BD,∴∠CAB+∠ABD=180°,∴∠3+∠4=125°+85°﹣180°=30°,∴∠1+∠2=30°.故选A.点评:本题考查了平行线的性质,熟记性质并作辅助线是解题的关键.5.(3分)(2014•遵义)计算3x3•2x2的结果是()A.5x5B.6x5C.6x6D.6x9考点:单项式乘单项式.分析:根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.解答:解:3x3•2x2=6x5,故选B.点评:本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.6.(3分)(2014•遵义)已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象如图,其中正确的是()A.B.C.D.考点:二次函数的图象;一次函数的图象.分析:本题可先由二次函数图象得到字母系数的正负,再与一次函数和反比例函数的图象相比较看是否一致.逐一排除.解答:解:A、由二次函数的图象可知a<0,此时直线y=ax+b经过二、四象限,故A可排除;B、二次函数的图象可知a<0,对称轴在y轴的右侧,可知a、b异号,b>0,此时直线y=ax+b经过一、二、四象限,故B可排除;C、二次函数的图象可知a>0,此时直线y=ax+b经过一、三,故C可排除;正确的只有D.故选:D.点评:此题主要考查了一次函数图象与二次函数图象,应该识记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.7.(3分)(2014•遵义)有一组数据7、11、12、7、7、8、11.下列说法错误的是()A.中位数是7 B.平均数是9 C.众数是7 D.极差是5考点:极差;加权平均数;中位数;众数.分析:根据中位数、平均数、极差、众数的概念求解.解答:解:这组数据按照从小到大的顺序排列为:7、7、7、8、11、11、12,则中位数为:8,平均数为:=9,众数为:7,极差为:12﹣7=5.故选A.点评:本题考查了中位数、平均数、极差、众数的知识,掌握各知识点的概念是解答本题的关键.8.(3分)(2014•遵义)若a+b=2,ab=2,则a2+b2的值为()A.6B.4C.3D.2考点:完全平方公式.分析:利用a2+b2=(a+b)2﹣2ab代入数值求解.解答:解:a2+b2=(a+b)2﹣2ab=8﹣4=4,故选:B.点评:本题主要考查了完全平方公式的应用,解题的关键是牢记完全平方公式,灵活运用它的变化式.9.(3分)(2014•遵义)如图,边长为2的正方形ABCD中,P是CD的中点,连接AP并延长交BC的延长线于点F,作△CPF的外接圆⊙O,连接BP并延长交⊙O于点E,连接EF,则EF的长为()A.B.C.D.考点:相似三角形的判定与性质;正方形的性质;圆周角定理.分析:先求出CP、BF长,根据勾股定理求出BP,根据相似得出比例式,即可求出答案.解答:解:∵四边形ABCD是正方形,∴∠ABC=∠PCF=90°,CD∥AB,∵F为CD的中点,CD=AB=BC=2,∴CP=1,∵PC∥AB,∴△FCP∽△FBA,∴==,∴BF=4,∴CF=4﹣2=2,由勾股定理得:BP==,∵四边形ABCD是正方形,∴∠BCP=∠PCF=90°,∴PF是直径,∴∠E=90°=∠BCP,∵∠PBC=∠EBF,∴△BCP∽△BEF,∴=,∴=,∴EF=,故选D.点评:本题考查了正方形的性质,圆周角定理,相似三角形的性质和判定的应用,主要考查学生的推理能力和计算能力,题目比较好,难度适中.10.(3分)(2014•遵义)如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A 顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为()A.2﹣B.C.﹣1 D.1考点:旋转的性质.分析:连接BB′,根据旋转的性质可得AB=AB′,判断出△ABB′是等边三角形,根据等边三角形的三条边都相等可得AB=BB′,然后利用“边边边”证明△ABC′和△B′BC′全等,根据全等三角形对应角相等可得∠ABC′=∠B′BC′,延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD﹣C′D计算即可得解.解答:解:如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD⊥AB′,∵∠C=90°,AC=BC=,∴AB==2,∴BD=2×=,C′D=×2=1,∴BC′=BD﹣C′D=﹣1.故选C.点评:本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.二、填空题(本题共8小题,每小题4分,共32分)11.(4分)(2014•遵义)+=4.考点:二次根式的加减法.分析:先化简,然后合并同类二次根式.解答:解:原式=3+=4.故答案为;4.点评:本题考查了二次根式的加减法,掌握二次根式的化简是解答本题的关键.12.(4分)(2014•遵义)正多边形的一个外角等于20°,则这个正多边形的边数是18.考点:多边形内角与外角.分析:根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.解答:解:因为外角是20度,360÷20=18,则这个多边形是18边形.点评:根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.13.(4分)(2014•遵义)计算:+的结果是﹣1.考点:分式的加减法.专题:计算题.分析:原式变形后利用同分母分式的减法法则计算即可得到结果.解答:解:原式=﹣==﹣1.故答案为:﹣1.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.14.(4分)(2014•遵义)关于x的一元二次方程x2﹣3x+b=0有两个不相等的实数根,则b 的取值范围是b<.考点:根的判别式.专题:计算题.分析:根据判别式的意义得到△=(﹣3)2﹣4b>0,然后解不等式即可.解答:解:根据题意得△=(﹣3)2﹣4b>0,解得b<.故答案为b<.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.15.(4分)(2014•遵义)有一圆锥,它的高为8cm,底面半径为6cm,则这个圆锥的侧面积是60πcm2.(结果保留π)考点:圆锥的计算.分析:先根据圆锥的底面半径和高求出母线长,圆锥的侧面积是展开后扇形的面积,计算可得.解答:解:圆锥的母线==10cm,圆锥的底面周长2πr=12πcm,圆锥的侧面积=lR=×12π×10=60πcm2.故答案为60π.点评:本题考查了圆锥的计算,圆锥的高和圆锥的底面半径圆锥的母线组成直角三角形,扇形的面积公式为lR.16.(4分)(2014•遵义)有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2014次后,骰子朝下一面的点数是3.考点:专题:正方体相对两个面上的文字;规律型:图形的变化类.分析:观察图象知道点数三和点数四相对,点数二和点数五相对且四次一循环,从而确定答案.解答:解:观察图象知道点数三和点数四相对,点数二和点数五相对且四次一循环,∵2014÷4=503…2,∴滚动第2014次后与第二次相同,∴朝下的点数为3,故答案为:3.点评:本题考查了正方体相对两个面上的文字及图形的变化类问题,解题的关键是发现规律.17.(4分)(2014•遵义)“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E、南门点F分别是AB,AD的中点,EG⊥AB,FE⊥AD,EG=15里,HG经过A点,则FH= 1.05里.考点:相似三角形的应用.分析:首先根据题意得到△GEA∽△AFH,然后利用相似三角形的对应边的比相等列出比例式求得答案即可.解答:解:EG⊥AB,FE⊥AD,HG经过A点,∴FA∥EG,EA∥FH,∴∠HFA=∠AEG=90°,∠FHA=∠EAG,∴△GEA∽△AFH,∴.∵AB=9里,DA=7里,EG=15里,∴FA=3.5里,EA=4.5里,∴,解得:FH=1.05里.故答案为:1.05.点评:本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形,难度不大.18.(4分)(2014•遵义)如图,反比例函数y=(k>0)的图象与矩形ABCO的两边相交于E,F两点,若E是AB的中点,S△BEF=2,则k的值为8.考点:反比例函数系数k的几何意义.分析:设E(a,),则B纵坐标也为,代入反比例函数的y=,即可求得F的横坐标,则根据三角形的面积公式即可求得k的值.解答:解:设E(a,),则B纵坐标也为,E是AB中点,所以F点横坐标为2a,代入解析式得到纵坐标:,BF=﹣=,所以F也为中点,S△BEF=2=,k=8.故答案是:8.点评:本题考查了反比例函数的性质,正确表示出BF的长度是关键.三、解答题(本题共9小题,共88分)19.(6分)(2014•遵义)计算:﹣|﹣4|﹣2cos45°﹣(3﹣π)0.考点:实数的运算;零指数幂;特殊角的三角函数值.分析:本题涉及零指数幂、绝对值、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=3﹣4﹣﹣1=2﹣5.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.(8分)(2014•遵义)解不等式组:,并把不等式组的解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.解答:解:由①得,x≥﹣1,由②得,x<4,故此不等式组的解集为:﹣1≤x<4.在数轴上表示为:.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(8分)(2014•遵义)如图,一楼房AB后有一假山,其坡度为i=1:,山坡坡面上E 点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.专题:应用题.分析:过点E作EF⊥BC的延长线于F,EH⊥AB于点H,根据CE=20米,坡度为i=1:,分别求出EF、CF的长度,在Rt△AEH中求出AH,继而可得楼房AB的高.解答:解:过点E作EF⊥BC的延长线于F,EH⊥AB于点H,在Rt△CEF中,∵i===tan∠ECF,∴∠ECF=30°,∴EF=CE=10米,CF=10米,∴BH=EF=10米,HE=BF=BC+CF=(25+10)米,在Rt△AHE中,∵∠HAE=45°,∴AH=HE=(25+10)米,∴AB=AH+HB=(35+10)米.答:楼房AB的高为(35+10)米.点评:本题考查了解直角三角形的应用,涉及仰角俯角及坡度坡角的知识,构造直角三角形是解题关键.22.(10分)(2014•遵义)小明、小军两同学做游戏,游戏规则是:一个不透明的文具袋中,装有型号完全相同的3支红笔和2支黑笔,两人先后从袋中取出一支笔(不放回),若两人所取笔的颜色相同,则小明胜,否则,小军胜.(1)请用树形图或列表法列出摸笔游戏所有可能的结果;(2)请计算小明获胜的概率,并指出本游戏规则是否公平,若不公平,你认为对谁有利.考点:游戏公平性;列表法与树状图法.分析:(1)列表将所有等可能的结果一一列举出来即可;(2)根据列表里有概率公式求得小明获胜的概率即可判断是否公平.解答:解:(1)列表得:红1 红2 红3 黑1 黑2红1 红1红2 红1红3 红1黑1 红1黑2红2 红2红1 红2红3 红2黑1 红2黑2红3 红3红1 红3红2 红3黑1 红3黑2黑1 黑1红1 黑1红2 黑1红3 黑1黑2黑2 黑2红1 黑2红2 黑2红3 黑2黑1(2)共20种等可能的情况,其中颜色相同的有8种,则小明获胜的概率为=,小军获胜的概率为1﹣=,∵<,∴不公平,对小军有利.点评:本题考查了列表法与列树状图的知识,解题的关键是正确的列出表格或树状图.23.(10分)(2014•遵义)今年5月,从全国旅游景区质量等级评审会上传来喜讯,我市“风冈茶海之心”、“赤水佛光岩”、“仁怀中国酒文化城”三个景区加入国家“4A”级景区.至此,全市“4A”级景区已达13个.某旅游公司为了了解我市“4A”级景区的知名度情况,特对部分市民进行现场采访,根据市民对13个景区名字的回答情况,按答数多少分为熟悉(A),基本了解(B)、略有知晓(C)、知之甚少(D)四类进行统计,绘制了一下两幅统计图(不完整),请根据图中信息解答以下各题:(1)本次调查活动的样本容量是1500;(2)调查中属于“基本了解”的市民有450人;(3)补全条形统计图;(4)“略有知晓”类占扇形统计图的圆心角是多少度?“知之甚少”类市民占被调查人数的百分比是多少?考点:条形统计图;扇形统计图.专题:图表型.分析:(1)用熟悉(A)的人数除以所占的百分比,计算即可得解;(2)先求出略有知晓(C)的人数,然后列式计算即可得解;(3)根据(2)的计算补全图形统计图即可;(4)用“略有知晓”C所占的百分比乘以360°计算即可,再根据知之甚少(D)的人数列式计算即可求出所占的百分比.解答:解:(1)120÷8%=1500;(2)略有知晓(C)的人数为:1500×40%=600人,“基本了解”(B)的人数为:1500﹣120﹣600﹣330=1500﹣1050=450人;(3)补全统计图如图所示;(4)“略有知晓”类:360°×40%=144°,“知之甚少”类:×100%=22%.故答案为:(1)1500;(2)450.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(10分)(2014•遵义)如图,▱ABCD中,BD⊥AD,∠A=45°,E、F分别是AB,CD 上的点,且BE=DF,连接EF交BD于O.(1)求证:BO=DO;(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AD的长.考点:平行四边形的性质;全等三角形的判定与性质;等腰直角三角形.分析:(1)通过证明△ODF与△OBE全等即可求得.(2)由△ADB是等腰直角三角形,得出∠A=45°,因为EF⊥AB,得出∠G=45°,所以△ODG与△DFG都是等腰直角三角形,从而求得DG的长和EF=2,然后平行线分线段成比例定理即可求得.解答:(1)证明:∵四边形ABCD是平行四边形,∴DC=AB,DC∥AB,∴∠ODF=∠OBE,在△ODF与△OBE中∴△ODF≌△OBE(AAS)∴BO=DO;(2)解:∵BD⊥AD,∴∠ADB=90°,∵∠A=45°,∴∠DBA=∠A=45°,∵EF⊥AB,∴∠G=∠A=45°,∴△ODG是等腰直角三角形,∵AB∥CD,EF⊥AB,∴DF⊥OG,∴OF=FG,△DFG是等腰直角三角形,∵△ODF≌△OBE(AAS)∴OE=OF,∴GF=OF=OE,即2FG=EF,∵△DFG是等腰直角三角形,∴DF=FG=1,∴DG==,∵AB∥CD,∴=,即=,∴AD=2,点评:本题考查了全等三角形的判定和性质,等腰直角三角形的判定和性质,平行线的性质以及平行线分行段定理.25.(10分)(2014•遵义)为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行”活动.自行车队从甲地出发,途径乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,并且邮政车行驶速度是自行车队行驶速度的2.5倍,如图表示自行车队、邮政车离甲地的路程y(km)与自行车队离开甲地时间x(h)的函数关系图象,请根据图象提供的信息解答下列各题:(1)自行车队行驶的速度是24km/h;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?考点:一次函数的应用.分析:(1)由速度=路程÷时间就可以求出结论;(2)由自行车的速度就可以求出邮政车的速度,再由追击问题设邮政车出发a小时两车相遇建立方程求出其解即可;(3)由邮政车的速度可以求出B的坐标和C的坐标,由自行车的速度就可以D的坐标,由待定系数法就可以求出BC,ED的解析式就可以求出结论.解答:解:(1)由题意得自行车队行驶的速度是:72÷3=24km/h.故答案为:24;(2)由题意得邮政车的速度为:24×2.5=60km/h.设邮政车出发a小时两车相遇,由题意得24(a+1)=60a,解得:a=.答:邮政车出发小时与自行车队首次相遇;(3)由题意,得邮政车到达丙地的时间为:135÷60=,∴邮政车从丙地出发的时间为:135=,∴B(,135),C(7.5,0).自行车队到达丙地的时间为:135÷24+0.5=+0.5=,∴D(,135).设BC的解析式为y1=k1+b1,由题意得,∴,∴y1=﹣60x+450,设ED的解析式为y2=k2x+b2,由题意得,解得:,∴y2=24x﹣12.当y1=y2时,﹣60x+450=24x﹣12,解得:x=5.5.y1=﹣60×5.5+450=120.答:邮政车在返程途中与自行车队再次相遇时的地点距离甲地120km.点评:本题考查了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一次函数与一元一次方程的运用,解答时求出函数的解析式是关键.26.(12分)(2014•遵义)如图,直角梯形ABCD中,AB∥CD,∠DAB=90°,且∠ABC=60°,AB=BC,△ACD的外接圆⊙O交BC于E点,连接DE并延长,交AC于P点,交AB延长线于F.(1)求证:CF=DB;(2)当AD=时,试求E点到CF的距离.考点:圆的综合题.专题:综合题.分析:(1)连结AE,由∠ABC=60°,AB=BC可判断△ABC为等边三角形,由AB∥CD,∠DAB=90°得∠ADC=∠DAB=90°,则根据圆周角定理可得到AC为⊙O的直径,则∠AEC=90°,即AE⊥BC,根据等边三角形的性质得BE=CE,再证明△DCE≌△FBE,得到DE=FE,于是可判断四边形BDCF为平行四边形,根据平行四边形的性质得CF=DB;(2)作EH⊥CF于H,由△ABC为等边三角形得∠BAC=60°,则∠DAC=30°,在Rt△ADC中,根据含30度的直角三角形三边的关系得DC=AD=1,AC=2CD=2,则AB=AC=2,BF=CD=1,AF=3,然后利用勾股定理计算出BD=,DF=2,所以CF=BD=,EF=DF=,接着根据等边三角形的性质由AE⊥BC得∠CAE=∠BAE=30°,根据圆周角定理得∠EDC=∠CAE=30°,而∠DCA=∠BAC=60°,得到∠DPC=90°,在Rt△DPC中,根据含30度的直角三角形三边的关系得PC=DC=,再证明Rt△FHE∽Rt△FPC,利用相似比可计算出EH.解答:(1)证明:连结AE,如图,∵∠ABC=60°,AB=BC,∴△ABC为等边三角形,∵AB∥CD,∠DAB=90°,∴∠ADC=∠DAB=90°,∴AC为⊙O的直径,∴∠AEC=90°,即AE⊥BC,∴BE=CE,CD∥BF,∴∠DCE=∠FBF,在△DCE和△FBE中,,∴△DCE≌△FBE(ASA),∴DE=FE,∴四边形BDCF为平行四边形,∴CF=DB;(2)解:作EH⊥CF于H,如图,∵△ABC为等边三角形,∴∠BAC=60°,∴∠DAC=30°,在Rt△ADC中,AD=,∴DC=AD=1,AC=2CD=2,∴AB=AC=2,BF=CD=1,∴AF=3,在Rt△ABD中,BD==,在Rt△ADF中,DF==2,∴CF=BD=,EF=DF=,∵AE⊥BC,∴∠CAE=∠BAE=30°,∴∠EDC=∠CAE=30°,而∠DCA=∠BAC=60°,∴∠DPC=90°,在Rt△DPC中,DC=1,∠CDP=30°,∴PC=DC=,∵∠HFE=∠PFC,∴Rt△FHE∽Rt△FPC,∴=,即=,∴EH=,即E点到CF的距离为.点评:本题考查了圆的综合题:熟练掌握圆周角定理、等边三角形的性质和平行四边形的判定与性质;会运用三角形全等的知识解决线段相等的问题;会运用勾股定理和相似比进行几何计算.27.(14分)(2014•遵义)如图,二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0),与y轴交于点C.若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动.(1)求该二次函数的解析式及点C的坐标;(2)当点P运动到B点时,点Q停止运动,这时,在x轴上是否存在点E,使得以A,E,Q为顶点的三角形为等腰三角形?若存在,请求出E点坐标;若不存在,请说明理由.(3)当P,Q运动到t秒时,△APQ沿PQ翻折,点A恰好落在抛物线上D点处,请判定此时四边形APDQ的形状,并求出D点坐标.考点:二次函数综合题.分析:(1)将A,B点坐标代入函数y=x2+bx+c中,求得b、c,进而可求解析式及C坐标.(2)等腰三角形有三种情况,AE=EQ,AQ=EQ,AE=AQ.借助垂直平分线,画圆易得E大致位置,设边长为x,表示其他边后利用勾股定理易得E坐标.(3)注意到P,Q运动速度相同,则△APQ运动时都为等腰三角形,又由A、D对称,则AP=DP,AQ=DQ,易得四边形四边都相等,即菱形.利用菱形对边平行且相等等性质可用t表示D点坐标,又D在E函数上,所以代入即可求t,进而D可表示.解答:解:(1)∵二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0),∴,解得,∴y=x2﹣x﹣4.∴C(0,﹣4).(2)存在.如图1,过点Q作QD⊥OA于D,此时QD∥OC,∵A(3,0),B(﹣1,0),C(0,﹣4),O(0,0)∴AB=4,OA=3,OC=4,∴AC==5,AQ=4.∵QD∥OC,∴,∴,∴QD=,AD=.①作AQ的垂直平分线,交AO于E,此时AE=EQ,即△AEQ为等腰三角形,设AE=x,则EQ=x,DE=AD﹣AE=﹣x,∴在Rt△EDQ中,(﹣x)2+()2=x2,解得x=,∴OA﹣AE=3﹣=﹣,∴E(﹣,0).②以Q为圆心,AQ长半径画圆,交x轴于E,此时QE=QA=4,∵ED=AD=,∴AE=,∴OA﹣AE=3﹣=﹣,∴E(﹣,0).③当AE=AQ=4时,∵OA﹣AE=3﹣4=﹣1,∴E(﹣1,0).综上所述,存在满足条件的点E,点E的坐标为(﹣,0)或(﹣,0)或(﹣1,0).(3)四边形APDQ为菱形,D点坐标为(﹣,﹣).理由如下:如图2,D点关于PQ与A点对称,过点Q作,FQ⊥AP于F,∵AP=AQ=t,AP=DP,AQ=DQ,∴AP=AQ=QD=DP,∴四边形AQDP为菱形,∵FQ∥OC,∴,∴,∴AF=,FQ=,∴Q(3﹣,﹣),∵DQ=AP=t,∴D(3﹣﹣t ,﹣),∵D在二次函数y=x2﹣x﹣4上,∴﹣=(3﹣t)2﹣(3﹣t)﹣4,∴t=,或t=0(与A重合,舍去),∴D (﹣,﹣).点评:本题考查了二次函数性质、利用勾股定理解直角三角形及菱形等知识,总体来说题意复杂但解答内容都很基础,是一道值得练习的题目.(注:可编辑下载,若有不当之处,请指正,谢谢!)授课:XXX。
贵州省遵义市2014年初中毕业生学业(升学)考试模拟试卷数学(一)(全卷共150分,考试时间120分钟)一、选择题(本大题10个小题,每小题3分,共30分) 1、-2相反数是( ) A.2B. -2C.21D. 21-2.计算6212(3)a a -÷的结果是( ) A. 34a -B. 84a -C. 44a -D. 443a -3.不等式280x +≤的解集在数轴上表示正确的是( )A. B. C. D. 4.温家宝总理有一句名言:“多么小的问题,乘以13亿,都会变得很大,多么大的经济总量,除以13亿,都会变得很小。
”如果每人每天浪费0.01千克粮食,我国13亿人每天就浪费粮食( )A.1.3×105 千克B.1.3×106千克C.1.3×107千克D.1.3×108千克 5. 用数学的方式理解“当窗理云鬓,对镜贴花黄”和“坐地日行八万里”(只考虑地球的自转),其中蕴含的图形运动是( )A .平移和旋转B .对称和旋转C .对称和平移D .旋转和平移 6.如图,在ABC ∆中,AB 是⊙O 的直径,60B ∠=,70C ∠=,则BOD ∠的度数是( )A.90B.100C.110D.1207.如图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是( )8.如图,两块完全重合的正方形纸片,如果上面的一块绕正方形的中心O 做0︒~ 90︒的旋转,那么旋转时露出的△ABC 的面积(S )随着旋转角度(n )的变化而变化,下面表示S 与n 关系的图象大致是( )第7题图 第6题图A .B .C .D .第8题图EF9.求1+2+22+23+…+22013的值,可令S=1+2+22+23+…+22013,则2S=2+22+23+24+…+22014,因此 2S ﹣S=22014﹣1.仿照以上推理,计算出1+5+52+53+…+52013的值为( )A .52013﹣1 B .52014﹣1 C .4152013- D .4152014-10.如图,已知双曲线(0)ky k x=<经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若 点A 的坐标为(6-,4),则△AOC 的面积 ( )A.12 B .9 C .6 D .4二、填空题:(本大题8个小题,每小题4分,共24分) 11.写出一个比-1小的无理数 ; 12.分解因式:822-x = .13.若3=+y x ,1=xy ,则=+22y x ___________.14.在综合实践课上,六名同学做的作品的数量(单位:件)分别是:5,7,3,x ,6,4;若这组数据的平均数是5,则这组数据的中位数是 件.15.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=35°,那么∠2=___.16.如图,邻边不等..的矩形花圃ABCD ,它的一边AD 利用已有的围墙,另外三边栅栏的总长度是6m .若矩形的面积为4m 2,则AB 的长度是 m (可利用的围墙长度超过6m ). 17. 如图,在正方形ABCD 中,以A 为顶点作等边△AEF ,交BC 边于E ,交DC 边于F ;又以A 为圆心,AE 的长为半径作 。
若△AEF 的边长为2,则阴影部分的面积约是 .(结果精确到0.01, 参考数据:2 1.4143 1.732≈≈ ,错误!未找到引用源。
,π错误!未找到引用源。
错误!未找到引用源。
取3.14)18.在直角坐标系中,正方形A 1B 1C 1O 1、A 2B 2C 2C 1、A 3B 3C 3C 2、…、A n B n C n C n -1按如图所示的方式放置,其中点A 1、A 2、A 3、…、A n均在一次函数y kx b =+的图像上,点C 1、C 2、C 3、…、C n 均在x 轴上。
若点B 1的坐 标为(1,1),点B 2的坐标为(3,2),则 点A n 的坐标为 .DBA yxO C 第10题图第18题图遵义市初中毕业学业(升学)考试模拟试卷 数学(一) 第1页 共4页 2 1 第15题图第17题图(23题图) 2201(3)()(3)4tan 452π--+⨯--+三、解答题(本题有9小题,共88分)19.(6分)计算: 20.(8分)先化简,再求值:2213x x +xx+1x 3x 6x+9--÷--,其中x=2 21.(8分)如图,在□ABCD 中,分别延长BA ,DC 到点E ,使得AE=AB ,CH=CD ,连接EH ,分别交AD ,BC 于点F,G. 求证:△AEF ≌△CHG .22.(10分)在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x ;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y .(1)用列表法或画树状图表示出(x ,y )的所有可能出现的结果; (2)求小明、小华各取一次小球所确定的点(x ,y )落在反比例函数4y x=的图象上的概率; (3)求小明、小华各取一次小球所确定的数x 、y 满足4y x<的概率.23.(10分) 某商场为缓解我市“停车难”问题,拟建造地下停车库,图6是该地下停车库坡道入口的设计示意图,其中, AB ⊥BD ,∠BAD =18o ,C 在BD 上,BC =0.5m .根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知 驾驶员所驾车辆能否安全驶入.小明认为CD 的 长就是所限制的高度,而小亮认为应该以CE 的 长作为限制的高度.小明和小亮谁说的对?请你判断并计算出正确的结果.(结果精确到0.1m )(sin18O ≈0.309,COS18O ≈0.951, tan18O≈0.325Sin72O ≈0.951,COS72O ≈0.309, tan18O≈3.708)24.(10分)某市对教师试卷讲评课中学生参与的深度和广度进行评价,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制了如图两幅不完整的统计图,请根据图中所给信息解答下列问题:遵义市初中毕业学业(升学)考试模拟试卷 数学(一) 第2页共4页(1)在这次评价中,一共抽查了 名学生; (2)请将条形统计图补充完整;(3)如果全市有9万名初中学生,那么在试卷讲评课中,“独立思考”的学生约有多少万人? 25.(10分)遵义绿色无公害蔬菜基地有甲、乙两种植户,他们种植了A 、B 两类蔬菜,两种植户种植的两类蔬菜的种植面积与总收入如下表:种植户种植A 类蔬菜面积 (单位:亩) 种植B 类蔬菜面积 (单位:亩) 总收入(单位:元)甲 3 1 12500 乙 2 3 16500 说明:不同种植户种植的同类蔬菜每亩平均收入相等.⑴ 求A 、B两类蔬菜每亩平均收入各是多少元?⑵ 某种植户准备租20亩地用来种植A 、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有租地方案.26.(12分)如图,在矩形ABCD 中,AB =6米,BC =8米,动点P 以2米/秒的速度从点A 出发,沿AC 向点C 移动,同时动点Q 以1米/秒的速度从点C 出发,沿CB 向点B 移动,设P 、Q 两点移动t 秒(0<t<5)后,四边形ABQP 的面积为S 米2。
(1)求面积S 与时间t 的关系式;(2)在P 、Q 两点移动的过程中,四边形ABQP 与△CPQ 的面积能否相等?若能,求出此时点P 的位置;若不能,请说明理由。
27.如图,在平面直角坐标系xOy 中,一抛物线的顶点坐标是(0,1),且过点(-2,2),平行四边形OABC 的顶点A 、B 在此抛物线上,AB 与y 轴相交于点M.已知点C 的坐标是(-4,0),点Q (x,y )是抛物线上任意一点.(1)求此抛物线的解析式及点M 的坐标; (2)在x 轴上有一点P(t,0),若PQ ∥CM ,试用x 的代数式表示t ; (3)在抛物线上是否存在点Q,使得ΔBAQ 的面积是ΔBMC 的面积的2倍?若存在,求此时点Q 的坐标.遵义市初中毕业学业(升学)考试模拟试卷 数学(一) 第3页 共4页遵义市初中毕业生学业(升学)考试模拟试卷数学(一)参考答案及评分标准一、选择题(本题共10小题,每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案ACDCBBDBDB二、填空题(本题共8小题,每小题4分,共32分)11. -2(答案不唯一) 12.)2)(2(2-+x x 13. 7 14. 5 15. 55○16. 1 17. 0.64 18. (121--n ,12-n )三、解答题(本题共9小题,共88分)19. (6分)解:原式=9+4×1-2+1…………………………………………4分 =12………………………………………………………6分 20. (8分)解:原式=2)3(311---+x x x ·)1(3+-x x x …………………………3分 =)1(111+++x x x ………………………………………4分 =)1(1++x x x ………………………………………………5分=x1………………………………………………………6分 当2=x 时,原式=2221= ……………………………………………8分21.(8分)证明:∵ □ABCD∴ AB=CD,∠BAD=∠BCD AB ∥CD …………………………2分 ∴ ∠EAF=∠HCG ∠E=∠H ……………………… ………4分 ∵ AE=AB ,CH=CD ……………………… ……… … ……6分 ∴ AE=CH ……………………………… …………………8分 ∴ △AEF ≌△CHG …………………… …………………8分xy 1 2 3 4 1 (1,1) (2,1) (3,1) (4,1) 2 (1,2) (2,2) (3,2) (4,2) 3(1,3)(2,3)(3,3)(4,3)遵义市初中毕业学业(升学)考试模拟试卷 数学(一) 第4页 共4页22.(10分)解:(1)………………………………………………………………4分(2)可能出现的结果共有16个,它们出现的可能性相等……………………5分满足点(x ,y )落在反比例函数4y x=的图象上(记为事件A )的结果有3个,即(1,4),(2,2),(4,1),所以P (A )=316……………………………………………8分 (3)能使x ,y 满足4y x<(记为事件B )的结果有5个,即(1,1),(1,2),(1,3),(2,1),(3,1),所以P (B )=516…………………………………………………10分23.(10分)解:在△ABD 中,∠ABD =90,∠BAD =18,BA =10∴tan ∠BAD =BABD…………………………………………………………………2分 ∴BD =10×tan 18∴CD =BD―BC ≈10×0.325―0.5≈2.75…………………………………………4分 在△ABD 中,∠CDE =90―∠BAD =72∵CE ⊥ED ∴sin ∠CDE =CDCE…………………………………………………………………6分 ∴CE =sin ∠CDE×CD =sin72×2.75≈0.951×2.75≈2.6(m )………9分答:CE 为2.6m ………………………………………………………………………10分24.(10分)解:(1)224÷40%=560(名)…………………………………………………4分(2)“讲解题目”的学生数为:560﹣84﹣168﹣224=560﹣476=84(人)……5分补全统计图如图;……………………………………………………………7分(3)560168×9=2.7万…………………………………………………………9分 答:在试卷讲评课中,“独立思考”的学生约有2.7万人.………………10分25.(10分)解:(1)设A 、B 两类蔬菜每亩平均收入分别是x 元、y 元,由题意得:4 (1,4) (2,4) (3,4) (4,4)⎩⎨⎧=+=+1650032125003y x y x …………………………………………………………4分 解得⎩⎨⎧==35003000y x答:A 、B 两类蔬菜每亩平均收入分别是3000元,3500元.……………5分(2)设用来种植A 类蔬菜的面积a 亩,则用来种植B 类蔬菜的面积为(20﹣a )亩.由题意得:⎩⎨⎧-≥≥-+aa a a 2063000)20(35003000…………………………………………8分解得:10<a≤14. ∵a 取整数为:11、12、13、14. ∴租地方案为:类别 种植面积 单位:(亩) A 11 12 13 14 B 9 8 7 6………………………………………10分26.(12分)解:(1)过点P 作PE ⊥BC 于ERt △ABC 中,AC=22BC AB +=2286+=10(米)…………………2分由题意知:AP=2t ,CQ=t ,则PC=10-2t …………………………3分 由AB ⊥BC ,PE ⊥BC 得PE ∥AB∴AB PE =AC PC 即:6PE =10210t- ∴PE=53(10-2t )=-656+t …………………………………………5分又∵S △ABC =21×6×8=24 …………………………………………6 分∴S=S △ABC -S △PCQ =24-21·t · (-656+t )=53t 2-3t+24即:S=53t 2-3t+24……………………………………………………8分(2)假设四边形ABQP 与△CPQ 的面积相等,则有:53t 2-3t+24=12 即:t 2-5t+20=0………………………………………………………………10分∵b 2-4ac=(-5)2-4×1×20<0 ∴方程无实根∴在P 、Q 两点移动的过程中,四边形ABQP 与△CPQ 的面积不能相等.…………12分27.(14分)解:(1)因为抛物线的顶点坐标是(0,1),且过点(-2,2)221=⋅=OM BM S BCM Δ24212==⋅==h h AB S S BCMABQ,所以所以ΔΔ故设其解析式为12+=ax y ……… 2分则有,1)2(22+-=a ,得41=a ………….3分 所以此抛物线的解析式为:1412+=x y ………… 4分因为四边形OABC 是平形四边形 ,所以AB=OC=4,AB ∥OC 又因为y 轴是抛物线的对称轴所以点A 与B 是抛物线上关于y 轴的对称点则MA=MB=2,即点A 的横坐标是2…………………………………5分 则其纵坐标12412+⨯=y =2,即点A (2,2),故点M (0,2)………6分 (2)作QH ⊥x 轴,交x 轴于点H …………………………………….7分则90QHP MOC ∠=∠=,因为PQ ∥CM ,所以QPH MCO ∠=∠ 所以ΔPQH ∽ΔCMO ………………………………………… 8分 所以MO QH CO PH =,即24y t x =-……………………………… 9分而1412+=x y ,所以)141(2142+=-x t x所以2212-+-=x x t …………………………………………………...10分(3)设ΔABQ 的边AB 上的高为h ,因为…………………12分所以点Q 的纵坐标为4,1412+=x y , 得32±=x 代入因此,存在符合条件的点Q ,其坐标为),)或(,(432-432. …………14分。