高中数学人教A版选修2-3第一章 计数原理 章末质量评估 (4)
- 格式:doc
- 大小:93.50 KB
- 文档页数:5
第一章测评(时间:120分钟满分:150分)一、选择题(本题共12小题,每小题5分,共60分)1.若A m4=18C m3,则m等于()A.9B.8C.7D.6,得m-3=3,m=6.A m4=m(m-1)(m-2)(m-3)=18·m(m-1)(m-2)3×2×12.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息.若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为()A.10B.11C.12D.15:分有两个对应位置、有一个对应位置及没有对应位置上的数字相同,可得N=C42+C41+1=11.3.若实数a=2-√2,则a10-2C101a9+22C102a8-…+210等于()A.32B.-32C.1 024D.512,得a10-2C101a9+22C102a8-…+210=C100(-2)0a10+C101(-2)1a9+C102(-2)2a8+…+C10(-2)10=(a-2)10=(-√2)10=25=32.104.分配4名水暖工去3户不同的居民家里检查暖气管道.要求4名水暖工都分配出去,且每户居民家都要有人去检查,那么分配的方案共有( ) A.A 43种B .A 33A 31种C .C 42A 33种D .C 41C 31A 33种4名水暖工选出2人分成一组,然后将三组水暖工分配到3户不同的居民家,故有C 42A 33种.5.已知集合M={1,-2,3},N={-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,则在直角坐标系中,位于第一、第二象限不同点的个数是( ) A.18B.16C.14D.10N 1=2×2+2×2=8(个),第二象限的不同点有N 2=1×2+2×2=6(个), 故N=N 1+N 2=14(个). 故答案为C .6.将A,B,C,D 四个小球放入编号为1,2,3的三个盒子中,若每个盒子中至少放一个球,且A,B 不能放入同一个盒子中,则不同的放法有( ) A.15种B.18种C.30种D.36种A,B 放入不同盒中,有3×2=6(种)放法,再放C,D,若C,D 在同一盒中,有1种放法;若C,D 在不同盒中,则有2×2=4(种)放法. 故共有6×(1+4)=30(种)放法.故答案为C .7.为支持地震灾区的灾后重建工作,某公司决定分四天每天各运送一批物资到A,B,C,D,E 五个受灾地点.由于A 地距离该公司较近,安排在第一天或最后一天送达;B,C 两地相邻,安排在同一天上午、下午分别送达(B 在上午、C 在下午与B 在下午、C 在上午为不同的运送顺序),且运往这两地的物资算作一批;D,E 两地可随意安排在其余两天送达.则安排这四天运送物资到五个受灾地点的不同运送顺序的种数为( ) A.72B.18C.36D.24.第1步,安排运送物资到受灾地点A,有C 21种方法;第2步,在余下的3天中任选1天,安排运送物资到受灾地点B,C,有C 31A 22种方法;第3步,在余下的2天中安排运送物资到受灾地点D,E,有A 22种方法.由分步乘法计数原理得,不同的运送顺序共有C 21·(C 31A 22)·A 22=24(种).8.将数字1,2,3,4,5,6排成一列,记第i 个数为a i (i=1,2,…,6),若a 1≠1,a 3≠3,a 5≠5,a 1<a 3<a 5,则不同的排列方法种数为( )A.30B.18C.36D.48a 1,a 3,a 5的大小顺序已定,且a 1≠1,a 3≠3,a 5≠5,所以a 1可取2,3,4,若a 1=2或3,则a 3可取4,5,当a 3=4时,a 5=6,当a 3=5时,a 5=6;若a 1=4,则a 3=5,a 5=6.而其他的三个数字可以任意排列,因而不同的排列方法共有(2×2+1)A 33=30(种).9.12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排(这样就成为前排6人,后排6人),若其他人的相对顺序不变,则不同调整方法的总数是()A.6C82 B.720C82C.30C82 D.20C822人有C82种方法,再插空.由题意知先在4人形成的5个空当中插入1人,有5种方法,余下的1人要插入前排5人形成的6个空当中,有6种方法,即为30种方法.故共有30C82种调整方法.10.设(2-x)5=a0+a1x+a2x2+…+a5x5,那么a0+a2+a4a1+a3的值为()A.-122121B.-6160C.-244241D.-1x=1,可得a0+a1+a2+a3+a4+a5=1,再令x=-1可得a0-a1+a2-a3+a4-a5=35.两式相加除以2求得a0+a2+a4=122,两式相减除以2可得a1+a3+a5=-121.又由条件可知a5=-1,故a0+a2+a4a1+a3=-6160.11.形如45 132的数称为“波浪数”,即十位数字、千位数字均比与它们各自相邻的数字大,则由1,2,3,4,5可构成不重复的五位“波浪数”的个数为()A.20B.18C.16D.11,十位和千位数字只能是4,5或3,5,若十位和千位排4,5,则其他位置任意排1,2,3,这样的数有A 22A 33=12(个);若十位和千位排5,3,这时4只能排在5的一边且不能和其他数字相邻,1,2在其余位置上任意排列,这样的数有A 22A 22=4(个).综上,共有16个.故答案为C .12.若自然数n 使得竖式加法n+(n+1)+(n+2)均不产生进位现象,则称n 为“可连数”.例如:32是“可连数”,因32+33+34不产生进位现象;23不是“可连数”,因23+24+25产生进位现象.则小于1 000的“可连数”的个数为( ) A.27 B.36C.39D.48,要构造小于1000的“可连数”,个位上的数字的最大值只能为2,即个位数字只能在0,1,2中取.十位数字只能在0,1,2,3中取;百位数字只能在1,2,3中取.当“可连数”为一位数时,有C 31=3(个);当“可连数”为两位数时,个位上的数字有0,1,2三种取法,十位上的数字有1,2,3三种取法,即有C 31C 31=9(个);当“可连数”为三位数时,有C 31C 41C 31=36(个);故共有3+9+36=48(个).二、填空题(本题共4小题,每小题5分,共20分)13.甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是 .(用数字作答).第1类,每级台阶只站一人,则有A 73种站法;第2类,若有一级台阶有2人,另一级有1人,则有C 31A 72种站法,因此共有不同的站法种数是A 73+C 31A 72=336.14.若(x +√x3)8的展开式中x 4的系数为7,则实数a= .(x √x 3)8的通项为C 8rx 8-r a r(x -13)r=C 8r a r x8-r x -r3=C 8r a r x8-43r,令8-43r=4,解得r=3. ∴C 83a 3=7,得a=12.15.6个人排成一行,其中甲、乙两人不相邻的不同排法共有 种.(用数字作答)个人排成一行,其中甲、乙两人不相邻的不同排法:先排列好除甲、乙两人外的4人,有A 44种方法,再把甲、乙两人插入4个人的5个空当,有A 52种方法,所以共有A 44·A 52=480(种).16.(1+sin x )6的二项展开式中,二项式系数最大的一项的值为52,则x 在[0,2π]内的值为 .,得T 4=C 63sin 3x=20sin 3x=52,∴sin x=12.∵x ∈[0,2π], ∴x=π6或x=5π6.5π6三、解答题(本题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)有6个除颜色外完全相同的球,其中3个黑球,红、白、蓝球各1个,现从中取出4个球排成一列,共有多少种不同的排法?.(1)若取1个黑球,和另外3个球排成一列,不同的排法种数为A 44=24;(2)若取2个黑球,和从另外3个球中选的2个排成一列,2个黑球是相同的,所以不同的排法种数为C 32C 42A 22=36;(3)若取3个黑球,和从另外3个球中选的1个排成一列,不同的排法种数为C 31C 41=12.综上,不同的排法种数为24+36+12=72.18.(12分)一个口袋内有4个不同的红球,6个不同的白球. (1)从中任取4个球,红球的个数不比白球少的取法有多少种?(2)若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?将取出的4个球分成三类:①取4个红球,没有白球,有C 44种;②取3个红球1个白球,有C 43C 61种;③取2个红球2个白球,有C 42C 62种,故有C 44+C 43C 61+C 42C 62=115(种).(2)设取x 个红球,y 个白球,则{x +y =5,2x +y ≥7,0≤x ≤4,0≤y ≤6,故{x =2,y =3或{x =3,y =2或{x =4,y =1.因此,符合题意的取法种数有C 42C 63+C 43C 62+C 44C 61=186(种).19.(12分)已知(x +2√x )n展开式中的前三项的系数成等差数列. (1)求n 的值;(2)求展开式中系数最大的项.由题意,得C n 0+14C n 2=2×12C n 1, 即n 2-9n+8=0,解得n=8或n=1(舍去).故n=8. (2)设第r+1项的系数最大,则{12r C 8r ≥12r+1C 8r+1,12r C 8r ≥12r -1C 8r -1, 即{18-r≥12(r+1),12r≥19-r.解得2≤r ≤3.∵r ∈N *,∴r=2或r=3.∴系数最大的项为T 3=7x 5,T 4=7x 72.20.(12分)设1+12x m =a 0+a 1x+a 2x 2+a 3x 3+…+a m x m,若a 0,a 1,a 2成等差数列. (1)求1+12x m 展开式的中间项;(2)求1+12x m展开式中所有含x 的奇次幂的系数和. 解(1)依题意a 0=1,a 1=m 2,a 2=C m2122.由2a 1=a 0+a 2,求得m=8或m=1(应舍去),所以1+12x m展开式的中间项是第五项, T 5=C 8412x 4=358x 4.(2)因为1+12x m =a 0+a 1x+a 2x 2+…+a m x m, 即1+12x 8=a 0+a 1x+a 2x 2+…+a 8x 8. 令x=1,则a 0+a 1+a 2+a 3+…+a 8=328, 令x=-1,则a 0-a 1+a 2-a 3+…+a 8=128,所以a 1+a 3+a 5+a 7=38-129=20516,所以展开式中所有含x 的奇次幂的系数和为20516.21.(12分)把n 个正整数全排列后得到的数叫做“再生数”,“再生数”中最大的数叫做最大再生数,最小的数叫做最小再生数.(1)求1,2,3,4的再生数的个数,以及其中的最大再生数和最小再生数; (2)试求任意5个正整数(可相同)的再生数的个数.的再生数的个数为A 44=24,其中最大再生数为4321,最小再生数为1234.(2)需要考查5个数中相同数的个数. 若5个数各不相同,有A 55=120(个);若有2个数相同,则有A 55A 22=60(个);若有3个数相同,则有A 55A 33=20(个);若有4个数相同,则有A 55A 44=5(个);若5个数全相同,则有1个.22.(12分)已知m ,n 是正整数,f (x )=(1+x )m +(1+x )n 的展开式中x 的系数为7. (1)对于使f (x )的x 2的系数为最小的m ,n ,求出此时x 3的系数; (2)利用上述结果,求f (0.003)的近似值;(精确到0.01)(3)已知(1+2x )8展开式的二项式系数的最大值为a ,系数的最大值为b ,求ba .根据题意得C m 1+C n 1=7,即m+n=7,①f (x )中的x 2的系数为C m 2+C n 2=m (m -1)2+n (n -1)2=m 2+n 2-m -n2.将①变形为n=7-m 代入上式得x 2的系数为m 2-7m+21=m-722+354, 故当m=3或m=4时,x 2的系数的最小值为9.当m=3,n=4时,x 3的系数为C 33+C 43=5;当m=4,n=3时,x 3的系数为C 43+C 33=5.(2)f (0.003)=(1+0.003)4+(1+0.003)3≈C 40+C 41×0.003+C 30+C 31×0.003≈2.02.(3)由题意可得a=C 84=70,再根据{C 8k ·2k≥C 8k+1·2k+1,C 8k ·2k ≥C 8k -1·2k -1,即{k ≥5,k ≤6, 求得k=5或6,此时,b=7×28,∴b a =1285.2021-2022学年高中数学第一章计数原理测评(含解析)新人教A版选修2-311 / 1111。
第一章 计数原理1.1分类加法计数原理与分步乘法计数原理 练习(P6) 1、(1)要完成的“一件事情”是“选出1人完成工作”,不同的选法种数是5+4=9;(2)要完成的“一件事情”是“从A 村经B 村到C 村去”,不同路线条数是3×2=6. 2、(1)要完成的“一件事情”是“选出1人参加活动”,不同的选法种数是3+5+4=12;(2)要完成的“一件事情”是“从3个年级的学生中各选1人参加活动”,不同选法种数是3×5×4=60.3、因为要确定的是这名同学的专业选择,并不要考虑学校的差异, 所以应当是6+4-1=9(种)可能的专业选择. 练习(P10)1、要完成的“一件事情”是“得到展开式的一项”.由于每一项都是i j k a b c 的形式,所以可以分三步完成:第一步,取i a ,有3种方法;第二步,取j b ,有3种方法;第三步,取k c ,有5种方法. 根据分步乘法计数原理,展开式共有3×3×5=45(项).2、要完成的“一件事情”是“确定一个电话号码的后四位”. 分四步完成,每一步都是从0~9这10个数字中取一个,共有10×10×10×10=10000(个).3、要完成的“一件事情”是“从5名同学中选出正、副组长各1名”. 第一步选正组长,有5种方法;第二步选副组长,有4种方法. 共有选法5×4=20(种).4、要完成的“一件事情”是“从6个门中的一个进入并从另一个门出去”. 分两步完成:先从6个门中选一个进入,再从其余5个门中选一个出去. 共有进出方法6×5=30(种). 习题1.1 A 组(P12) 1、“一件事情”是“买一台某型号的电视机”. 不同的选法有4+7=11(种). 2、“一件事情”是“从甲地经乙地或经丙地到丁地去”. 所以是“先分类,后分步”,不同的路线共有2×3+4×2=14(条). 3、对于第一问,“一件事情”是“构成一个分数”. 由于1,5,9,13是奇数,4,8,12,16是偶数,所以1,5,9,13中任意一个为分子,都可以与4,8,12,16中的任意一个构成分数. 因此可以分两步来构成分数:第一步,选分子,有4种选法;第二步,选分母,也有4种选法. 共有不同的分数4×4=16(个). 对于第二问,“一件事情”是“构成一个真分数”. 分四类:分子为1时,分母可以从4,8,12,16中任选一个,有4个;分子为5时,分母可以从8,12,16中选一个,有3个;分子为9时,分母从12,16中选一个,有2个;分子为13时,分母只能选16,有1个. 所以共有真分数4+3+2+1=10(个). 4、“一件事情”是“接通线路”. 根据电路的有关知识,容易得到不同的接通线路有3+1+2×2=8(条).5、(1)“一件事情”是“用坐标确定一个点”. 由于横、纵坐标可以相同,因此可以分两步完成:第一步,从A 中选横坐标,有6个选择;第二步,从A 中选纵坐标,也有6个选择. 所以共有坐标6×6=36(个). (2)“一件事情”是“确定一条直线的方程”. 由于斜率不同截距不同、斜率不同截距相同、斜率相同截距不同的直线都是互不相同的,因此可分两步完成:第一步,取斜率,有4种取法;第二步,取截距,有4种取法. 所以共有直线4×4=16(条).习题1.1 B 组(P13) 1、“一件事情”是“组成一个四位数字号码”. 由于数字可以重复,最后一个只能在0~5这六个数字中拨,所以有号码10×10×10×6=6000(个). 2、(1)“一件事情”是“4名学生分别参加3个运动队中的一个,每人限报一个,可以报同一个运动队”. 应该是人选运动队,所以不同报法种数是43.(2)“一件事情”是“3个班分别从5个风景点中选择一处游览”. 应该是人选风景点,故不同的选法种数是35. 1.2排列与组合 练习(P20)1、(1),,,,,,,,,,,ab ac ad ba bc bd ca cb cd da db dc ;(2),,,,,,,,,,,,,,,,,,,ab ac ad ae ba bc bd be ca cb cd ce da db dc de ea eb ec ed .2、(1)4151514131232760A =⨯⨯⨯=; (2)777!5040A ==; (3)4288287652871568A A -=⨯⨯⨯-⨯⨯=; (4)87121277121255A A A A ==.3、4、(1)略. (2)876777787677778788A A A A A A A -+=-+=.5、3560A =(种). 6、3424A =(种). 练习(P25) 1、(1)甲、乙, 甲、丙, 甲、丁, 乙、丙, 乙、丁, 丙、丁;(2)2、ABC ∆,ABD ∆,ACD ∆,BCD ∆.3、3620C =(种). 4、246C =(个). 5、(1)26651512C ⨯==⨯; (2)3887656123C ⨯⨯==⨯⨯;(3)3276351520C C -=-=; (4)328532356210148C C -=⨯-⨯=. 6、()1111(1)!!11(1)![(1)(1)]!!!m m n n m m n n C C n n m n m m n m +++++=⋅==++++-+- 习题1.2 A 组(P27) 1、(1)325454560412348A A +=⨯+⨯=; (2)12344444412242464A A A A +++=+++=.2、(1)315455C =; (2)19732002001313400C C ==; (3)346827C C ÷=; (4)22211(1)(1)(1)22n n n n nn nn n n n CCCC n -++--⋅=⋅=+⋅=.3、(1)12111(1)n n n n n n n n n n n n A A n A A nA n A +-+--=+-==;(2)(1)!!(1)!!(1)!!(1)!!!n n n k n n k n k k k k ++-⋅-+-==-. 4、由于4列火车各不相同,所以停放的方法与顺序有关,有481680A =(种)不同的停法.5、4424A =. 6、由于书架是单层的,所以问题相当于20个元素的全排列,有2020A 种不同的排法.7、可以分三步完成:第一步,安排4个音乐节目,共有44A 种排法;第二步,安排舞蹈节目,共有33A 种排法;第三步,安排曲艺节目,共有22A 种排法. 所以不同的排法有432432288A A A ⋅⋅=(种). 8、由于n 个不同元素的全排列共有!n 个,而!n n ≥,所以由n 个不同的数值可以以不同的顺序形成其余的每一行,并且任意两行的顺序都不同. 为使每一行都不重复,m 可以取的最大值是!n . 9、(1)由于圆上的任意3点不共线,圆的弦的端点没有顺序,所以共可以画21045C =(条)不同的弦;(2)由于三角形的顶点没有顺序,所以可以画的圆内接三角形有310120C =(个).10、(1)凸五边形有5个顶点,任意2个顶点的连线段中,除凸五边形的边外都是对角线,所以共有对角线2555C -=(条);(2)同(1)的理由,可得对角线为2(3) 2n n nC n --=(条).说明:本题采用间接法更方便.11、由于四张人民币的面值都不相同,组成的面值与顺序无关,所以可以分为四类面值,分别由1张、2张、3张、4张人民币组成,共有不同的面值1234 444415C C C C+++=(种).12、(1)由“三个不共线的点确定一个平面”,所确定的平面与点的顺序无关,所以共可确定的平面数是3856C=;(2)由于四面体由四个顶点唯一确定,而与四个点的顺序无关,所以共可确定的四面体个数是410210C=.13、(1)由于选出的人没有地位差异,所以是组合问题,不同的方法数是3510C=. (2)由于礼物互不相同,与分送的顺序有关系,所以是排列问题,不同方法数是3560A=;(3)由于5个人中每个人都有3中选择,而且选择的时间对别人没有影响,所以是一个“可重复排列”问题,不同方法数是53243=;(4)由于只要取出元素,而不必考虑顺序,所以可以分两步取元素:第一步,从集合A中取,有m种取法;第二步,从集合B中取,有n种取法. 所以共有取法mn 种.说明:第(3)题是“可重复排列”问题,但可以用分步乘法计数原理解决.14、由于只要选出要做的题目即可,所以是组合问题,另外,可以分三步分别从第1,2,3题中选题,不同的选法种数有32143224C C C⋅⋅=.15、由于选出的人的地位没有差异,所以是组合问题.(1)225460C C⋅=;(2)其余2人可以从剩下的7人中任意选择,所以共有2721C=(种)选法;(3)用间接法,在9人选4人的选法中,把男甲和女乙都不在内的去掉,就得到符合条件的选法数为449791C C-=;如果采用直接法,则可分为3类:只含男甲;只含女乙;同时含男甲女乙,得到符合条件的方法数为33277791C C C++=;(4)用间接法,在9人选4人的选法中,把只有男生和只有女生的情况排除掉,得到选法总数为444954120C C C--=.也可以用直接法,分别按照含男生1,2,3人分类,得到符合条件的选法数为132231 545454120C C C C C C++=.16、按照去的人数分类,去的人数分别为1,2,3,4,5,6,而去的人大家没有地位差异,所以不同的去法有12345666666663C C C C C C +++++=(种). 17、(1)31981274196C =; (2)142198124234110C C ⋅=; (3)51982410141734C =; (4)解法1:3141982198125508306C C C =⋅=. 解法2:55200198125508306C C -=. 说明:解答本题时,要注意区分“恰有”“至少有”等词.习题1.2 B 组(P28)1、容易知道,在737C 注彩票中可以有一个一等奖.在解决第2问时,可分别计算37选6及37选8中的一等奖的中奖机会,它们分别是637112324784C =和8371138608020C =. 要将一等奖的机会提高到16000000以上且不超过1500000,即375000006000000nC ≤<, 用计算机可得,6n =,或31n =.所以可在37个数中取6个或31个.2、可以按照I ,II ,III ,IV 的顺序分别着色:分别有5,4,3,3种方法,所以着色种数有5×4×3×3=180(种).3、“先取元素后排列”,分三步完成:第一步,从1,3,5,7,9中取3个数,有35C 种取法;第二步,从2,4,6,8中取2个数,有24C 种取法;第三步,将取出的5个数全排列,有55A 种排法. 共有符合条件的五位数3255457200C C A ⋅⋅=(个). 4、由于甲和乙都没有得冠军,所以冠军是其余3人中的一个,有13A 种可能;乙不是最差的,所以是第2,3,4名中的一种有13A 种可能;上述位置确定后,甲连同其他2人可任意排列,有33A 种排法. 所以名次排列的可能情况的种数是11333354A A A ⋅⋅=.5、等式两边都是两个数相乘,可以想到分步乘法计数原理,于是可得如下分步取组合的方法.在n 个人中选择m 个人搞卫生工作,其中k 个人擦窗,m k -个人拖地,共有多少种不同的选取人员的方法?解法1:利用分步计数原理,先从n 个人中选m 个人,然后从选出的m 个人中再选出k 个人擦窗,剩余的人拖地,这样有m knm C C 种不同的选取人员的方法; 解法2:直接从n 个人中选k 个人擦窗,然后在剩下的n k -个人中选m k -个人拖地,这样,由分步计数原理得,共有k m knn k C C --种不同的人员选择方法. 所以,k m k m knn k n m C C C C --=成立. 说明:经常引导学生从一个排列组合的运算结果或等式出发,构造一个实际问题加以解释,有助于学生对问题的深入理解,检查结果,纠正错误. 1.3二项式定理 练习(P31)1、7652433425677213535217p p q p q p q p q p q pq q +++++++.2、2424236(2)(3)2160T C a b a b =⋅=.3、231(1)(2n rr r n rrr r nn r T C C x --+-=⋅=.4、D . 理由是5105555511010(1)T C x C x -+=-=-. 练习(P35)1、(1)当n 是偶数时,最大值2nn C ;当n 是奇数时,最大值12n nC-.(2)1311111111*********C C C +++=⋅=. (3)12.2、∵0122kn n nn n n n C C C C C ++++++=, 0213n n n n C C C C ++=++∴012knn n n n nC C C C C ++++++0213()()n n n n C C C C =+++++022()2n n n C C =++=∴021222nn n nnnC C C -+++==. 3、略.习题1.3 A 组(P36)1、(1)011222(1)(1)(1)(1)n n n r n rr nn n n n n n C P C P P C P P C P P C P ---+-+-++-++-;(2)0122222nn n nnn n n n C C C C ++++. 2、(1)9965432(9368412612684a a a a a b a a a b =+++2369a b ()27311357752222222172135701682241281283282x x x x x x x x ----=-+-+-+-.3、(1)552(1(122010x x +=++; (2)11114412222(23)(23)192432x x x x x x ---+--=+.4、(1)前4项分别是1,30x -,2420x ,33640x -; (2)91482099520T a b =-; (3)7924T =;(4)展开式的中间两项分别为8T ,9T ,其中78711815((6435T C x y =-=-87811915((6435T C x y =-=5、(1)含51x的项是第6项,它的系数是5510163()28C -=-; (2)常数项是第6项,5105561012()2522T C -=⋅-=-.6、(1)2221221()(1)r n r r r r n rr n n T C x C xx --+=-=- 6、(1)2221221()(1)r n r r r r n rr n n T C x C xx--+=-=- 由220n r -=得r n =,即21()n x x-的展开式中常数项是12(1)n r n nT C +=-(2)!(1)!!nn n n =- 12345(21)2(1)!!nn nn n ⋅⋅⋅⋅⋅⋅-⋅=-…[135(21)][2462](1)!!n n n n n ⋅⋅⋅⋅-⋅⋅⋅⋅=-……[135(21)]2!(1)!!n nn n n n ⋅⋅⋅⋅-⋅⋅=-…135(21)(2)!nn n ⋅⋅⋅⋅-=-…(2)2(1)n x +的展开式共有21n +项,所以中间一项是12135(21)(2)!n nn n n n T C x x n +⋅⋅⋅⋅-==…7、略.8、展开式的第4项与第8项的二项式系数分别是3n C 与7n C ,由37n n n C C -=,得37n =-,即10n =.所以,这两个二项式系数分别是310C 与710C ,即120.习题1.3 B 组(P37)1、(1)∵1122221(1)111n n n n n n n n n n n n C n C n C n C n ----+-=++++++- 1122222n n n n nn n n C n C n C n n ---=+++++2213242(1)n n n n nn n n n C n C n C ----=+++++∴(1)1n n +-能被2n 整除; (2)∵1010991(1001)1-=--1019288291010101010010010010010011C C C C =-⋅+⋅++⋅-⋅+- 1019288210101010010010010010100C C C =-⋅+⋅++⋅-⨯ 1711521381010101000(101010101)C C C =-⋅+⋅++⋅-∴10991-能被1000整除.2、由0112211(21)222(1)2(1)n n n n n n n nnn n n n C C C C C -----=⋅-⋅+⋅++-⋅⋅+-,得112211222(1)2(1)1n n n n n n nn n C C C -----⋅+⋅++-⋅⋅+-=.第一章 复习参考题A 组(P40)1、(1)2n ;说明:这里的“一件事情”是“得到展开式中的一项”. 由于项的形式是i j a b ,而,i j 都有n 种取法. (2)3276525C C ⋅=;(3)1545480A A ⋅=,或2454480A A ⋅=;说明:第一种方法是先考虑有限制的这名歌手的出场位置,第二种方法是先考虑有限制的两个位置.(4)45C ;说明:因为足球票无座,所以与顺序无关,是组合问题. (5)53;说明:对于每一名同学来说,有3种讲座选择,而且允许5名同学听同一个讲座,因此是一个“有重复排列”问题,可以用分步乘法原理解答.(6)54;说明:对角线的条数等于连接正十二边形中任意两个顶点的线段的条数212C ,减去其中的正十二边形的边12条:21212111212542C ⨯-=-=.(7)第1n +项.说明:展开式共有21n +项,且各系数与相应的二项式系数相同.2、(1)1234566666661956A A A A A A +++++=;说明:只要数字是1,2,3,4,5,6中的,而且数字是不重复的一位数、二位数、三位数、四位数、五位数和六位数都符合要求.(2)552240A =.说明:只有首位数是6和5的六位数才符合要求. 3、(1)3856C =; (2)1234555530C C C C +++=.4、468898C C +=. 说明:所请的人的地位没有差异,所以是组合问题. 按照“其中两位同学是否都请”为标准分为两类.5、(1)2(1)2n n n C -=; 说明:任意两条直线都有交点,而且交点各不相同. (2)2(1)2n n n C -=. 说明:任意两个平面都有一条交线,而且交线互不相同.6、(1)59764446024C =; (2)23397442320C C ⋅=; (3)2332397397446976C C C C ⋅+⋅=.7、34533453103680A A A A ⋅⋅⋅=.说明:由于不同类型的书不能分开,所以可以将它们看成一个整体,相当于是3个元素的全排列. 但同类书之间可以交换顺序,所以可以分步对它们进行全排列.8、(1)226x -;说明:第三项是含2x 的项,其系数是22112244553(23)(2)26C C C C ⋅+⋅-⨯+--.(2)18118(9)(rr r r T C x -+=,由题意有1802rr --= 解得12r =,1318564T =;(3)由题意得98102n n n C C C =+,即2!!!9!(9)!8!(8)!10!(10)!n n n n n n ⋅=+---化简得2373220n n -+=,解得14n =,23n =;(4)解法1:设1r T +'是10(1)x -展开式的第1r +项,由题意知,所求展开式中4x 的系数为41T +',31T +'与21T +'的系数之和. 444110()T C x +'=-,333110()T C x +'=-,222110()T C x +'=-,因此,4x 的系数432101010135C C C =-+=. 解法2:原式39(1)(1)x x =-- 3223344999(1)(19)x x C x C x C x =--+-++因此,4x 的系数499135C =+=.9、5555559(561)9+=-+5515454555556565619C C =-⋅++⋅-+551545455555656568C C =-⋅++⋅+由于551545455555656568C C -⋅++⋅+中各项都能被8整除,因此55559+也能被8整除.第一章 复习参考题B 组(P41)1、(1)121121n n n C C -++==,即1(1)212n n +⋅=,解得6n =; (2)1144244224192A A A ⋅⋅=⨯⨯=;说明:先排有特殊要求的,再排其他的. (3)433333⨯⨯⨯=,34444⨯⨯=;说明:根据映射定义,只要集合A 中任意一个元素在集合B可以相同,所以是“有重复排列”问题.(4)2426106500000A ⨯=; (5)481258C -=; 说明:在从正方体的8个顶点中任取4个的所有种数48C 中, 排除四点共面的12种情况,即正方体表面上的6种四点共面的情况,以及如右图中ABC D ''这样的四点共面的其他 6种情况,因此三棱锥的个数为481258C -=(6)1或1-.说明:令1x =,这时(12)n x -的值就是展开式中各项系数的和,其值是1,(12)(1)1n n n n -⎧-=-=⎨⎩是奇数,是偶数2、(1)先从1,3,5中选1个数放在末位,有13A 种情况;再从除0以外的4个数中选1个数放在首位,有14A 种情况;然后将剩余的数进行全排列,有44A 种情况. 所以能组成的六位奇数个数为114344288A A A ⋅⋅=. (2)解法1:由0,1,2,3,4,5组成的所有没有重复数字的正整数的个数是1555A A ⋅,其中不大于201345的正整数的个数,当首位数字是2时,只有201345这1个;当首位数字是1时,有55A 个. 因此,所求的正整数的个数是155555(1)479A A A ⋅-+=.解法2:由0,1,2,3,4,5组成的没有重复数字的正整数中,大于201345的数分为以下几种情况:前4位数字为2013,只有201354,个数为1;同理,前3位数字为201,个数为1222A A ⋅;前2位数字为20,个数为1333A A ⋅;首位数字为2,个数为1444A A ⋅;首位数字为3,4,5中的一个,个数为1535A A ⋅;根据分类计数原理,所求的正整数的个数是12131415223344351479A A A A A A A A +⋅+⋅+⋅+⋅=.3、(1)分别从两组平行线中各取两条平行线,便可构成一个平行四边形,所以可以构成的平行四边形个数为221(1)(1)4m n C mn m n ⋅=--; (2)分别从三组平行平面中各取两个平行平面,便可构成一个平行六面体,所以可以构成的平行六面体个数为2221(1)(1)(1)8m n l C C C mnl m n l ⋅⋅=---. 4、(1)先排不能放在最后的那道工序,有14A 种排法;再排其余的4道工序,有44A 种排法. 根据分步乘法计数原理,排列加工顺序的方法共有144496A A ⋅=(种);(2)先排不能放在最前和最后的那两道工序,有23A 种排法;再排其余的3道工序,有33A 种排法,根据分步乘法计数原理,排列加工顺序的方法共有233336A A ⋅=(种).5、解法1:由等比数列求和公式得33342(1)(1)(1)(1)(1)n n x x x x x x+++-+++++++=, 上述等式右边分子的两个二项式中含2x 项的系数分别是33n C +,33C ,因此它们的差23333(611)6n n n n C C +++-=,就是所求展开式中含2x 项的系数. 解法2:原式中含2x 项的系数分别是23C ,24C ,…,22n C +,因此它们的和就是所求展开式中含2x 项的系数. 与复习参考题B 组第2题同理,可得22223334233(611)6n n n n n C C C C C +++++++=-= 第二章 随机变量及其分布2.1离散型随机变量及其分布列练习(P45)1、(1)能用离散型随机变量表示. 可能的取值为2,3,4,5,6,7,8,9,10,11,12.(2)能用离散型随机变量表示. 可能的取值为0,1,2,3,4,5. (3)不能用离散型随机变量表示.说明:本题的目的是检验学生是否理解离散型随机变量的含义. 在(3)中,实际值与规定值之差可能的取值是在0附近的实数,既不是有限个值,也不是可数个值.2、可以举的例子很多,这里给出几个例子:例1 某公共汽车站一分钟内等车的人数;例2 某城市一年内下雨的天数;例3 一位跳水运动员在比赛时所得的分数; 例4 某人的手机在1天内接收到电话的次数.说明:本题希望学生能观察生活中的随机现象,知道哪些量是随机变量,哪些随机变量又是离散型随机变量.练习(P49)1说明:这是一个两点分布的例子,投中看作试验成功,没投中看作试验失败. 通过这样的例子可以使学生理解两点分布是一个很常用的概率模型,实际中大量存在. 虽然离散型随机变量的分布列可以用解析式的形式表示,但当分布列中的各个概率是以数值的形式给出时,通常用列表的方式表示分布列更为方便. 2、抛掷一枚质地均匀的硬币两次,其全部可能的结果为{正正,正反,反正,反反}. 正面向上次数X 是一个离散型随机变量,1(0)({})0.254P X P ====反反 2(1)({}{})0.54P X P ====正反反正 1(2)({})0.25P X P ====正正 因此X 的分布列为说明:这个离散型随机变量虽然简单,但却是帮助学生理解随机变量含义的一个很好的例子. 试验的全部可能的结果为{正正,正反,反正,反反},随机量X 的取值范围为{0,1,2},对应关系为正正→2 正反→1 反正→1 反反→0在这个例子中,对应于1的试验结果有两个,即“正反”和“反正”,因此用随机变量X 不能表示随机事件{正反}. 这说明对于一个具体的随机变量而言,有时它不能表示所有的随机事件.可以通过让学生们分析下面的推理过程存在的问题,进一步巩固古典概型的知识. 如果把X 所有取值看成是全体基本事件,即{0,1,2}Ω=.根据古典概型计算概率的公式有 1(1)({1})3P X P ===. 这与解答的结果相矛盾. 原因是这里的概率模型不是古典概型,因此上面式中的最后一个等号不成立. 详细解释下:虽然Ω中只含有3个基本事件,但是出现这3个基本事件不是等可能的,因此不能用古典概型计算概率的公式来计算事件发生的概率.3、设抽出的5张牌中包含A 牌的张数为X ,则X 服从超几何分布,其分布列为 5448552()i i C C P X i C -==,i =0,1,2,3,4. 因此抽出的5张牌中至少3张A 的概率为(3)(3)(4)0.002P X P X P X ≥==+=≈.说明:从52张牌任意取出5张,这5张牌中包含A 的个数X 是一个离散型随机变量. 把52张牌看成是52件产品,把牌A 看成次品,则X 就成为从含有四件次品的52件产品中任意抽取5件中的次品数,因此X 服从超几何分布.本题的目的是让学生熟悉超几何分布模型,体会超几何分布在不同问题背景下的表现形式. 当让本题也可以用古典概型去解决,但不如直接用超几何分布简单. 另外,在解题中分布列是用解析式表达的,优点是书写简单,一目了然.4、两点分布的例子:掷一枚质地均匀的硬币出现正面的次数X 服从两点分布;射击一次命中目标的次数服从两点分布.超几何分布的例子:假设某鱼池中仅有鲤鱼和鲑鱼两种鱼,其中鲤鱼200条,鲑鱼40条,从鱼池中任意取出5条鱼,这5条鱼包含鲑鱼的条数X 服从超几何分布.说明:通过让学生举例子的方式,帮助学生理解这两个概率模型.习题2.1 A 组(P49)1、(1)能用离散型随机变量表示.设能遇到的红灯个数为X ,它可能的取值为0,1,2,3,4,5.事件{X =0}表示5个路口遇到的都不是红灯;事件{X =1}表示5个路口其中有1个路口遇到红灯,其他4个路口都不是红灯;事件{X =2}表示5个路口其中有2个路口遇到红灯,其他3个路口都不是红灯;事件{X =3}表示5个路口其中有3个路口遇到红灯,剩下2个路口都不是红灯;事件{X =4}表示5个路口其中有4个路口遇到红灯,另外1个路口都不是红灯;事件{X =5}表示5个路口全部都遇到红灯.(2)能用离散型随机变量表示.定义 12345X ⎧⎪⎪⎪=⎨⎪⎪⎪⎩,成绩不及格,成绩及格,成绩中,成绩良,成绩优则X 是一个离散型随机变量,可能的取值为1,2,3,4,5.事件{X =1}表示该同学取得的成绩为不及格;事件{X =2}表示该同学取得的成绩为及格;事件{X =3}表示该同学取得的成绩为中;事件{X =4}表示该同学取得的成绩为良;事件{X =5}表示该同学取得的成绩为优.说明:本题是考查学生是否理解离散型随机变量的含义. 在(2)中,需要学生建立一个对应关系,因为随机变量的取值一定是实数,但这个对应关系不是唯一的,只要是从五个等级到实数的意义映射即可.2、某同学跑1 km 所用时间X 不是一个离散型随机变量. 如果我们只关心该同学是否能够取得优秀成绩,可以定义如下的随机变量:01km 4min 11km 4minY >⎧=⎨≤⎩,跑所用的时间,跑所用的时间 它是离散型随机变量,且仅取两个值:0或1.事件{1}Y =表示该同学跑1 km 所用时间小于等于4 min ,能够取得优秀成绩;事件{0}Y =表示该同学跑1 km 所用时间大于4 min ,不能够取得优秀成绩.说明:考查学生在一个随机现象中能否根据关心的问题不同定义不同的随机变量,以简化问题的解答. 可以与教科书中电灯泡的寿命的例子对比,基本思想是一致的.3、一般不能. 比如掷一枚质地均匀的硬币两次,用随机变量X 表示出现正面的次数,则不能用随机变量X 表示随机事件{第1次出现正面且第2次出现反面}和{第1次出现反面且第2次出现正面}. 因为{X =1}={第1次出现正面且第2次出现反面}∪{第1次出现反面且第2次出现正面},所以这两个事件不能分别用随机变量X 表示.说明:一个随机变量是与一个事件域相对应的,一个事件域一般是由部分事件组成,但要满足一定的条件. 对离散型随机变量,如果它取某个值是由几个随机变量组成,则这几个随机事件就不能用随机变量表示,比如从一批产品中依次取出几个产品,用X 表示取出的产品中次品的个数,这时我们不能用X 表示随机事件{第i 次取出次品,其他均为合格品}.4、不正确,因为取所有值的概率和不等于1.说明:考查学生对分布列的两个条件的理解,每个概率不小于0,其和等于1,即 (1)0i p ≥,1,2,,i n =; (2)11ni i p ==∑.5、射击成绩优秀可以用事件{X ≥8}表示,因此射击优秀的概率为P {X ≥8}=(8)(9)(10)0.280.290.220.79P X P X P X =+=+==++=说明:本题知识点是用随机变量表示随机事件,并通过分布列计算随机事件的概率.6、用X 表示该班被选中的人数,则X 服从超几何分布,其分布列为104261030()i i C C P X i C -==, i =0,1,2,3,4. 该班恰有2名同学被选到的概率为 2842610304!26!1902!2!8!18!(2)0.31230!60910!20!C C P X C ⨯⨯⨯====≈⨯. 说明:本题与49页练习的第3题类似,希望学生在不同背景下能看出超几何分布模型.习题2.1 B 组(P49)1、(1)设随机抽出的3篇课文中该同学能背诵的 篇数为X ,则X 是一个离散型随机变量,它可能的取值为0,1,2,3,且X 服从超几何分布,分布列为即(2112(2)(2)(3)0.667263P X P X P X ≥==+==+==. 说明:本题是为了让学生熟悉超几何分布模型,并能用该模型解决实际问题.2、用X 表示所购买彩票上与选出的7个基本号码相同的号码的个数,则X 服从超几何分布,其分布列为 7729736()i i C C P X i C -==, i =0,1,2,3,4,5,6,7. 至少中三等奖的概率为52617072972972977736363697(5)0.00192752C C C C C C P X C C C ≥=++=≈. 说明:与上题类似同样是用超几何分布解决实际问题,从此题的结算结果可以看出至少中三等奖的概率近似为1/1000.2.2二项分布及其应用练习(P54)1、设第1次抽到A 的事件为B ,第2次抽到A 的事件为C ,则第1次和第2次都抽到A 的事件为BC .解法1:在第1次抽到A 的条件下,扑克牌中仅剩下51张牌,其中有3张A ,所以在第1次抽到A 的条件下第2次也抽到A 的概率为3()51P C B =. 解法2:在第1次抽到A 的条件下第2次也抽到A 的概率为()433()()45151n BC P C B n B ⨯===⨯. 解法3:在第1次抽到A 的条件下第2次也抽到A 的概率为43()35251()451()515251P BC P C B P B ⨯⨯===⨯⨯. 说明:解法1是利用缩小基本事件范围的方法计算条件概率,即分析在第1次抽到A 的条件下第2次抽取一张牌的随机试验的所有可能结果,利用古典概型计算概率的公式直接得到结果. 解法2实际上是在原来的基本事件范围内通过事件的计数来计算条件概率. 第3种方法是利用条件概率的定义来计算. 这里可以让学生体会从不同角度求解条件概率的特点.2、设第1次抽出次品的时间为B ,第2次抽出正品的事件为C ,则第1次抽出次品且第2次抽出正品的事件为BC .解法1:在第1次抽出次品的条件下,剩下的99件产品中有4件次品,所以在第1次抽出次品的条件下第2次抽出正品的概率为95()99P C B =. 解法2:在第1次抽出次品的条件下第2次抽出正品的概率为()59595()()59999n BC P C B n B ⨯===⨯. 解法3:在第1次抽出次品的条件下第2次抽出正品的概率为595()9510099()599()9910099P BC P C B P B ⨯⨯===⨯⨯. 说明:与上题类似,可以用不同方法计算条件概率.3、例1 箱中3张奖券中只有1张能中奖,现分别由3人无放回地任意抽取,在已知第一个人抽到奖券的条件下,第二个人抽到奖券的概率或第三个人抽到奖券的概率,均为条件概率,它们都是0.例2 某班有45名同学,其中20名男生,25名女生,依次从全班同学中任选两名同学代表班级参加知识竞赛,在第1名同学是女生的条件下,第2名同学也是女生的概率.说明:这样的例子很多,学生举例的过程可以帮助学生理解条件概率的含义. 练习(P55)1、利用古典概型计算的公式,可以求得()0.5P A =,()0.5P B =,()0.5P C =,()0.25P AB =,()0.25P BC =,()0.25P AC =,可以验证()()()P AB P A P B =,()()()P BC P B P C =,()()()P AC P A P C =.所以根据事件相互独立的定义,有事件A 与B 相互独立,事件B 与C 相互独立,事件A 与C 相互独立.说明:本题中事件A 与B 相互独立比较显然,因为抛掷的两枚硬币之间是互不影响的. 但事件B 与C 相互独立,事件A 与C 相互独立不显然,需要利用定义验证, 从该习题可以看出,事件之间是否独立有时根据实际含义就可做出判断,但有时仅根据实际含义是不能判断,需要用独立性的定义判断.2、(1)先摸出1个白球不放回的条件下,口袋中剩下3个球,其中仅有1个白球,所以在先摸出1个白球不放回的条件下,再摸出1个白球的概率是1/3.(2)先摸出1个白球后放回的条件下,口袋中仍然有4个球,其中有2个白球,所以在先摸出1个白球后放回的条件下,再摸出1个白球的概率是1/2.说明:此题的目的是希望学生体会有放回摸球与无放回摸球的区别,在有放回摸球中第2次摸到白球的概率不受第1次摸球结果的影响,而在无放回摸球中第2次摸到白球的概率受第1次摸球结果的影响.3、设在元旦期间甲地降雨的事件为A ,乙地降雨的事件为B .(1)甲、乙两地都降雨的事件为AB ,所以甲、乙两地都降雨的概率为()()()0.20.30.06P AB P A P B ==⨯= (2)甲、乙两地都不降雨的事件为AB ,所以甲、乙两地都不降雨的概率为 ()()()0.80.70.56P AB P A P B ==⨯= (3)其中至少一个地方降雨的事件为()()()AB AB AB ,由于事件AB ,AB 和AB 两两互斥,根据概率加法公式和相互独立事件的定义,其中至少一个地方降雨的概率为()()()0.060.20.70.80.30.44P AB P AB P AB ++=+⨯+⨯=.说明:与例3类似,利用事件独立性和概率的性质计算事件的概率,需要学生复习《数学3(必修)》中学过的概率性质.4、因为()()A AB AB =,而事件AB 与事件AB 互斥,利用概率的性质得到()()()P A P AB P AB =+所以()()()P AB P A P AB =-.又因为事件A 与B 相互独立.故 ()()()()()(1())()()P AB P A P A P B P A P B P A P B =-=-=..类似可证明A 与B ,A 与B .。
人教版高中数学必修2-3知识点第一章计数原理1.1分类加法计数与分步乘法计数分类加法计数原理:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法。
分类要做到“不重不漏”。
分步乘法计数原理:完成一件事需要两个步骤。
做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法。
分步要做到“步骤完整”。
n元集合A={a1,a2⋯,a n}的不同子集有2n个。
1.2排列与组合1.2.1排列一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列(arrangement)。
从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用符号表示。
排列数公式:n个元素的全排列数规定:0!=11.2.2组合一般地,从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合(combination)。
从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号或表示。
组合数公式:∴规定:组合数的性质:(“构建组合意义”——“殊途同归”)1.3二项式定理1.3.1二项式定理(binomial theorem)*注意二项展开式某一项的系数与这一项的二项式系数是两个不同的概念。
1.3.2“杨辉三角”与二项式系数的性质*表现形式的变化有时能帮助我们发现某些规律!(1)对称性(2)当n 是偶数时,共有奇数项,中间的一项取得最大值;当n 是奇数时,共有偶数项,中间的两项,同时取得最大值。
(3)各二项式系数的和为(4)二项式展开式中,奇数项二项式系数之和等于偶数项二项式系数之和:(5)一般地,第二章随机变量及其分布2.1离散型随机变量及其分布(n ∈N *)其中各项的系数(k ∈{0,1,2,⋯,n})叫做二项式系数(binomial coefficient);2.1.1离散型随机变量随着试验结果变化而变化的变量称为随机变量(random variable)。
【高考调研】高中数学(人教a版)选修2-3:第一章-计数原理+单元测试题x第一章综合测试题一、选择题1.设东、西、南、北四面通往山顶的路各有?2、3、3、4?条路,只从一面上山,而从任意一面下山的走法最多,应( )A.从东边上山C.从南边上山B.从西边上山D.从北边上山2.若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为?y=x2,值域为{1,4}的“同族函数”共有( )A.7?个B.8?个?C.9?个D.10?个3.5?名学生相约第二天去春游,本着自愿的原则,规定任何人可以“去”或“不去”,则第二天可能出现的不同情况的种数为( )2A.C5 B.25C.52 D.A2524.6?个人分乘两辆不同的汽车,每辆车最多坐?4?人,则不同的乘车方法数为( )A.40 B.50 C.60 D.705.在航天员进行的一项太空实验中,先后要实施?6?个程序,其中程序 A?只能出现在第一步或最后一步,程序?B?和?C?实施时必须相邻,请问实验顺序的编排方法共有( )A.24?种B.48?种C.96?种D.144?种6.有甲、乙、丙三项任务,甲需?2?人承担,乙、丙各需?1?人承担,从?10?人中选派?4?人承担这三项任务,不同的选法有( )A.2?520 B.2?025 C.1?260 D.5?0408?10.已知?x-x展开式中常数项为?1120,其中实数8?10.已知?x-x展开式中常数项为?1120,其中实数?a?是常数,则展在第?3?道上,货车?B?不能停在第?1?道上,则?5?列火车的停车方法共有 ( )A.78?种B.72?种C.120?种D.96?种8.已知(1+x)n=a0+a1x+a2x2+…+anxn,若?a0+a1+a2+…+an =16,则自然数?n?等于( )A.6 B.5 C.4 D.39.6?个人排队,其中甲、乙、丙?3?人两两不相邻的排法有( )A.30?种B.144?种?C.5?种D.4?种? a?? ?开式中各项系数的和是( )A.28?B.38?C.1?或?38 D.1?或?2811.有?A、B、C、D、E、F?共?6?个集装箱,准备用甲、乙、丙三辆卡车运送,每台卡车一次运两个,若卡车甲不能运?A?箱,卡车乙不能运B?箱,此外无其他任何限制;要把这?6?个集装箱分配给这?3?台卡车运送,则不同的分配方案的种数为( )A.168 B.84 C.56 D.4212.从?2?名女教师和?5?名男教师中选出三位教师参加?20xx?年高考某考场的监考工作.要求一女教师在室内流动监考,另外两位教师固定在室内监考,问不同的安排方案种数为( )A.30 B.180?C.630 D.1?08013.已知(x+2)n?的展开式中共有?5?项,则?n=________,展开式中的常数项为________.(用数字作答)14.5?个人排成一排,要求甲、乙两人之间至少有一人,则不同的排法有____种.15.已知(x+1)6(ax-1)2?的展开式中含?x3?项的系数是?20,则?a?的值等于________.16.用数字?2,3?组成四位数,且数字?2,3?至少都出现一次,这样的四位数共有________个.(用数字作答)17.某书店有?11?种杂志,2?元?1?本的?8?种,1?元?1?本的?3?种,小张用10?元钱买杂志(每种至多买一本,10?元钱刚好用完),求不同的买法有多少种(用数字作答).18.4?个相同的红球和?6?个相同的白球放入袋中,现从袋中取出?4?个球;若取出的红球个数不少于白球个数,则有多少种不同的取法?9(12?分)从?1?到?6?的六个数字中取两个偶数和两个奇数组成没有重复数字的四位数.试问:(1)能组成多少个不同的四位数?(2)四位数中,两个偶数排在一起的有几个?(3)两个偶数不相邻的四位数有几个?(所有结果均用数值表示)20?已知(1+2?x)n?的展开式中,某一项的系数恰好是它的前一项系数5的?2?倍,而且是它的后一项系数的6,试求展开式中二项式系数最大的项.21?某单位有三个科室,为实现减负增效,每科室抽调2?人,去参加再就业培训,培训后这?6?人中有?2?人返回原单位,但不回到原科室工作,且每科室至多安排?1?人,问共有多少种不同的安排方法.22.10?件不同厂生产的同类产品:(1)在商品评选会上,有?2?件商品不能参加评选,要选出?4?件商品,并排定选出的?4?件商品的名次,有多少种不同的选法?(2)若要选?6?件商品放在不同的位置上陈列,且必须将获金质奖章的两件商品放上,有多少种不同的布置方法?1,D2,由题意,问题的关键在于确定函数定义域的个数:第一步,先确定函数值?1?的原象:因为?y=x2,当?y=1?时,x=1?或?x=-1,为此有三种情况:即{1},{-1},{1,-1};第二步,确定函数值?4?的原象,因为?y=4?时,x=2?或?x=-2,为此也有三种情况:{2},{-2},{2,-2}.由分步计数原理,得到:3×3=9?个.选?C.3,B,4B44 22 85C?当?A?出现在第一步时,再排?A,B,C?以外的三个程序,有?A33种,A?与?A,B44 22 8成?4?个可以排列程序?B、C?的空档,此时共有?A33A1A2种排法;当?A?出现在最后一步时的排法与此相同,故共有?2A33A1A2=96?种编排方法.6A?先从?10?人中选出?2?人承担甲任务有?C10种选法,再从剩下的?8?人中选出2?人分别承担乙、丙任务,有?A28种选法,由分步乘法计数原理共有?C10A2=2?520?种不同的选法.故选?A.7不考虑不能停靠的车道,5?辆车共有?5!=120?种停法.A?停在?3?道上的停法:4!=24(种);B?种停在?1?道上的停法:4!=24(种);A、B?分别停在?3?道、1?道上的停法:3!=6(种).故符合题意的停法:120-24-24+6=78(种).故选?A.令?x=1,得?2n=16,则?n=4.故选?C.4分两步完成:第一步,其余?3?人排列有?A33种排法;第二步,从?4?个可插空档中任选?3?个给甲、乙、丙?3?人4站有?A34种插法.由分步乘法计数原理可知,一共有?A3A3=144?种.B r 810,CTr+1=(-a)rC8x8-2r,令?8-2r=0 r=4.∴T5=C4(-a)4=1?120,∴a=±2.当?a=2?时,和为?1;当?ar 8时,和为?38.4 4 4 311,D 分两类:①甲运?B?箱,有?C1·?C2·?C2种;②甲不运?B?箱,有?C2·?C4 4 4 34 4 4 3∴不同的分配方案共有?C1·?C2·?C2+C2·?C2·?C24 4 4 3,A?分两类进行:第一类,在两名女教师中选出一名,从?5?名男教师中选出两名,且该女教师只能在室2 5 5内流动监考,有?C1·?C2种选法;第二类,选两名女教师和一名男教师有?C2·2 5 55 2 2 5 5 2教师中选一名作为室内流动监考人员,即有?C2·?C1·?C1共?10?种选法,∴共有?C1·?C2+C2·?5 2 2 5 5 2A13.4 16 ∵展开式共有?5?项,∴n=4,常数项为?C4424=16.414. 甲、乙两人之间至少有一人,就是甲、乙两人不相邻,则有?A3·?A2=72(种).15. 0?或?5 16,14?因4为四位数的每个数位上都有两种可能性,其中四个数字全是?2?或?3?的情况不合题意,所以适合题意的四位数有?24-2=14?个.17.解析分两类:第一类,买?5?本?2?元的有?C58?种;第二类,买?4?本?2?元的和?2?本?1?元的有?C48×C23种.故共有?C58+C48×C23=266?种不同的买法种数.18.解析依题意知,取出有?4?个球中至少有?2?个红球,可分三类:①取出的全是红球有?C44种方法;②20.解析? 由题意知展开式中第?k+1?项系数是第?k?项系数的?2?倍,是第?k+2?项系数的,6 4 6取出的?4?个球中有20.解析? 由题意知展开式中第?k+1?项系数是第?k?项系数的?2?倍,是第?k+2?项系数的,6 4 64 6 4 6理,共有?C4+C3·?C1+C2·?C4 6 4 6319.解析(1)四位数共有?C23C2A4=216?个.333 3(2)上述四位数中,偶数排在一起的有?C23C2A3A2=10833 3(3)两个偶数不相邻的四位数有?C23C2A2A2=108?个.56∴Ckn2k=6Ckn+1·?2k+ ∴?Ckn2k=6Ckn+1·?2k+1, ? k k5解得?n=7.∴展开式中二项式系数最大两项是:37T4=C37(2?x)3=280x2与?T5=C4(2?x)4=560x2.721. 6?人中有?2?人返回原单位,可分两类:2(1)2?人来自同科室:C13C1=6?种;23 2 2 3 2 2(2)2?人来自不同科室:C2C1C1,然后?2?人分别回到科室,但不回原科室有?3?种方法,故有?3 2 2 3 2 236?种.由分类计数原理共有?6+36=42?种方法22.解析(1)10?件商品,除去不能参加评选的?2?件商品,剩下?8?件,从中选出?4?件进行排列,有?A48=1?680(或8C4·?A4)(种).8(2)分步完成.先将获金质奖章的两件商品布置在?6?个位置中的两个位置上,有?A26种方法,再从剩下的8 6 8 88?件商品中选出?4?件,布置在剩下的?4?个位置上,有?A4种方法,共有?A2·?A4=50?400(或?C4·?8 6 8 8。
第一章计数原理1.3 二项式定理1.3.1 二项式定理A级基础巩固一、选择题1.化简多项式(2x+1)5-5(2x+1)4+10(2x+1)3-10(2x+1)2+5(2x+1)-1的结果是()A.(2x+2)5B.2x5C.(2x-1)5D.32x5解析:原式=[(2x+1)-1]5=(2x)5=32x5.答案:D2.在⎝⎛⎭⎪⎪⎫x+13x24的展开式中,x的幂指数是整数的项共有() A.3项B.4项C.5项D.6项解析:T r+1=C r24x24-r2·x-r3=Cr24·x12-56r,则r分别取0,6,12,18,24时,x的幂指数为整数,所以x的幂指数有5项是整数项.答案:C3.若⎝⎛⎭⎪⎪⎫x-123xn的展开式中第四项为常数项,则n=() A.4 B.5C .6D .7解析:由二项展开式可得T r +1=C r n (x )n -r ⎝ ⎛⎭⎪⎪⎫-123x r =(-1)r 2-r C rn x n -r 2·x -r 3,从而T 4=T 3+1=(-1)32-3C 3n x n -52,由题意可知n -52=0,n =5.答案:B4.在(1-x 3)(1+x )10的展开式中,x 5的系数是( ) A .-297 B .-252 C .297D .207解析:(1-x 3)(1+x )10=(1+x )10-x 3(x +1)10展开式中含x 5的项的系数为:C 510-C 210=207.答案:D5.若C 1n x +C 2n x 2+…+C n n x n能被7整除,则x ,n 的值可能为( ) A .x =5,n =5 B .x =5,n =4 C .x =4,n =4D .x =4,n =3解析:C 1n x +C 2n x 2+…+C n n x n =(1+x )n -1,检验得B 正确.答案:B 二、填空题6.(2016·北京卷)在(1-2x )6的展开式中,x 2的系数为________(用数字作答).解析:T r +1=C r 6·16-r ·(-2x )r =(-2)r C r 6·x r ,令r =2, 得T 3=(-2)2C 26x 2=60x 2.故x 2的系数为60.答案:607.⎝⎛⎭⎪⎪⎫2-13x 6的展开式中的第四项是________.解析:T 4=C 3623⎝ ⎛⎭⎪⎪⎫-13x 3=-160x . 答案:-160x8.如果⎝⎛⎭⎪⎫3x 2+1x n 的展开式中,x 2项为第三项,则自然数n =________.解析:T r +1=C rn (3x 2)n -r⎝ ⎛⎭⎪⎫1x r =C r n x2n -5r3,由题意知r =2时,2n -5r3=2,所以n =8. 答案:8 三、解答题9.在⎝⎛⎭⎪⎫2x -1x 6的展开式中,求:(1)第3项的二项式系数及系数; (2)含x 2的项及项数.解:(1)第3项的二项式系数为C 26=15,又T 3=C 26(2x )4⎝⎛⎭⎪⎫-1x 2=24C 26x ,所以第3项的系数为24C 26=240.(2)T k +1=C k n (2x )6-k ⎝⎛⎭⎪⎫-1x k=(-1)k 26-k C r 6x 3-k , 令3-k =2,得k =1.所以含x 2的项为第2项,且T 2=-192x 2.10.在二项式⎝ ⎛⎭⎪⎫3x -123x n的展开式中,前三项系数的绝对值成等差数列.(1)求展开式的第四项; (2)求展开式的常数项. 解:T r +1=C r n (3x )n -r ⎝ ⎛⎭⎪⎪⎫-123x r =⎝ ⎛⎭⎪⎫-12r C r n x 13n -23r . 由前三项系数的绝对值成等差数列, 得C 0n +⎝⎛⎭⎪⎫-122C 2n =2×12C 1n , 解得n =8或n =1(舍去). (1)展开式的第四项为:T 4=⎝ ⎛⎭⎪⎫-123C 38x 23=-73x 2.(2)当83-23r =0,即r =4时,常数项为⎝ ⎛⎭⎪⎫-124C 48=358.B 级 能力提升1.如果⎝ ⎛⎭⎪⎫3x 2-2x 3n的展开式中含有非零常数项,则正整数n 的最小值为( )A .3B .5C .6D .10解析:⎝ ⎛⎭⎪⎫3x 2-2x 3n展开式的通项表达式为C r n (3x 2)n -r ·⎝ ⎛⎭⎪⎫-2x 3r=C r n 3n -r(-2)r x 2n -5r ,若C r n 3n -r(-2)r x 2n -5r 为非零常数项,必有2n -5r =0,得n =52r ,所以正整数n 的最小值为5.答案:B2.设二项式⎝⎛⎭⎪⎫x -a x 6(a >0)的展开式中,x 3的系数为A ,常数项为B ,若B =4A ,则a 的值是________.解析:A =C 26(-a )2,B =C 46(-a )4,由B =4A 知,C 26(-a )2=C 46(-a )4,解得a =2(舍去a =-2). 答案:23.如果f (x )=(1+x )m +(1+x )n (m ,n ∈N *)中,x 项的系数为19,求f (x )中x 2项系数的最小值.解:x 项的系数为C 1m +C 1n =19,即m +n =19,当m ,n 都不为1时,x 2项的系数为C 2m +C 2n =m (m -1)2+(19-m )(18-m )2=m 2-19m +171=⎝ ⎛⎭⎪⎫m -1922+171-1924,因为m ∈N *,所以当m =9或10时,x 2项的系数最小,为81.当m 为1或n 为1时,x 2项的系数为C 218=153>81,所以f (x )中x 2项系数的最小值为81.。
高中数学选修2-3第一章计数原理章末检测题(满分150分,时间120分钟)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.从n 个人中选出2个,分别从事两项不同的工作,若选派方案的种数为72,则n 的值为()A .6B .8C .9D .122.一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为()A .3×3!B .3×(3!)3C .(3!)4D .9!3.从10名大学毕业生中选3人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为()A .85B .56C .49D .284.从集合{0,1,2}到集合{1,2,3,4}的不同映射的个数是()A .81B .64C .24D .125.(2012·重庆卷)82x x 的展开式中常数项为()A.3516B.358C.354D .1056.若(2x +3)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则(a 0+a 2+a 4)2-(a 1+a 3)2的值为()A .2B .-1C .0D .17.某次文艺汇演,要将A 、B 、C 、D 、E 、F 这六个不同节目编排成节目单,如下表:序号123456节目如果A 、B 两个节目相邻且都不排在3号位置,那么节目单上不同的排序方式有()A .144种B .192种C .96种D .72种8.(x +1)4(x -1)5的展开式中x 4的系数为()A .-40B .10C .40D .459.已知集合A ={5},B ={1,2},C ={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为()A .33B .34C .35D .3610.如图,要给①,②,③,④四块区域分别涂上五种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同颜色,则不同的涂色方法种数为()A .320B .160C .96D .6011.6位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序共有()A .240种B .360种C .480种D .720种12.绍兴臭豆腐闻名全国,一外地学者来绍兴旅游,买了两串臭豆腐,每串3颗(如图).规定:每串臭豆腐只能自左向右一颗一颗地吃,且两串可以自由交替吃.请问:该学者将这两串臭豆腐吃完,不同的吃法有()A .6种B .12种C .20种D .40种二、填空题(本大题共4个小题,每小题4分,共16分.请把正确的答案填写在题中的横线上)13.84x x 展开式中含x 的整数次幂的项的系数之和为___________________.(用数字作答)14.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有________种.15.已知(1+x )6(1-2x )5=a 0+a 1x +a 2x 2+…+a 11x 11,那么a 1+a 2+a 3+…+a 11=________.16.如图是由12个小正方形组成的3×4矩形网格,一质点沿网格线从点A 到点B 的不同路径之中,最短路径有________条.三、解答题(本大题共6个小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)有0,1,2,3,4,5共六个数字.(1)能组成多少个没有重复数字的四位偶数;(2)能组成多少个没有重复数字且为5的倍数的五位数.18.(本小题满分12分)已知3241nx x 展开式中的倒数第三项的系数为45,求:(1)含x 3的项;(2)系数最大的项.19.(本小题满分12分)(1)一条长椅上有9个座位,3个人坐,若相邻2人之间至少有2个空椅子,共有几种不同的坐法?(2)一条长椅上有7个座位,4个人坐,要求3个空位中,恰有2个空位相邻,共有多少种不同的坐法?20.(本小题满分12分)设a >0,若(1+ax 12)n 的展开式中含x 2项的系数等于含x 项的系数的9倍,且展开式中第3项等于135x ,那么a 等于多少?21.(本小题满分13分)带有编号1、2、3、4、5的五个球.(1)全部投入4个不同的盒子里;(2)放进不同的4个盒子里,每盒一个;(3)将其中的4个球投入4个盒子里的一个(另一个球不投入);(4)全部投入4个不同的盒子里,没有空盒;各有多少种不同的放法?22.(本小题满分13分)杨辉是中国南宋末年的一位杰出的数学家、教育家.杨辉三角是杨辉的一项重要研究成果,它的许多性质与组合数的性质有关,杨辉三角中蕴藏了许多优美的规律.如图是一个11阶杨辉三角:(1)求第20行中从左到右的第4个数;(2)若第n行中从左到右第14与第15个数的比为23,求n的值;(3)求n阶(包括0阶)杨辉三角的所有数的和.参考答案一、选择题1.【解析】∵A2n=72,∴n=9.【答案】C2.【解析】把一家三口看作一个排列,然后再排列这3家,所以有(3!)4种.【答案】C3.【解析】分两类计算,C22C17+C12C27=49,故选C.【答案】C4.【解析】利用可重复的排列求幂法可得答案为43=64(个).【答案】B5.【解析】T r+1=C r8(x)8-r2rx=12rC r8x4-r2-r2=12rC r8x4-r,令4-r=0,则r=4,∴常数项为T5=124C48=116×70=358.【答案】B6.【解析】(a0+a2+a4)2-(a1+a3)2=(a0+a1+a2+a3+a4)(a0-a1+a2-a3+a4)=(2+3)4×(-2+3)4=1.【答案】D7.【解析】第一步,将C、D、E、F全排,共有A44种排法,产生5个空,第二步,将A、B捆绑有2种方法,第三步,将A、B插入除2号空位和3号空位之外的空位,有C13种,所以一共有144种方法.【答案】A8.【解析】(x+1)4(x-1)5=(x-1)5(x2+4x x+6x+4x+1),则x4的系数为C35×(-1)3+C25×6+C15×(-1)=45.【答案】D9.【解析】①所得空间直角坐标系中的点的坐标中不含1的有C12A33=12个;②所得空间直角坐标系中的点的坐标中含有1个1的有C12A33+A33=18个;③所得空间直角坐标系中的点的坐标中含有2个1的有C13=3个.故共有符合条件的点的个数为12+18+3=33,故选A.【答案】A10.【解析】不同的涂色方法种数为5×4×4×4=320种.【答案】A11.【解析】利用分步计数原理求解.第一步先排甲,共有A 14种不同的排法;第二步再排其他人,共有A 55种不同的排法,因此不同的演讲次序共有A 14·A 55=480(种).【答案】C12.【解析】方法一(树形图):如图所示,先吃A 的情况,共有10种,如果先吃D ,情况相同,所以不同的吃法有20种.方法二:依题意,本题属定序问题,所以有A 66A 33·A 33=20种.【答案】C 二、填空题13.【解析】∵384418841rrr r r r T Cx C xx --+==,当r =0,4,8时为含x 的整数次幂的项,所以展开式中含x 的整数次幂的项的系数之和为C 08+C 48+C 88=72.【答案】7214.【解析】满足题设的取法分三类:①四个奇数相加,其和为偶数,在5个奇数中任取4个,有C 45=5(种);②两个奇数加两个偶数其和为偶数,在5个奇数中任取2个,再在4个偶数中任取2个,有C 25·C 24=60(种);③四个偶数相加,其和为偶数,4个偶数的取法有1种.所以满足条件的取法共有5+60+1=66(种).【答案】6615.【解析】令x =0,得a 0=1;令x =1,得a 0+a 1+a 2+…+a 11=-64;∴a 1+a 2+…+a 11=-65.【答案】-6516.【解析】把质点沿网格线从点A 到点B 的最短路径分为七步,其中四步向右,三步向下,不同走法的区别在于哪三步向下,因此,本题的结论是:C 37=35.【答案】35三、解答题17.【解析】(1)符合要求的四位偶数可分为三类:第一类,0在个位时有A 35个;第二类,2在个位时有A 14A 24个;第三类,4在个位时有A 14A 24个.由分类加法计数原理知,共有四位偶数A 35+A 14A 24+A 14A 24=156个.(2)五位数中5的倍数可分为两类:第一类,个位上的数字是0的五位数有A 45个,第二类,个位上的数字是5的五位数有A 14A 34个.故满足条件的五位数有A 45+A 14A 34=216(个).18.【解析】(1)由题设知C n -2n =45,即C 2n =45,∴n =10.则21011130341211010r r r r r r T C x x C x ---+⎛⎫⎛⎫=⋅= ⎪ ⎪⎝⎭⎝⎭,令11r -3012=3,得r =6,含x 3的项为T 7=C 610x 3=C 410x 3=210x 3.(2)系数最大的项为中间项,即T 6=C 510x55-3012=252x 2512.19.【解析】(1)先将3人(用×表示)与4张空椅子(用□表示)排列如图(×□□×□□×),这时共占据了7张椅子,还有2张空椅子,一是分开插入,如图中箭头所示(↓×□↓□×□↓□×↓),从4个空当中选2个插入,有C 24种插法;二是2张同时插入,有C 14种插法,再考虑3人可交换有A 33种方法.所以,共有A 33(C 24+C 14)=60(种).(2)可先让4人坐在4个位置上,有A 44种排法,再让2个“元素”(一个是两个作为一个整体的空位,另一个是单独的空位)插入4个人形成的5个“空当”之间,有A 25种插法,所以所求的坐法为A 44·A 25=480(种).20.【解析】T r +1=C r n (ax 12)r =C r n a r x r 2,∴4422229135nnn C a C a C a x x⎧=⎪⎨=⎪⎩,∴()()()()()22123914!211352n n n n n n a n n a ⎧----=⎪⎪⎨-⎪=⎪⎩,即()()()22231081270n n a n n a ⎧--=⎪⎨-=⎪⎩,∴(n -2)(n -3)n (n -1)=25.∴3n 2-23n +30=0.解得n =53(舍去)或n =6,a2=27030=9,又a>0,∴a=3.21.【解析】(1)由分步计数原理知,五个球全部投入4个不同的盒子里共有45种放法.(2)由排列数公式知,五个不同的球放进不同的4个盒子里(每盒一个)共有A45种放法.(3)将其中的4个球投入一个盒子里共有C45C14种放法.(4)全部投入4个不同的盒子里(没有空盒)共有C25A44种不同的放法.22.【解析】(1)C320=1140.(2)C13nC14n=23⇒14n-13=23,解得n=34.(3)1+2+22+…+2n=2n+1-1.。
第一章:计数原理一、两个计数原理3、两个计数原理的区别二、排列与组合1、排列:一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
2、排列数:从n 个不同元素中取出m(m ≤n)个元素的所有不同排列的个数叫做从n 个不同元素中取出m 个元素的排列数。
用符号 表示.3、排列数公式: 其中4、组合:一般地,从n 个不同元素中取出m(m ≤n)个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合。
5、组合数:从n 个不同元素中取出m(m ≤n)个元素的所有不同组合的个数叫做从n 个不同元素中取出m 个元素的组合数。
用符号 表示。
6、组合数公式:其中注意:判断一个具体问题是否为组合问题,关键是看取出的元素是否与顺序有关,有关就是排列,无关便是组合.判断时要弄清楚“事件是什么”.7、性质: m n A m n A ()()()()!!121m n n m n n n n A m n -=+---=Λ.,,*n m N m n ≤∈并且m n C ()()()()!!!!121m n m n m m n n n n C mn -=+---=Λ.,,*n m N m n ≤∈并且mn n m nC C -=mn m n m n C C C 11+-=+三、二项式定理如果在二项式定理中,设a=1,b=x ,则可以得到公式:2、性质:02413512n n n n n n nC C C C C C -=+++=+++=L L 奇数项二项式系数和偶数项二项式系数和:注意事项:相邻问题,常用“捆绑法”不相邻问题,常用“插空法”巩固训练:1、有4个男生和3个女生排成一排,按下列要求各有多少种不同排法:(1)男甲排在正中间;(2)男甲不在排头,女乙不在排尾;(3)三个女生排在一起;(4)三个女生两两都不相邻;2、某城新建的一条道路上有12只路灯,为了节省用电而不影响正常的照明,可以熄灭其中三盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,可以熄灭的方法共有()3、(1)今有10件不同奖品,从中选6件分成三份, 二份各1件,另一份4件, 有多少种分法?(2) 今有10件不同奖品,从中选6件分给甲乙丙三人,每人二件有多少种分法?4、从6个学校中选出30名学生参加数学竞赛,每校至少有1人,这样有几种选法?5、将8个学生干部的培训指标分配给5个不同的班级,每班至少分到1个名额,共有多少种不同的分配方法?6、对某种产品的6件不同的正品和4件不同的次品,一一进行测试,至区分出所有次品为止,若所有次品恰好在第5次测试时全部发现,则这样的测试方法有种可能?7、3 名医生和 6 名护士被分配到 3 所学校为学生体检,每校分配 1 名医生和 2 名护士,不同的分配方法共有多少种?8、如图,要给地图A 、B 、C 、D 四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?9、求值与化简:1055845635425215222221)1(⋅+⋅+⋅+⋅+⋅+C C C C C 求值:。
第一章 计数原理章末检测试卷(一)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.若A 5m =2A 3m ,则m 的值为( ) A .5 B .3 C .6D .7考点 排列数公式 题点 利用排列数公式计算 答案 A解析 依题意得m !(m -5)!=2×m !(m -3)!,化简得(m -3)·(m -4)=2, 解得m =2或m =5, 又m ≥5,∴m =5,故选A.2.一次考试中,要求考生从试卷上的9个题目中选6个进行解答,其中至少包含前5个题目中的3个,则考生答题的不同选法的种数是( ) A .40 B .74 C .84D .200考点 组合的应用题点 有限制条件的组合问题 答案 B解析 分三类:第一类,从前5个题目中选3个,后4个题目中选3个;第二类,从前5个题目中选4个,后4个题目中选2个;第三类,从前5个题目中选5个,后4个题目中选1个,由分类加法计数原理得C 35C 34+C 45C 24+C 55C 14=74.3.若实数a =2-2,则a 10-2C 110a 9+22C 210a 8-…+210等于( ) A .32 B .-32 C .1 024 D .512考点 二项式定理题点 逆用二项式定理求和、化简 答案 A解析 由二项式定理,得a 10-2C 110a 9+22C 210a 8-…+210=C 010(-2)0a 10+C 110(-2)1a 9+C 210(-2)2a 8+…+C 1010(-2)10=(a -2)10=(-2)10=25=32.4.分配4名水暖工去3户不同的居民家里检查暖气管道.要求4名水暖工都分配出去,且每户居民家都要有人去检查,那么分配的方案共有( ) A .A 34种 B .A 33A 13种 C .C 24A 33种D .C 14C 13A 33种考点 排列组合综合问题 题点 分组分配问题 答案 C解析 先将4名水暖工选出2人分成一组,然后将三组水暖工分配到3户不同的居民家,故有C 24A 33种. 5.(x +2)2(1-x )5中x 7的系数与常数项之差的绝对值为( ) A .5 B .3 C .2D .0考点 二项展开式中的特定项问题 题点 求多项展开式中特定项的系数 答案 A解析 常数项为C 22·22·C 05=4,x 7系数为C 02·C 55·(-1)5=-1,因此x 7系数与常数项之差的绝对值为5. 6.计划展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一列,要求同一品种的画必须连在一起,并且水彩画不放在两端,那么不同的排列方式的种数为( ) A .A 44A 55 B .A 23A 44A 35 C .C 13A 44A 55 D .A 22A 44A 55考点 排列的应用题点 元素“相邻”与“不相邻”问题 答案 D解析 先把每个品种的画看成一个整体,而水彩画只能放在中间,则油画与国画放在两端有A 22种放法,再考虑4幅油画本身排放有A 44种方法,5幅国画本身排放有A 55种方法,故不同的陈列法有A 22A 44A 55种. 7.设(2-x )5=a 0+a 1x +a 2x 2+…+a 5x 5,那么a 0+a 2+a 4a 1+a 3的值为( )A .-122121B .-6160C .-244241D .-1考点 展开式中系数的和问题 题点 二项展开式中系数的和问题 答案 B解析 令x =1,可得a 0+a 1+a 2+a 3+a 4+a 5=1,再令x =-1可得a 0-a 1+a 2-a 3+a 4-a 5=35.两式相加除以2求得a 0+a 2+a 4=122,两式相减除以2可得a 1+a 3+a 5=-121.又由条件可知a 5=-1,故a 0+a 2+a 4a 1+a 3=-6160.8.圆周上有8个等分圆周的点,以这些等分点为顶点的锐角三角形或钝角三角形的个数是( )A .16B .24C .32D .48考点 组合的应用题点 与几何有关的组合问题 答案 C解析 圆周上8个等分点共可构成4条直径,而直径所对的圆周角是直角,又每条直径对应着6个直角三角形,共有C 14C 16=24(个)直角三角形,斜三角形的个数为C 38-C 14C 16=32(个).9.将18个参加青少年科技创新大赛的名额分配给3所学校,要求每所学校至少有1个名额且各校分配的名额互不相等,则不同的分配方法种数为( ) A .96 B .114 C .128D .136考点 排列组合综合问题 题点 分组分配问题 答案 B解析 由题意可得每所学校至少有1个名额的分配方法种数为C 217=136,分配名额相等有22种(可以逐个数),则满足题意的方法有136-22=114(种).10.已知二项式⎝⎛⎭⎪⎪⎫x +13x n 的展开式中第4项为常数项,则1+(1-x )2+(1-x )3+…+(1-x )n 中x 2项的系数为( ) A .-19 B .19 C .-20D .20考点 二项式定理的应用 题点 二项式定理的简单应用 答案 D解析 ⎝ ⎛⎭⎪⎪⎫x +13x n 的展开式T k +1=C k n (x )n -k ⎝ ⎛⎭⎪⎪⎫13x k =C k n 526n k x -,由题意知n 2-5×36=0,得n =5,则所求式子中x 2项的系数为C 22+C 23+C 24+C 25=1+3+6+10=20.故选D.11.12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排(这样就成为前排6人,后排6人),若其他人的相对顺序不变,则不同调整方法的总数是( ) A .C 28C 23 B .C 28A 66 C .C 28A 26D .C 28A 25考点 排列组合综合问题 题点 排列与组合的综合应用 答案 C解析 先从后排中抽出2人有C 28种方法,再插空,由题意知,先从4人中的5个空中插入1人,有5种方法,余下1人则要插入前排5人的空中,有6种方法,即为A 26,共有C 28A 26种调整方法.12.已知等差数列{a n }的通项公式为a n =3n -5,则(1+x )5+(1+x )6+(1+x )7的展开式中含x 4项的系数是该数列的( ) A .第9项 B .第10项 C .第19项D .第20项考点 二项式定理的应用题点 二项式定理与其他知识点的综合应用 答案 D解析 ∵(1+x )5+(1+x )6+(1+x )7的展开式中含x 4项的系数是C 45+C 46+C 47=5+15+35=55,∴由3n -5=55得n =20.故选D.二、填空题(本大题共4小题,每小题5分,共20分)13.男、女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有________人.考点 组合数公式 题点 组合数公式的应用 答案 2或3解析 设女生有x 人,则C 28-x C 1x =30, 即(8-x )(7-x )2·x =30,解得x =2或3.14.学校公园计划在小路的一侧种植丹桂、金桂、银桂、四季桂4棵桂花树,垂乳银杏、金带银杏2棵银杏树,要求2棵银杏树必须相邻,则不同的种植方法共有________种. 考点 排列的应用题点 元素“相邻”与“不相邻”问题 答案 240解析 分两步完成:第一步,将2棵银杏树看成一个元素,考虑其顺序,有A 22种种植方法; 第二步,将银杏树与4棵桂花树全排列,有A 55种种植方法. 由分步乘法计数原理得,不同的种植方法共有A 22·A 55=240(种).15.(1+sin x )6的二项展开式中,二项式系数最大的一项的值为52,则x 在[0,2π]内的值为____.考点 二项式定理的应用题点 二项式定理与其他知识点的综合应用 答案π6或5π6解析 由题意,得T 4=C 36sin 3x =20sin 3x =52,∴sin x =12.∵x ∈[0,2π],∴x =π6或x =5π6.16.将A ,B ,C ,D 四个小球放入编号为1,2,3的三个盒子中,若每个盒子中至少放一个球且A ,B 不能放入同一个盒子中,则不同的放法有________种. 考点 两个计数原理的应用 题点 两个原理的综合应用 答案 30解析 先把A ,B 放入不同盒中,有3×2=6(种)放法,再放C ,D , 若C ,D 在同一盒中,只能是第3个盒,1种放法;若C ,D 在不同盒中,则必有一球在第3个盒中,另一球在A 或B 的盒中,有2×2=4(种)放法. 故共有6×(1+4)=30(种)放法. 三、解答题(本大题共6小题,共70分)17.(10分)已知A ={x |1<log 2x <3,x ∈N *},B ={x ||x -6|<3,x ∈N *}.试问:(1)从集合A 和B 中各取一个元素作直角坐标系中点的坐标,共可得到多少个不同的点?(2)从A ∪B 中取出三个不同的元素组成三位数,从左到右的数字要逐渐增大,这样的三位数有多少个? 考点 两个计数原理的应用 题点 两个原理的综合应用解 A ={3,4,5,6,7},B ={4,5,6,7,8}.(1)从A 中取一个数作为横坐标,从B 中取一个数作为纵坐标,有5×5=25(个),而8作为横坐标的情况有5种,3作为纵坐标的情况有4种,故共有5×5+5+4=34(个)不同的点. (2)A ∪B ={3,4,5,6,7,8},则这样的三位数共有C 36=20(个).18.(12分)已知(1+2x )n的展开式中,某一项的系数恰好是它的前一项系数的2倍,而且是它的后一项系数的56倍,试求展开式中二项式系数最大的项. 考点 二项式定理的应用 题点 二项式定理的简单应用 解 二项式的通项为T k +1=C kn(2k)2k x ,由题意知展开式中第k +1项系数是第k 项系数的2倍,是第k +2项系数的56倍,∴⎩⎪⎨⎪⎧C k n 2k=2C k -1n ·2k -1,C k n 2k =56C k +1n ·2k +1,解得n =7.∴展开式中二项式系数最大两项是T 4=C 37(2x )3=28032x 与T 5=C 47(2x )4=560x 2. 19.(12分)10件不同厂生产的同类产品:(1)在商品评选会上,有2件商品不能参加评选,要选出4件商品,并排定选出的4件商品的名次,有多少种不同的选法?(2)若要选6件商品放在不同的位置上陈列,且必须将获金质奖章的两件商品放上,有多少种不同的布置方法? 考点 排列组合综合问题 题点 排列与组合的综合应用解 (1)10件商品,除去不能参加评选的2件商品,剩下8件,从中选出4件进行排列,有A 48=1 680(或C 48·A 44)(种). (2)分步完成,先将获金质奖章的两件商品布置在6个位置中的两个位置上,有A 26种方法,再从剩下的8件商品中选出4件,布置在剩下的4个位置上,有A 48种方法,共有A 26·A 48=50 400(或C 48·A 66)(种).20.(12分)设⎝ ⎛⎭⎪⎫1+12x m =a 0+a 1x +a 2x 2+a 3x 3+…+a m x m,若a 0,a 1,a 2成等差数列.(1)求⎝ ⎛⎭⎪⎫1+12x m展开式的中间项;(2)求⎝ ⎛⎭⎪⎫1+12x m展开式中所有含x 的奇次幂的系数和.考点 二项式定理的应用 题点 二项式定理的简单应用解 (1)依题意a 0=1,a 1=m 2,a 2=C 2m ⎝ ⎛⎭⎪⎫122.由2a 1=a 0+a 2,求得m =8或m =1(应舍去),所以⎝ ⎛⎭⎪⎫1+12x m展开式的中间项是第五项,T 5=C 48⎝ ⎛⎭⎪⎫12x 4=358x 4. (2)因为⎝ ⎛⎭⎪⎫1+12x m =a 0+a 1x +a 2x 2+…+a m x m,即⎝⎛⎭⎪⎫1+12x 8=a 0+a 1x +a 2x 2+…+a 8x 8. 令x =1,则a 0+a 1+a 2+a 3+…+a 8=⎝ ⎛⎭⎪⎫328,令x =-1,则a 0-a 1+a 2-a 3+…+a 8=⎝ ⎛⎭⎪⎫128,所以a 1+a 3+a 5+a 7=38-129=20516,所以展开式中所有含x 的奇次幂的系数和为20516.21.(12分)把n 个正整数全排列后得到的数叫做“再生数”,“再生数”中最大的数叫做最大再生数,最小的数叫做最小再生数.(1)求1,2,3,4的再生数的个数,以及其中的最大再生数和最小再生数; (2)试求任意5个正整数(可相同)的再生数的个数. 考点 排列的应用 题点 数字的排列问题解 (1)1,2,3,4的再生数的个数为A 44=24,其中最大再生数为4 321,最小再生数为1 234. (2)需要考查5个数中相同数的个数. 若5个数各不相同,有A 55=120(个); 若有2个数相同,则有A 55A 22=60(个);若有3个数相同,则有A 55A 33=20(个);若有4个数相同,则有A 55A 44=5(个);若5个数全相同,则有1个.22.(12分)已知m ,n 是正整数,f (x )=(1+x )m +(1+x )n的展开式中x 的系数为7. (1)对于使f (x )的x 2的系数为最小的m ,n ,求出此时x 3的系数; (2)利用上述结果,求f (0.003)的近似值;(精确到0.01)(3)已知(1+2x )8展开式的二项式系数的最大值为a ,系数的最大值为b ,求b a. 考点 二项式定理的应用 题点 二项式定理的简单应用 解 (1)根据题意得C 1m +C 1n =7, 即m +n =7,①f (x )中的x 2的系数为C 2m +C 2n =m (m -1)2+n (n -1)2=m 2+n 2-m -n2.将①变形为n =7-m 代入上式得x 2的系数为m 2-7m +21=⎝ ⎛⎭⎪⎫m -722+354, 故当m =3或m =4时,x 2的系数的最小值为9. 当m =3,n =4时,x 3的系数为C 33+C 34=5;当m =4,n =3时,x 3的系数为C 34+C 33=5. (2)f (0.003)=(1+0.003)4+(1+0.003)3≈C 04+C 14×0.003+C 03+C 13×0.003≈2.02. (3)由题意可得a =C 48=70,再根据⎩⎪⎨⎪⎧C k8·2k≥C k +18·2k +1,C k8·2k ≥C k -18·2k -1,即⎩⎪⎨⎪⎧k ≥5,k ≤6,求得k =5或6,此时,b =7×28,∴b a =1285.。
人教A版高中数学目录必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3.1 函数与方程3.2 函数模型及其应用必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图 1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ)1.6 三角函数模型的简单应用第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换必修5第一章解三角形1.1正弦定理和余弦定理1.2应用举例1.3实习作业第二章数列2.1数列的概念与简单表示法2.2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列的前n项和第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域3.3.2简单的线性规划问题3.4基本不等式选修1-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆2.2双曲线2.3抛物线第三章导数及其应用3.1变化率与导数3.2导数的计算3.3导数在研究函数中的应用3.4生活中的优化问题举例选修1-2第一章统计案例1.1回归分析的基本思想及其初步应用1.2独立性检验的基本思想及其初步应用第二章推理与证明2.1 合情推理与演绎证明2.2 直接证明与间接证明第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算第四章框图4.1流程图4.2结构图选修2-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线第三章空间向量与立体几何3.1空间向量及其运算3.2立体几何中的向量方法选修2-2第一章导数及其应用1.1变化率与导数1.2导数的计算1.3导数在研究函数中的应用1.4生活中的优化问题举例1.5定积分的概念1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算选修2-3第一章计数原理1.1分类加法计数原理与分步乘法计数原理1.2排列与组合1.3二项式定理第二章随机变量及其分布2.1离散型随机变量及其分布列2.2二项分布及其应用2.3离散型随机变量的均值与方差2.4正态分布第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用选修3-1第一讲早期的算术与几何第二讲古希腊数学第三讲中国古代数学瑰宝第四讲平面解析几何的产生五讲微积分的诞生第六讲近代数学两巨星第七讲千古谜题第八讲对无穷的深入思考第九讲中国现代数学的开拓与发展选修3-2选修3-3第一讲从欧氏几何看球面第二讲球面上的距离和角第三讲球面上的基本图形第四讲球面三角形第五讲球面三角形的全等第六讲球面多边形与欧拉公式第七讲球面三角形的边角关系第八讲欧氏几何与非欧几何选修3-4第一讲平面图形的对称群第二讲代数学中的对称与抽象群的概念第三讲对称与群的故事选修4-1第一讲相似三角形的判定及有关性质第二讲直线与圆的位置关系第三讲圆锥曲线性质的探讨选修4-2第一讲线性变换与二阶矩阵第二讲变换的复合与二阶矩阵的乘法第三讲逆变换与逆矩阵第四讲变换的不变量与矩阵的特征向量选修4-3选修4-4第一讲坐标系第二讲参数方程选修4-5第一讲不等式和绝对值不等式第二讲证明不等式的基本方法第三讲柯西不等式与排序不等式第四讲数学归纳法证明不等式选修4-6第一讲整数的整除第二讲同余与同余方程第三讲一次不定方程第四讲数伦在密码中的应用选修4-7第一讲优选法第二讲试验设计初步选修4-8选修4-9第一讲风险与决策的基本概念第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介高中人教版(B)教材目录介绍必修一第一章集合1.1 集合与集合的表示方法1.2 集合之间的关系与运算第二章函数2.1 函数2.2 一次函数和二次函数2.3 函数的应用(Ⅰ)2.4 函数与方程第三章基本初等函数(Ⅰ)3.1 指数与指数函数3.2 对数与对数函数3.3 幂函数3.4 函数的应用(Ⅱ)必修二第一章立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系第二章平面解析几何初步2.1 平面真角坐标系中的基本公式 2.2 直线方程2.3 圆的方程2.4 空间直角坐标系必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.2 用样本估计总体2.3 变量的相关性第三章概率3.1 随机现象3.2 古典概型3.3 随机数的含义与应用3.4 概率的应用必修四第一章基本初等函(Ⅱ)1.1 任意角的概念与弧度制1.2 任意角的三角函数 1.3 三角函数的图象与性质第二章平面向量2.1 向量的线性运算2.2 向量的分解与向量的坐标运算2.3 平面向量的数量积2.4 向量的应用第三章三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化积必修五第一章解直角三角形1.1 正弦定理和余弦定理1.2 应用举例第二章数列2.1 数列2.2 等差数列2.3 等比数列第三章不等式3.1 不等关系与不等式3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单线性规划问题选修1-1第一章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 导数3.2 导数的运算3.3 导数的应用选修1-2第一章统计案例第二章推理与证明第三章数系的扩充与复数的引入第四章框图选修4-5第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.2 排序不等式2.3 平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3.2 用数学归纳法证明不等式,贝努利不等式。
第一章 计数原理 章末检测
一、选择题
1.若A 3m =6C 4
m ,则m 等于 ( ) A .9 B .8 C .7 D .6
2.男、女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有 ( ) A .2人或3人 B .3人或4人 C .3人 D .4人
3.若100件产品中有6件次品,现从中任取3件产品,至少有1件次品的不同取法的种数是 ( )
A .C 16C 294
B .
C 16C 299 C .C 3100-C 394
D .C 3100-C 294
4.已知集合M ={1,-2,3},N ={-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,则在直角坐标系中,第一、第二象限不同点的个数是( ) A .18 B .16 C .14 D .10 5.三名教师教六个班的数学,则每人教两个班,分配方案共有 ( ) A .18种 B .24种 C .45种 D .90种
6.在(1-x )n =a 0+a 1x +a 2x 2+a 3x 3+…+a n x n 中,若2a 2+a n -5=0,则自然数n 的值是( )
A .7
B .8
C .9
D .10
7.某人有3个不同的电子邮箱,他要发5个电子邮件,发送的方法的种数为
A .8
B .15
C .243
D .125 8.设(2-x )6=a 0+a 1x +a 2x 2+…+a 6x 6,则|a 1|+|a 2|+…+|a 6|的值是 ( ) A .665 B .729 C .728 D .63
9.将A ,B ,C ,D 四个小球放入编号为1,2,3的三个盒子中,若每个盒子中至少放一个球且A ,B 不能放入同一个盒子中,则不同的放法有 ( ) A .15种 B .18种 C .30种 D .36种
10.(x 2+2)⎝ ⎛⎭
⎪⎫
1x 2-15的展开式的常数项是 ( )
A .-3
B .-2
C .2
D .3
11.12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调
整到前排(这样就成为前排6人,后排6人),若其他人的相对顺序不变,则不同调整方法的总数是( )
A .C 28A 23
B .
C 28A 66 C .C 28A 2
6
D .C 28A 2
5 12.设n ∈N *,则7C 1n +72C 2n +…+7n C n
n 除以9的余数为
( ) A .0 B .2 C .7
D .0或7
二、填空题
13.⎝
⎛
⎭⎪⎫2x -1x 6的二项展开式中的常数项为______.(用数字作答)
14.8次投篮中,投中3次,其中恰有2次连续命中的情形有________种. 15.5个人排成一排,要求甲、乙两人之间至少有一人,则不同的排法有________种.
16.某药品研究所研制了5种消炎药a 1,a 2,a 3,a 4,a 5,4种退烧药b 1,b 2,b 3,
b 4,现从中取出两种消炎药和一种退烧药同时使用进行疗效实验,但又知a 1,a 2两种药必须同时使用,且a 3,b 4两种药不能同时使用,则不同的实验方案有________种.
三、解答题
17.已知⎝ ⎛⎭⎪⎫41x +3x 2n
展开式中的倒数第三项的系数为45,求: (1)含x 3的项; (2)系数最大的项.
18.利用二项式定理证明:49n +16n -1(n ∈N *)能被16整除.
19.已知(1-2x +3x 2)7=a 0+a 1x +a 2x 2+…+a 13x 13+a 14x 14.
(1)求a 0+a 1+a 2+…+a 14; (2)求a 1+a 3+a 5+…+a 13.
20.一个口袋内有4个不同的红球,6个不同的白球,
(1)从中任取4个球,红球的个数不比白球少的取法有多少种?
(2)若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?
21.已知(1-2x)n=a0+a1x+a2x2+…+a n x n(n∈N*),且a2=60.
(1)求n的值;
(2)求-a1
2+
a2
22-
a3
23+…+(-1)
n
a n
2n的值.
22.用0,1,2,3,4,5这六个数字,完成下面三个小题.
(1)若数字允许重复,可以组成多少个不同的五位偶数;
(2)若数字不允许重复,可以组成多少个能被5整除的且百位数字不是3的不同的五位数;
(3)若直线方程ax+by=0中的a、b可以从已知的六个数字中任取2个不同的
数字,则直线方程表示的不同直线共有多少条?
答案
1.C 2.A 3.C 4.C 5.D 6.B 7.C 8.A 9.C 10.D 11.C 12.D 13.-160 14.30 15.72 16.14
17.解 (1)由题意可知C n -2
n =45,
即C 2n =45, ∴n =10,
T r +1=C r 10⎝ ⎛⎭⎪⎫x -1410-r ⎝ ⎛⎭⎪⎫x 23r =C r 10x 11r -3012,令11r -3012
=3,
得r =6,
所以含x 3的项为T 7=C 610x 3=C 410x 3=210x 3
. (2)系数最大的项为中间项即
T 6=C 510
x 55-3012=252x 25
12
. 18.证明 49n +16n -1=(48+1)n +16n -1
=C 0n ·48n +C 1n ·48n -1+…+C n -1
n ·48+C n n +16n -1
=16(C 0n ·3×48n -1+C 1n ·3×48n -2+…+C n -1
n ·3+n ). ∴49n +16n -1能被16整除. 19.解 (1)令x =1,
则a 0+a 1+a 2+…+a 14=27=128.① (2)令x =-1,
则a 0-a 1+a 2-a 3+…-a 13+a 14=67.② ①-②得2(a 1+a 3+…+a 13)=27-67=-279 808. ∴a 1+a 3+a 5+…+a 13=-139 904. 20.解 (1)将取出4个球分成三类情况:
①取4个红球,没有白球,有C 4
4种;
②取3个红球1个白球,有C 34C 1
6种;
③取2个红球2个白球,有C 24C 2
6种,
故有C 44+C 34C 16+C 24C 2
6=115种. (2)设取x 个红球,y 个白球, 则⎩⎨⎧
x +y =5,0≤x ≤4,2x +y ≥7,0≤y ≤6,
故⎩⎨⎧ x =2y =3或⎩⎨⎧ x =3y =2或⎩⎨⎧
x =4,y =1. 因此,符合题意的取法种数有 C 24C 36+C 34C 26+C 44C 16=186(种).
21.解 (1)因为T 3=C 2n (-2x )2=a 2x 2
,
所以a 2=C 2n (-2)2
=60,
化简可得n (n -1)=30,且n ∈N *, 解得n =6.
(2)T r +1=C r 6(-2x )r =a r x r
, 所以a r =C r 6(-2)r ,
所以(-1)r a r
2r =C r 6, -a 12+a 222-a 323+…+(-1)n a n 2
n =C 16+C 26+…+C 66=26-1=63.
22.解 (1)5×6×6×6×3=3 240(个).
(2)当首位数字是5,而末位数字是0时,有A 13A 2
3=18(个);
当首位数字是3,而末位数字是0或5时,有A 12A 3
4=48(个);
当首位数字是1或2或4,而末位数字是0或5时,有A 13A 12A 13A 2
3=108(个);
故共有18+48+108=174(个). (3)a ,b 中有一个取0时,有2条;
a ,
b 都不取0时,有A 2
5=20(条); a =1,b =2与a =2,b =4重复, a =2,b =1,与a =4,b =2重复. 故共有2+20-2=20(条).。