九年级下册数学第一章综合测试卷
- 格式:doc
- 大小:158.00 KB
- 文档页数:6
北师大版九年级数学下册第一章测试题一、选择题(每小题3分;共30分)1、在Rt △ABC 中;∠C=90°;AC=3;BC=4;那么cosB 的值是( )A.4/5B.3/5C.3/4D.4/32、在Rt △ABC 中;如果各边长度都扩大为原来的2倍;那么锐角A 的正弦值( )A.扩大2倍B.缩小2倍C.扩大4倍D.没有变化3、等腰三角形的底角为30°;底边长为 )A .4B .C .2D .4、如图1;在菱形ABCD 中;∠ABC =60°;AC =4;则BD 长为( )A .B .C .D .85、在△ABC 中;∠C =90°;下列式子一定能成立的是( ) A .sin a c B = B .cos a b B = C .tan c a B =D .tan a b A =6、△ABC 中;∠A ;∠B 均为锐角;且有2|tan 2sin 0B A +=(;则△ABC 是( )A .直角(不等腰)三角形B .等腰直角三角形C .等腰(不等边)三角形D .等边三角形 7、已知tan 1α=;那么2sin cos 2sin cos αααα-+的值等于( ) A .13 B .12C .1D .16 8、如图2;沿AC 方向开山修路;为了加快施工进度;要在小山的另一边同时施工.从AC 上的一点B ;取∠ABD =145°;BD =500米;∠D =55°;要使A ;C ;E 成一直线;那么开挖点E 离点D 的距离是( )A .500sin55°米B .500cos55°米C .500tan55°米D .500tan35°米9、如图3;在矩形ABCD 中;D E ⊥AC ;垂足为E ;设∠ADE =α;且cos α=35;AB =4; 则AD 的长为( )A .3B .163C .203D .16510、如图4;已知正方形ABCD 的边长为2;如果将线段BD 绕着点B 旋转后;点D 落在CB 的延长线上的D ′处;那么tan ∠BAD ′等于( )A .1BCD 二、填空题(每小题3分;共24分)。
湘教版九年级数学下第一章1.1~1.2综合检测作业[范围:1.1~1.2时间:40分钟分值:100分]一、选择题(每题3分,共24分)1.下列函数表达式中,为二次函数的是()A.y=B.y=3x+4C.y=(x+1)(x-2)-x2D.S=πr22.函数y=x2-4x+3的图象的顶点坐标是()A.(2,-1)B.(-2,1)C.(-2,-1)D.(2,1)3.如图1,抛物线的顶点是P(1,2),当函数y的值随自变量x的增大而减小时,x的取值范围是()图1A.x>2B.x<2C.x>1D.x<14.对于抛物线y=-(x+1)2+3,有下列结论:①开口向下;②对称轴为直线x=1;③顶点坐标为(-1,3);④当x>1时,y随x 的增大而减小.其中正确的有()A.1个B.2个C.3个D.4个5.若将抛物线y=x2+2x+3平移后得到抛物线y=x2,则下列平移方法正确的是()A.先向左平移1个单位,再向上平移2个单位B.先向左平移1个单位,再向下平移2个单位C.先向右平移1个单位,再向上平移2个单位D.先向右平移1个单位,再向下平移2个单位6.二次函数y=ax2+bx+c(a≠0)的图象上部分点的坐标(x,y)的对应值列表如下:x…-3 -2 -1 0 1 …y…-3 -2 -3 -6 -11 …则该函数图象的对称轴是()A.直线x=-3B.直线x=-2C.直线x=-1D.直线x=07.一次函数y=ax+b与反比例函数y=的图象如图2所示,则二次函数y=ax2+bx+c的大致图象是()图2 图38.已知二次函数y=ax2+bx+c的图象如图4所示,有下列结论:①ac<0;②b-2a<0;③b>0;④a-b+c<0.其中正确的是()图4A.①②B.①④C.②③D.②④二、填空题(每题4分,共32分)9.将二次函数y=x2-4x+5化成y=a(x-h)2+k的形式为.10.抛物线y=2x2-4的开口向,顶点坐标是.11.若二次函数y=-x2-4x+k的最大值是8,则k的值为.12.如图5所示,四个二次函数的图象分别对应函数①y=ax2;②y=bx2;③y=cx2;④y=dx2,则a,b,c,d的大小关系为.(用“>”连接)13.设矩形窗户的周长为6 m,则窗户的面积S(m2)与其中一边长x(m)之间的函数表达式是,自变量x 的取值范围是.图5 图614.二次函数y=ax2+bx+c的图象如图6所示,当x=2时,y的值为.15.已知二次函数y=x2+2mx+2,当x>2时,y随x的增大而增大,则实数m的取值范围是.16.如图7,已知抛物线y=ax2+bx+c与x轴交于A,B两点,顶点C的纵坐标为-2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论正确的是.(写出所有正确结论的序号)①b>0;②a-b+c<0;③阴影部分的面积为4;④若c=-1,则b2=4a.图7三、解答题(共44分)17.(10分)已知函数y=(m-3)是关于x的二次函数.(1)求满足条件的m的值;(2)当m为何值时,它的图象有最低点?此时当x为何值时,y随x的增大而增大?(3)当m为何值时,它的图象有最高点?此时当x为何值时,y随x的增大而减小?18.(10分)已知二次函数y=x2-2x-1.(1)求该二次函数图象的顶点坐标;(2)定义:对于二次函数y=px2+qx+r(p≠0),满足方程y=x的x的值叫作该二次函数的“不动点”,求证:二次函数y=x2-2x-1有两个不同的“不动点”.19.(12分)如图8,已知二次函数y=-x2+bx-6的图象与x轴交于点A(2,0),与y轴交于点B,对称轴与x轴交于点C,连接BA,BC,求△ABC的面积.图820.(12分)如图9,已知抛物线y=a(x-1)2-3与y轴交于点A(0,-2),顶点为B.(1)试确定a的值,并写出点B的坐标;(2)若一次函数的图象经过A,B两点,试写出一次函数的表达式;(3)若在x轴上存在一点P,使得△P AB的周长最小,求点P的坐标.图9参考答案1.D2.A3.C[解析] ∵抛物线的顶点是P(1,2),∴抛物线的对称轴为直线x=1.又∵抛物线的开口向下,∴函数y的值随自变量x的增大而减小时,x的取值范围是x>1.4.C[解析] ∵-<0,∴抛物线开口向下,①正确;抛物线y=-(x+1)2+3的对称轴为直线x=-1,∴②错误;抛物线的顶点坐标为(-1,3),∴③正确;当x>1时,图象呈下降趋势,y随x的增大而减小,∴④正确.5.D6.B[解析] ∵当x的值为-3和-1时y的值都是-3,∴该二次函数图象的对称轴为直线x=-2.7.A[解析] ∵双曲线y=经过第一、三象限,∴c>0,∴抛物线与y轴交于正半轴.∵直线y=ax+b经过第一、二、四象限,∴a<0,b>0,即->0,∴抛物线y=ax2+bx+c的开口向下,对称轴在y轴的右侧.故选A.8.A9.y=(x-2)2+1[解析] y=x2-4x+5=x2-4x+4+1=(x-2)2+1.10.上(0,-4)11.4[解析] 由题意,得=8,解得k=4.12.a>b>d>c[解析] 如图,因为直线x=1与四条抛物线的交点从上到下依次为(1,a),(1,b),(1,d),(1,c),所以a>b>d>c.13.S=-x2+3x0<x<3[解析] 由题意,可得S=x(3-x)=-x2+3x,自变量x的取值范围是0<x<3.14.2[解析] ∵抛物线的对称轴为直线x=1,∴当x=2和x=0时,y的值相等.∵当x=0时,y=2,∴当x=2时,y=2.故答案为2.15.m≥-2[解析] 该抛物线的对称轴为直线x=-=-=-m.∵a=1>0,∴抛物线开口向上,∴当x>-m时,y随x的增大而增大.又∵当x>2时,y随x的增大而增大,∴-m≤2,解得m≥-2.16.③④[解析] ∵抛物线开口向上,∴a>0.又∵对称轴为直线x=->0,∴b<0,∴结论①不正确;∵x=-1时,y>0,∴a-b+c>0,∴结论②不正确;∵抛物线向右平移了2个单位,∴平行四边形的底是2.∵二次函数y=ax2+bx+c的最小值是y=-2,∴平行四边形的高是2,∴阴影部分的面积是2×2=4,∴结论③正确;∵=-2,c=-1,∴b2=4a,∴结论④正确.综上,结论正确的是③④.17.解:(1)根据题意,得m-3≠0且m2-2m-6=2,解得m1=-2,m2=4.∴满足条件的m的值为-2或4.(2)当m-3>0时,图象有最低点,∴m的值为4.此时二次函数的表达式为y=x2.∴当x>0时,y随x的增大而增大.(3)当m-3<0时,图象有最高点,∴m的值为-2.此时二次函数的表达式为y=-5x2.∴当x>0时,y随x的增大而减小.18.解:(1)∵y=x2-2x-1=(x-1)2-2,∴该二次函数图象的顶点坐标为(1,-2).(2)证明:当y=x时,即x2-2x-1=x,整理得x2-3x-1=0.∵Δ=(-3)2-4×1×(-1)=13>0,∴方程x2-3x-1=0有两个不相等的实数根,即二次函数y=x2-2x-1有两个不同的“不动点”.19.解:将A(2,0)代入y=-x2+bx-6,得0=-2+2b-6,解得b=4,∴二次函数的表达式为y=-x2+4x-6.当x=0时,y=-6,∴点B的坐标为(0,-6).∵抛物线的对称轴为直线x=-=4,∴点C的坐标为(4,0),∴S△ABC=AC·OB=×(4-2)×6=6.20.解:(1)将A(0,-2)代入y=a(x-1)2-3,得-2=a-3,解得a=1,∴抛物线的函数表达式为y=(x-1)2-3,∴顶点B(1,-3).(2)设一次函数的表达式为y=kx+b(k≠0).将A(0,-2)和B(1,-3)分别代入y=kx+b,得解得∴一次函数的表达式为y=-x-2.(3)设点A关于x轴的对称点为C,则点C(0,2).连接CB,交x轴于点P,此时△P AB的周长最小.设直线CB的表达式为y=mx+n(m≠0).把C(0,2)和B(1,-3)分别代入y=mx+n,得解得∴直线CB的表达式为y=-5x+2.把y=0代入y=-5x+2,得x=,∴点P的坐标为,0.。
九年级数学下册第一章《二次函数》单元测试题-湘教版(含答案)一、单选题1.二次函数y=(x-3)2+1的最小值是( )A .3B .-3C .1D .-12.将二次函数 2(1)y x =- 的图象向左平移1个单位长度, 再向上平移2个单位后, 所得图象 的函数解析式是( )A .2(2)2y x =-+B .2(2)2y x =--C .22y x =-D .22y x =+3.抛物线y=2(x-1)2-2的对称轴是( ) A .直线 1x =- B .直线 1x = C .直线 2x = D .直线 2x =- 4.已知二次函数 223y x x =-++ ,当x≥2时,y 的取值范围是( )A .y≥3B .y≤3C .y >3D .y <35.如果抛物线 ()22y a x =+ 开口向下,那么 a 的取值范围为( )A .2a >B .2a <C .2a >-D .2a <-6.二次函数y=x 2-2x+2的图象顶点在第( )象限.A .一B .二C .三D .四7.在下列函数中,其图象与x 轴没有交点的是( )A .y=2xB .y=﹣3x+1C .y=x 2D .y= 1x8.如图,已知抛物线2y ax bx c =++的对称轴在y 轴右侧,抛物线与x 轴交于点()20A -,和点B ,与y 轴的负半轴交于点C ,且2OB OC =,则下列结论:①0a b c->;②241b ac -=;③14a =;④21cb =-.其中正确的有( )A .1个B .2个C .3个D .4个9.函数 2y ax 3ax 1(a 0)=++> 的图象上有三个点分别为 ()1A 3y -, , ()2B 1y -, ,31C y 2⎛⎫ ⎪⎝⎭, ,则 1y , 2y , 3y 的大小关系为( ) A .123y y y <<B .213y y y <<C .321y y y <<D .1y , 2y , 3y 的大小不确定10.已知a ,b 是抛物线y =(x ﹣c )(x ﹣c ﹣d )﹣3与x 轴交点的横坐标,a <b ,则|a ﹣c|+|c ﹣b|化简的结果是( )A .b ﹣aB .a ﹣bC .a+b ﹣2cD .2c ﹣a ﹣b二、填空题11.二次函数 ()2223y x =-+- 的对称轴是直线 .12.教练对小明推铅球的录像进行技术分析,发现铅球行进高度 ()m y 与水平距离 ()m x 之间的关系为 ()215312y x =--+ ,由此可知铅球推出的距离是 m . 13.二次函数()223y mx mx m =+--的图象如图所示,则m 的取值范围是 .14.如图,在△ABC 中,AB=AC=10,点D 是边BC 上一动点(不与B ,C 重合),△ADE=△B=α,DE 交AC 于点E ,且cosα= 45.下列结论: ①△ADE△△ACD ; ②当BD=6时,△ABD 与△DCE 全等;③△DCE 为直角三角形时,BD 为8; ④0<CE≤6.4.其中正确的结论是 .(把你认为正确结论的序号都填上)三、解答题15.如图,在△ABC 中,△B=90°,AB=12,BC=24,动点P 从点A 开始沿边AB 向终点B 以每秒2个单位长度的速度移动,动点Q 从点B 开始沿边BC 以每秒4个单位长度的速度向终点C 移动,如果点P 、Q 分别从点A 、B 同时出发,那么△PBQ 的面积S 随出发时间t (s )如何变化?写出函数关系式及t 的取值范围.16.在一块等腰直角三角形铁皮上截一块矩形铁皮,如图,已有的铁皮是等腰直角三角形ABC,它的底边AB长20厘米.要截得的矩形EFGD的边FG在AB上,顶点E、D分别在边CA、CB上,设EF的长为x厘米,矩形EFGD的面积为y平方厘米,试写出y关于x的函数解析式及定义域,并求当EF的长为4厘米时所截得的矩形的面积,17.在平面直角坐标系中,二次函数的图象经过A(-2,0),B(4,0),C(1,3)三点.求这个二次函数的解析式.18.如图所示,已知边长为4的正方形钢板有一个角锈蚀,其中AF=2,BF=1。
第一章 直角三角形的边角关系本卷贰O 贰贰年贰月捌日编写; 出题人:令狐学复;欧阳化语;令狐理总。
单元测试时间是:90分钟,满分是:100分一、选择题〔每一小题3分,一共30分,请把答案填入答卷相应的表格内〕1. 有一山坡程度方向前进了40米,就升高了20米,那么这个山坡的坡度是〔 〕A .1:2B .2:1C .D2. 假设A ∠为锐角,且1cos 3A =,那么〔 〕 A .0°< A ∠<30° B .30°<A ∠<45° C .45°<A ∠<60° D .60°<A ∠<90°3. 比拟tan 46,cos 29,sin 59︒︒︒的大小关系是〔 〕A .tan 46cos 29sin 59︒<︒<︒B .tan 46sin 59cos 29︒<︒<︒C .sin 59tan 46cos 29︒<︒<︒D .sin 59cos 29tan 46︒<︒<︒ 4. 在Rt ABC △中,90C ∠=°,假设1sin 2A =,那么A ∠的度数是〔 〕 A .60°B .45°C .30°D .无法确定5. 同一时刻,身高2.26m 的姚明在阳光下影长为1.13m ;小林浩在阳光下的影长为0.64m ,那么小林浩的身高为〔 〕6. 如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB 、CD 分别表示一楼、二楼地面的程度线,∠ABC =150°,BC 的长是8 m ,那么乘电梯从点B 到点C 上升的高度h 是〔 〕 Am B .4 m C. mD .8 mAB7. tan 45sin 452sin 30cos 45tan 30︒︒-︒︒+︒=〔 〕A .12B .22C .32D .338. 如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的程度间隔 为5米,那么这两树在坡面上的间隔 AB 为〔 〕A . αcos 5B . αcos 5C . αsin 5D .αsin 59. 将宽为2cm 的长方形纸条折叠成如下图的形状,那么折痕PQ 的长是〔 〕 A .233cm B .433cm C .5cm D .2cm 10.2tan 302tan 301tan 30︒-︒++︒=〔 〕A .233 B .2313- C .231- D .1 单元测试答卷班级___________学号_________ 姓名____________〔时间是:90分钟,满分是:100分〕一、选择题〔每一小题3分,一共30分,请把答案填入相应的表格内〕 题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题〔每空3分,一共30分〕 题号 11 12 13 14 15 答案题号16171819α5米AB60°P Q2cm答案11. 在Rt ABC △中,90C ∠=°,sinA=45,BC=20,那么ABC △的周长为__________ 12. 在Rt ABC △中,9032C AB BC ∠===°,,,那么cos A 的值是 .13. 如图,某游乐场内滑梯的滑板与地面所成的角∠A = 35°,滑梯的高度BC = 2米,那么滑板AB 的长约为_________米〔准确到0.1〕.14. 如图,小明从A 地沿北偏30向走1003m 到B 地,再从B 地向正南方向走200m 到C 地,此时小明离A 地 m .15. 如图,将以A 为直角顶点的等腰直角三角形ABC 沿直线BC 平移得到△C B A ''',使点B '与C 点重合,连结B A ',那么C B A ''∠tan 的值是 .16. 某校初三〔一〕班课外活动小组为了测得旗杆的高度,他们在离旗杆6米的A B 处的仰角为60°,如下图,那么旗杆的高度为 米.〔3 1.732≈,结果准确到0.1米〕17. 如图,在离水面高度为5米的岸上有人用绳子拉船靠岸,开场时绳子与水面的夹角为30°,此人以BCAAC (B ′)BA ′C ′ACDEB60°每秒0.5米收绳.问:未开场收绳子的时候,图中绳子BC 的长度是__________米;收绳8秒后船向岸边挪动了____________米?〔结果保存根号〕18. 小鹏学完解直角三角形知识后,给同桌小艳出了一道题:“如下图,把一张长方形卡片ABCD 放在每格宽度为12mm 的横格纸中,恰好四个顶点都在横格线上,α=36°,那么长方形卡片的周长为________.〞〔准确到1mm 〕19. 〔参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75〕20. 公园里有一块形如四边形ABCD 的草地,测得10BC CD ==米,120B C ∠=∠=°,45A ∠=°.那么这块草地的面积为__________.三、 解答题〔一共40分〕 21. 〔6分〕计算:22009(21)86sin 45(1)--+-+-°.CDABαl12mmDCBA22. 〔7分〕如图,AC 是我某大楼的高,在地面上B 点处测得楼顶A 的仰角为45º,沿BC 方向前进18米到达D 点,测得tan ∠ADC = 53.现打算从大楼顶端A 点悬挂一幅庆贺建国60周年的大型标语,假设标语底端距地面15m ,请你计算标语AE 的长度应为多少?23. 〔7分〕如图,两条笔直的公路AB CD 、相交于点O ,AOC ∠为36°,指挥中心M 设在OA 路段上,与O 地的间隔 为18千米.一次行动中,王警官带队从O 地出发,沿OC 方向行进,王警官与指挥中心均配有对讲机,两部对讲机只能在10千米之内进展通话,通过计算判断王警官在行进过程中能否实现与指挥中心用对讲机通话.【参考数据:sin 360.59cos360.81tan 360.73===°,°,°.】23. 〔10分〕如图,在航线l 的两侧分别有观测点A 和B ,点A 到航线l 的间隔 为2km ,点B 位于点A 北偏东60°方向且与A 相距10km 处.现有一艘轮船从位于点B 南偏西76°方向的C 处,正沿该航线自西向东航行,5min 后该轮船行至点A 的正北方向的D 处. 〔1〕求观测点B 到航线l 的间隔 ;B〔2〕求该轮船航行的速度〔结果准确到0.1km/h 〕.1.73,sin 760.97°≈,cos 760.24°≈,tan 76 4.01°≈〕24.〔10分〕花园小区有一朝向为正南方向的居民楼〔如图〕,该居民楼的一楼是高4米的小区商场,商场以上是居民住房.在该楼的前面16米处要盖一栋高18米的办公楼.当冬季正午的阳光与程度线的夹角为35°时,问:〔1〕商场以上的居民住房采光是否有影响,为什么?〔2〕假设要使商场采光不受影响,两楼应相距多少 米?〔结果保存一位小数〕〔参考数据:sin 350.57≈°,cos350.82≈°,tan 350.70≈°〕参考答案一、选择题 1. A 2. D 3. D 4. C 5. A 6. B 7. D 8. B 9. B 10. D 二、填空题 11. 6012. 13.14. 100 15.31 16.17. 解〔1〕如图,在Rt △ABC 中,BCAC=sin30° ∴ BC =︒sin305=10米 〔2〕收绳8秒后,绳子BC 缩短了4米,只有6米,这时,船到河岸的间隔 为1125365622=-=-米.故挪动间隔为.18. 解:作BE l ⊥于点E ,DF l ⊥于点F .18018090909036.DAF BAD ADF DAF ADF αα+∠=-∠=-=∠+∠=︒∴∠==︒°°°°,,根据题意,得BE =24mm ,DF =48mm. 在Rt ABE △中,sin BEABα=, 2440sin 360.60BE AB ∴===°mm在Rt ADF △中,cos DFADF AD∠=,4860cos360.80DF AD ∴===°mm .∴矩形ABCD 的周长=2〔40+60〕=200mm .19. 解:连接BD ,过C 作CE BD ⊥于E ,10120BC DC ABC BCD ==∠=∠=,°, 123090ABD ∴∠=∠=∴∠=°,°.5CE BE ∴=∴=,452A AB BD BE ∠=∴===°,ABD BCD ABCD S S S ∴=+△△四边形CE BD BD AB •+•=21212115(15022m =⨯+⨯=+. 三、解答题 20.解:)2200916sin 45(1)--+-︒+-=21+-=21)1++--ClD CBAE 1 2=211+++-=2+21. 解:在Rt ABC △中,90ACB ∠=°,45ABC ∠=°,Rt ABC ∴△是等腰直角三角形,AC BC =.在Rt ADC △中,90ACD ∠=°,tan AC ADC DC ∠=53=, 35DC AC ∴=, BC DC BD -=,即3185AC AC -=.45AC ∴=.那么451530AE AC EC =-=-=. 答:标语AE 的长度应为30米. 22. 解:过点M 作MH OC ⊥于点H . 在Rt MOH △中,sin MHMOH OM∠= 18OM =,36MOH ∠=°,18sin 36180.5910.6210MH ∴=⨯=⨯=>°.即王警官在行进过程中不能实现与指挥中心用对讲机通话. 23. 解:〔1〕设AB 与l 交于点O .在Rt AOD △中,6024cos 60ADOAD AD OA ∠====°,,°.又106AB OB AB OA =∴=-=,.在Rt BOE △中,)(360cos ,60km OB BE OAD OBE =︒=∴︒=∠=∠∴观测点B 到航线l 的间隔 为3km .〔2〕在Rt AOD △中,3260tan =︒=AD OD .B在Rt BOE △中,3360tan =︒=BE OE .DE OD OE ∴=+=.在Rt CBE △中,︒=∠=∴=︒=∠76tan 3tan ,3,76CBE BE CE BE CBE .3tan 76 3.38CD CE DE ∴=-=-°.15min h 12=,1212 3.3840.6112CDCD ∴==⨯≈〔km/h 〕.24. 解:〔1〕如图,光线交CD 于点E ,过点E 作EF BD ∥交AB 于点F . 设DE x =米,那么(18)AF x =-米在Rt AFE △中,35AEF ∠=°,tan 35AFEF ∴=° 180.7016x-=, 6.8x = 6.84>,∴居民住房的采光有影响.〔2〕如图,在Rt ABD △中tan ABADB BD ∠= 18tan 35BD =°,1825.7125.80.70BD =≈≈ 答:两楼相距25.8米.本卷贰O 贰贰年贰月捌日编写; 出题人:令狐学复;欧阳化语;令狐理总。
九年级下学期第一章综合水平测试 4页一、选择题:1. 如图1,在△ABC 中,AC =3,BC =4,AB =5,则tan B 的值是( ) A 、43 B 、34 C 、53 D 、542. 如图2,将三角板的直角顶点放置在直线A B 上的点O 处,使斜边C D A B ∥.则α∠的正弦值为 ( ).A、2 B 、 1 C 、12 D23. 已知在A B C R t △中,90C ∠=þ,1c o s 2A =,则s i n B的值是( ) A.12324. 一人乘雪橇沿坡比为1的斜坡笔直滑下,滑下的距离S (米)与时间t (秒)间的关系为2102s t t =+,若滑到坡底的时间为4秒,则此人下降的高度为 A .72 m B .C .36 mD .m 5. 计算tan 452sin 452cos 60︒+︒-︒的结果是( ) A .2BCD .14ta n 3B =.A C 上6. 如图3,已知A D 为等腰三角形A B C 底边上的高,且有一点E ,满足:2:3A E E C =.那么,tan A D E ∠是( ) A.35B.23C.12D.137.数学活动课上,小敏、小颖分别画了△ABC 和△DEF ,尺寸如图4.如果把小敏画的三角形的面积记作S △ABC ,小颖画的三角形的面积记作S △DEF ,那么你认为( ) (A )S △ABC >S △DEF (B )S △ABC <S △DEF (C )S △ABC = S △DEF (D )不能确定8.如图5,在□ABCD 中,AB : AD = 3:2,∠ADB=60°, 那么cos A的值等于( )6666BCA图1ABO0 图2AECD B图3图4ABC F E D130︒50︒545小敏画的三角形小颖画的三角形图5图6(1)(2) AB 9.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为( ) A .11.5米 B .11.75米C .11.8米D .12.25米二、填空题12.图6(1)是一张R t △A B C 纸片,如果用两张相同的这种纸片恰好能拼成一个正三角形(图6(2)),那么在R t △A B C 中,sin B ∠的值是 . 13. 有一个直角梯形零件A B C D ,A D B C ∥,斜腰B C 的长为10cm ,120D ∠=,则该零件另一腰A B 的长是 c m .(结果不取近似值)14.在R t A B C△中,90C ∠=,且123s i n 30s i n 45s i n 60222===,,3c o s 302=,21c o s 45c o s 6022==,;观察上述等式,请你写出正弦函数值与余弦函数值之间的等量关系式: ,因为A ∠与互余,所以请你写出正弦函数与余函数函数间的一般关系式 . 15. 已知等腰三角形一条腰上的高与腰之比为1:_________.16.如图7,A B C △中,45A B A C A ==,∠,A C 的垂直平分线分别交A B A C ,于D E ,两点,连接C D .如果1A D =,那么tan B C D ∠= .图717.如图8,小红把梯子AB 斜靠在墙壁上,梯脚B 距墙1.6米,小红上了两节梯子到D 点,此时D 点距墙1.4米,BD 长0.5518.图9,机器人从A 点,沿着西南方向,行了个42单位,到达B 点后观察到原点O 在它的南偏东60°的方向上,则原来A 的坐标为 (结果保留根号).AECBD 第18题图图8 图9(第9题图)19.为了方便看电视和有利于彩电在放映中产生热量的散发,将一台54寸的大背投彩电放置在墙角,图10是它的俯视图,已知22D A O =∠,彩电后背110cm A D =,平行于前沿B C ,且与B C 的距离为60cm ,则墙角O 到前沿B C 的距离是 cm (精确到1cm ).图10三、解答题20.某校数学兴趣小组在测量一座池塘边上A B ,两点间的距离时用了以下三种测量方法,如图11所示.图中a b c ,,表示长度,β表示角度.请你求出A B 的长度(用含有a b β,,,字母的式子表示).并简要说明理由.(1)______A B = (2)______A B = (3)______A B =21. 如图12,小勇想估测家门前的一棵树的高度,他站在窗户C 处,观察到树顶端A 正好与C 处在同一水平线上,小勇测得树底B 的俯角为60,并发现B 点距墙脚恰好铺设有六块边长为0.5米的正方形地砖,请你帮助小勇算出树的高度A B1.414≈1.732≈)22. 为保卫祖国的海疆,我人民解放军海军在相距20海里的A ,B 两地设立观测站(海岸线是过A ,B 的直线).按国际惯例,海岸线以外12海里范围内均为我国领海,外国船只除特许外,不得私自进入我国领海.某日,观测员(1)cC图12发现一外国船只行驶至P 处,在A 观测站测得63B A P ∠=,同时在B 观测站测得34A B P ∠=(如图13).问此时是否需要向此未经特许的船只发出警告,命令其退出我国领海? (参考数据:932sin 63ta n 632sin 34ta n 341053≈≈≈≈,,,)23. 某风景区内有一古塔A B ,在塔的北面有一建筑物,冬至日的正午光线与水平面的夹角是30,此时塔在建筑物的墙上留下了高3米的影子C D ;而在春分日正午光线与地面的夹角是45,此时塔尖A 在地面上的影子E 与墙角C 有15米的距离(B ,E ,C 在一条直线上),如图14,求塔A B 的高度(结果保留根号). 四、附加题25.高为12.6米的教学楼ED 前有一棵大树AB .(1)某一时刻测得大树AB 、教学楼ED 在阳光下的投影长分别是BC =2.4米,DF =7.2米,求大树AB 的高度. (2)用皮尺、高为h 米的测角仪,请你设计另.一种..测量大树AB 高度的方案,要求: ①在图,画出你设计的测量方案示意图,并将应测数据标记在图上(长度用字母m ,n …表示,角度用希腊字母α,β …表示);②根据你所画的示意图和标注的数据,计算大树AB 高度(用字母表示).26.如图7所示,A ,B 为两个村庄,AB ,BC ,CD 为公路,BD 为地,AD 为河宽,且CD 与AD 互相垂直.现在要从E 处开始铺设通往村庄A 、村庄B 的一电缆,共有如下两种铺设方案: 方案一:E D A B →→→; 方案二:E C B A →→→.经测量得A B =10B C =千米,6C E =千米,∠BDC =45°,∠ABD =15°. 已知:地下电缆的修建费为2万元/千米,水下电缆的修建费为4万元/千米.⑴求出河宽AD (结果保留根号);⑵求出公路CD 的长;⑶哪种方案铺设电缆的费用低?请说明你的理由.图14A海图13AB AB 光线村庄E C B。
DCA九年级(下)数学第一、二章综合检测试卷一、选择题(10×3=30分)1. 在△ABC 中,∠C =90O ,∠B =2∠A ,则CosA 等于( ) A.23 B. 21C. 3D.332.在△ABC 中,∠C =90O ,BC :CA =3:4,那么SinA 等于( ) A .43 B.34 C.53 D.54 3.二次函数y =(X -1)2+2的最小值是( ) A .-2 B.2 C.1 D.-14.二次函数y =ax 2+bx +c 的图像如图所示,根据图像可得a ,b ,c 与0的大小关系是( ) A. a>0,b<0,c<0 B. a>0,b>0,c>0 C. a<0,b<0,c<0 D. a<0,b>0,c<0 5.已知∠A 为锐角,且COSA≤21,那么( ) A .00<A≤600 B.600≤A<900 C.00<A<300 D.300≤A<900 6.函数y =ax 2-a 与y =xa(a≠0)在同一直角坐标系中的图像可能是图中的( )7.已知二次函数y =x 2+(2a +1)x +a 2-1的最小值为O ,则a 的值是( ) A .43 B.43- C.45 D.45- 8.如图在等腰三角形ABC 中,∠C =900,AC =6,D 是AC 上一点, 若tan ∠DBA =51,则AD 的长为( ) A.2 B.2 C.1 D.229.将进货单价为70元的某种商品按零售价100元一个售出时,每天能卖出20个,若这种商品在一定范围内每降价1元,每日销量就增加1个,为了获得最大利润,则应该降价( )A.5元B.10元C.15元D.20元10.某二元方程的解是21x m y m m =⎧⎨=++⎩,若把x 看作平面直角坐标系中点的横坐标,y 看作是纵坐标,下面说法正确的是( )A.点(x,y )一定不在第一象限B.点(x,y )一定不是坐标原点C.y 随x 的增大而增大D.y 随x 的增大而减小二、填空题:(8×3=24分)11.∠A 和∠B 是一直角三角形的两锐角,则tan2BA +=_________. 12.如图,某中学生推铅球,铅球在点A 处出手,在点B 处落地,它的运行路线满足y =-121x 2+32x +35,则这个学生推铅球的成绩是_______米.13.把抛物线y =ax 2+bx+c 的图像向右平移3个单位,再向下平移2个单位,得到图像解析式为y=x 2-4x+5,则有a=______ b=_______ c=_______.14.已知等腰三角形腰长为2cm ,面积为1cm ,则这个等腰三角形的顶角为_______度。
北师大版九年级数学下册第一章测试题(附答案)姓名:__________ 班级:__________考号:__________一、单选题(共12题;共24分)1.已知在Rt△ABC中,∠C=90°,BC=5,那么AB的长为( )A. 5sin AB. 5cos AC.D.2.在Rt△ABC中,∠C=90°,a=3,b=4,则tanB的值是()A. B. C. D.3.正方形网格中,如图放置,则的值为()A. B. C. D. 24.如图,在直角△ABC中,∠C=90°,BC=1,AC=,下列判断正确的是()A. ∠A=90°B. ∠A=45°C. cotA=D. tanA=5.在Rt△ABC中,∠C=90°,若斜边AB是直角边BC的3倍,则tanB的值是()A. B. 3 C. D.6.计算sin60°+cos45°的值等于()A. B. C. D.7.先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为()A. 5cosαB.C. 5sinαD.8.如图,热气球的探测器显示,从热气球A看一栋高楼顶部B的仰角为30,看这栋高楼底部C的俯角为60,热气球A与高楼的水平距离为120m,这栋高楼BC的高度为()A. 40mB. 80mC. 120mD. 160m9.某地下车库出口处安装了“两段式栏杆”,如图1所示,点A是栏杆转动的支点,点E是栏杆两段的联结点.当车辆经过时,栏杆AEF最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=AE=1.2米,那么适合该地下车库的车辆限高标志牌为()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A. B. C. D.10.如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端25米的B处,测得树顶A的仰角∠ABO 为,则树OA的高度为()A. 米B. 25 米C. 25 米D. 25 米11.已知△ABC中,∠C=90°,tanA=,D是AC上一点,∠CBD=∠A,则sin∠ABD=()A. B. C. D.12.如图,在直角△BAD中,延长斜边BD到点C,使DC= BD,连接AC,若tanB= ,则tan∠CAD的值()A. B. C. D.二、填空题(共8题;共16分)13.观光塔是潍坊市区的标志性建筑,为测量其高度,如图,一人先在附近一楼房的底端A点处观测观光塔顶端C处的仰角是60°,然后爬到该楼房顶端B点处观测观光塔底部D处的俯角是30°.已知楼房高AB 约是45m,根据以上观测数据可求观光塔的高CD是________ m.14.tan30°=________.15.如图,为测量旗杆AB的高度,在与B距离为8米的C处测得旗杆顶端A的仰角为56°,那么旗杆的高度约是________米(结果保留整数).(参考数据:sin56°≈0.829,cos56°≈0.559,tan56°≈1.483)16.计算tan1°•tan2°•tan3°•…•tan88°•tan89°=________.17.如图,在△ABC中,∠C=90°,AC=2,BC=1,则tanA的值是________.18.用科学计算器计算:8+sin56°≈________ .(精确到0.01)19.某校数学兴趣小组要测量西山植物园蒲宁之珠的高度.如图,他们在点A处测得蒲宁之珠最高点C的仰角为45°,再往蒲宁之珠方向前进至点B处测得最高点C的仰角为56°,AB=62m,根据这个兴趣小组测得的数据,则蒲宁之珠的高度CD约为 ________m.(sin56°≈0.83,tan56°≈1.49,结果保留整数)20.在△ABC中,sinA= ,AB=8,BC=6,则AC=________.三、解答题(共4题;共20分)21.如图所示,在△ABC中,AB=1,AC= ,sin B= ,求BC的长.22.如图,为了测量山顶铁塔AE的高,小明在27m高的楼CD底部D测得塔顶A的仰角为45°,在楼顶C 测得塔顶A的仰角36°52′.已知山高BE为56m,楼的底部D与山脚在同一水平线上,求该铁塔的高AE.(参考数据:sin36°52′≈0.60,tan36°52′≈0.75)23.“兰州中山桥“位于兰州滨河路中段白塔山下、金城关前,是黄河上第一座真正意义上的桥梁,有“天下黄河第一桥“之美誉.它像一部史诗,记载着兰州古往今来历史的变迁.桥上飞架了5座等高的弧形钢架拱桥.小芸和小刚分别在桥面上的A,B两处,准备测量其中一座弧形钢架拱梁顶部C处到桥面的距离AB=20m,小芸在A处测得∠CAB=36°,小刚在B处测得∠CBA=43°,求弧形钢架拱梁顶部C处到桥面的距离.(结果精确到0.1m)(参考数据sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,sin43°≈0.68,cos43°≈0.73,tan43°≈0.93)24.如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6米的B处安置测角仪AB,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果精确到0.1米,参考数据:≈1.414,≈1.732).四、综合题(共4题;共40分)25.重庆大坪时代天街已成为人们周末休闲娱乐的重要场所,时代天街从一楼到二楼有一自动扶梯(如图1),图2是侧面示意图.已知自动扶梯AC的坡度为i=1:2.4,AC=13m,BE是二楼楼顶,EF∥MN,B是EF上处在自动扶梯顶端C正上方的一点,且BC⊥EF,在自动扶梯底端A处测得B点仰角为42°.(sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)(1)求二楼的层高BC约为多少米;(2)为了吸引顾客,开发商想在P处放置一个高10m的《疯狂动物城》的装饰雕像,并要求雕像最高点与二楼顶层要留出2m距离好放置灯具,请问这个雕像能放得下吗?如果不能,请说明理由.26.共享单车被誉为“新四大发明”之一,如图1所示是某公司2017年向信阳市场提供一种共享自行车的实物图,车架档AC与CD的长分别为45cm,60cm,AC⊥CD,座杆CE的长为20cm,点A,C,E在同一条直线上,且∠CAB=75°,如图2.(1)求车架档AD的长;(2)求车座点E到车架档AB的距离.(结果精确到1cm,参考数据:sin75°=0.9659,cos75°=0.2588,tan75°=3.7321)27.如图,在大楼AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B 的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.(1)求斜坡CD的高度DE;(2)求大楼AB的高度(结果保留根号)28.如图1是一台放置在水平桌面上的笔记本电脑,将其侧面抽象成如图2所示的几何图形,若显示屏所在面的侧边AO与键盘所在面的侧边BO长均为24cm,点P为眼睛所在位置,D为AO的中点,连接PD,当PD⊥AO时,称点P为“最佳视角点”,作PC⊥BC,垂足C在OB的延长线上,且BC=12cm.(1)当PA=45cm时,求PC的长;(2)若∠AOC=120°时,“最佳视角点”P在直线PC上的位置会发生什么变化?此时PC的长是多少?请通过计算说明.(结果精确到0.1cm,可用科学计算器,参考数据:≈1.414,≈1.732)答案一、单选题1. C2. A3.A4.D5.D6.B7. B8.D9.A 10.C 11. A 12.D二、填空题13.135 14.15.12 16.1 17.18.9.44 19.189 20.三、解答题21.解:过点A作AD⊥BC于点D,∵AB=1,sin B= ,∴AD=AB·sinB=1× =,DB= = = ,CD= = = .∴BC=CD+BD= + = .22.解:如图,过点C作CF⊥AB于点F.设塔高AE=x,由题意得,EF=BE﹣CD=56﹣27=29m,AF=AE+EF=(x+29)m,在Rt△AFC中,∠ACF=36°52′,AF=(x+29)m,则CF= ≈ = x+ ,在Rt△ABD中,∠ADB=45°,AB=x+56,则BD=AB=x+56,∵CF=BD,∴x+56= x+ ,解得:x=52,答:该铁塔的高AE为52米.23.解:过点C作CD⊥AB于D.设CD=x,在Rt△ADC中,tan36°= ,∴AD= ,在Rt△BCD中,tan∠B= ,BD= ,∴+ =20,解得x=8.179≈8.2m.答:拱梁顶部C处到桥面的距离8.2m.24.解:过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH= ,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6× =2 ,∵DH=1.5,∴CD=2 +1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED= ,∴CE= =4+ ≈5.7(米),答:拉线CE的长约为5.7米四、综合题25.(1)解:如图所示:延长BC交MN于H ∵BC⊥EF,EF∥MN,∴BH⊥MN,∵i=1:2.4=5:12=CH:AH,∴设CH=5k,则AH=12k在Rt△ACH中,由勾股定理AC= =13k,∵AC=13m,∴k=1,∴CH=5m,AH=12m,设BC=x,在Rt△ACH中,tan∠BAH= ,∴tan42°= ,x≈5.8 m,答:二楼层高约为5.8 m;(2)解:由题得,大厅层高为BH=BC+CH=5.8+5=10.8(m),而10+2=12m>10.8m,∴雕像放不下.26.(1)解:∵AC⊥CD,AC=45cm,CD=60cm,∴AD= (cm),即车架档AD的长是75cm(2)解:作EF⊥AB于点F,如图所示,∵AC=45cm,EC=20cm,∠EAB=75°,∴EF=AE•sin75°=(45+20)×0.9659≈63cm,即车座点E到车架档AB的距离是63cm27.(1)解:在Rt△DCE中,DC=4米,∠DCE=30°,∠DEC=90°,∴DE= DC=2米(2)解:过D作DF⊥AB,交AB于点F,∵∠BFD=90°,∠BDF=45°,∴∠BFD=45°,即△BFD为等腰直角三角形,设BF=DF=x米,∵四边形DEAF为矩形,∴AF=DE=2米,即AB=(x+2)米,在Rt△ABC中,∠ABC=30°,∴BC= = = = 米,BD= BF= x米,DC=4米,∵∠DCE=30°,∠ACB=60°,∴∠DCB=90°,在Rt△BCD中,根据勾股定理得:2x2= +16,解得:x=4+4 ,则AB=(6+4 )米.28.(1)解:当PA=45cm时,连结PO.∵D为AO的中点,PD⊥AO,∴PO=PA=45cm.∵BO=24cm,BC=12cm,∠C=90°,∴OC=OB+BC=36cm,PC= =27cm(2)解:当∠AOC=120°,过D作DE⊥OC交BO延长线于E,过D作DF⊥PC于F,则四边形DECF是矩形.在Rt△DOE中,∵∠DOE=60°,DO= AO=12,∴DE=DO•sin60°=6 ,EO= DO=6,∴FC=DE=6 ,DF=EC=EO+OB+BC=6+24+12=42.在Rt△PDF 中,∵∠PDF=30°,∴PF=DF•tan30°=42× =14 ,∴PC=PF+FC=14+6 =20 ≈34.68>27,∴点P在直线PC上的位置上升了。
九年级数学下册第一章直角三角形的边角关系综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在Rt ABC 中,90,5,2C AB AC ∠=︒==,则cos A 的值是( )A B .25C D .522、已知锐角α满足tan (α+10°)=1, 则锐角用α的度数为( ) A .20°B .35°C .45°D .50°3、在△ABC 中,∠C =90°,BC =2,sin A =23,则边AC 的长是( )A B .3 C .43D 4、比较下图长方形内阴影部分面积的大小,甲( )乙A .>B .<C .=D .无法确定5、如图,在小正方形网格中,ABC 的三个顶点均在格点上,则cos A 的值为( )A .35B .43C .45D .346、在Rt ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,则下列式子一定成立的是( ) A .sin a c B =⋅B .cos a c B =⋅C .tan ac B=D .sin c a A =⋅7、如图,在△ABC 中,∠C =90°,BC =5,AC =12,则tanB 等于( )A .512B .125C .513D .12138、某山坡坡面的坡度i =100米,小刚上升了( )A .B .50米C .D 9、将一矩形纸片ABCD 沿CE 折叠,B 点恰好落在AD 边上的F 处,若:4:5AB BC =,则cos AFE ∠的值为( )A .54B .35C .34D .4510、图①是第七届国际数学教育大会(ICME )会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图②所示的四边形OABC .若1AB BC ==,AOB α∠=,则tan BOC ∠的值为( )A .sin αB .cos αC .tan αD .1sin α第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,小明家附近有一观光塔CD ,他发现当光线角度变化时,观光塔的影子在地面上的长度也发生变化.经测量发现,当小明站在点A 处时,塔顶D 的仰角为37°,他往前再走5米到达点B (点A ,B ,C 在同一直线上),塔顶D 的仰角为53°,则观光塔CD 的高度约为 _____.(精确到0.1米,参考数值:tan37°≈34,tan53°≈43)2、如图,是拦水坝的横断面,堤高BC 为6米,斜面坡度为1:2,则斜坡AB 的长为_______米.3、如图,已知菱形ABCD 的边长为2,∠BAD =60°,若DE ⊥AB ,垂足为点E ,则DE 的长为__.4、在Rt ABC △中,90C ∠=︒,AC ==BC B ∠=______.5、如图,直线y =+b 与y 轴交于点A ,与双曲线y kx=在第三象限交于B 、C 两点,且AB •AC =16.下列等边三角形△OD 1E 1,△E 1D 2E 2,△E 2D 3E 3,…的边OE 1,E 1E 2,E 2E 3,…在x 轴上,顶点D 1,D 2,D 3,…在该双曲线第一象限的分支上,则k =________,前25个等边三角形的周长之和为______.三、解答题(5小题,每小题10分,共计50分)1、小明周末沿着东西走向的公路徒步游玩,在A 处观察到电视塔在北偏东37度的方向上,5分钟后在B 处观察到电视塔在北偏西53度的方向上.已知电视塔C 距离公路AB 的距离为300米,求小明的徒步速度.(精确到个位,sin370.6︒≈,cos370.8︒≈,sin530.8︒≈,cos530.6︒≈,tan370.75︒≈,tan53 1.3︒≈)2、为了测量旗杆AB的高度,小颖画了如下的示意图,其中CD,EF是两个长度为2m的标杆.(1)如果现在测得∠DEC=30°,EG=4m,求旗杆AB的高度;(2)如果CE的长为x,EG的长为y,请用含x,y的代数式表示旗杆AB的高度.3、如图,在平面直角坐标系中,点A在x轴的正半轴上,点B在x轴的负半轴上,点C在y轴的正半轴上,直线BC的解析式为y=kx+12(k≠0),AC⊥BC,线段OA的长是方程x2﹣15x﹣16=0的根.请解答下列问题:(1)求点A、点B的坐标.(2)若直线l经过点A与线段BC交于点D,且tan∠CAD=14,双曲线y=mx(m≠0)的一个分支经过点D,求m的值.(3)在第一象限内,直线CB下方是否存在点P,使以C、A、P为顶点的三角形与△ABC相似.若存在,请直接写出所有满足条件的点P的坐标;若不存在,请说明理由.4、计算:112cos302-⎛⎫︒ ⎪⎝⎭.5、如图,在Rt ABC △中,90C ∠=︒,22.5B ∠=︒(1)尺规作图:作AB 的垂直平分线l 交BC 于点D .(保留痕迹,不写作法) (2)在(1)的作图下,试求tan 67.5︒的值(结果保留根号)-参考答案-一、单选题 1、B 【分析】根据题意,画出图形,结合余弦函数的定义即可求解. 【详解】解:由题意,可得图形如下:根据余弦函数的定义可得2 cos5ACAAB==,故选:B【点睛】此题考查了余弦函数的定义,解题的关键是根据题意画出图形,并掌握余弦函数的定义.2、B【分析】根据特殊角的三角函数值计算即可;【详解】∵tan(α+10°)=1,且tan451︒=,∴1045α+︒=︒,∴35α=︒;故选B.【点睛】本题主要考查了特殊角的三角函数值,准确计算是解题的关键.3、A【分析】先根据BC=2,sin A=23求出AB的长度,再利用勾股定理即可求解.【详解】解:∵sin A=BCAB =23,BC=2,∴AB=3,∴AC故选:A.【点睛】本题考查正弦的定义、勾股定理等知识,是重要考点,难度较小,掌握相关知识是解题关键.4、C【分析】如图,在三角形中,等底等高的两个三角形的面积相等,由此可得三角形1面积=三角形2面积,三角形3面积=三角形4面积,根据两个大三角形的面积相等,即甲的面积加上三角形1和三角形3的面积等于乙的面积加上三角形2和三角形4的面积,即可求得甲的面积等于乙的面积.【详解】解:如图,在三角形中,等底等高的两个三角形的面积相等,由此可得三角形1面积=三角形2面积,三角形3面积=三角形4面积,根据长方形的对边相等,则长方形对角线分成的两个三角形面积等相等,所以甲的面积加上三角形1和三角形3的面积等于乙的面积加上三角形2和三角形4的面积,则甲的面积等于乙的面积.故选:C.【点睛】此题考查了三角形的面积,等底等高的两个三角形的面积相等是解答此题的关键. 5、A 【分析】观察题目易知△ABC 为直角三角形,其中AC =3,BC =4,求出斜边AB ,根据余弦的定义即可求出cos A .【详解】解:由题知△ABC 为直角三角形,其中AC =3,BC =4,∴AB cos A =35AC AB =, 故选:A . 【点睛】本题考查解直角三角形知识,熟练掌握锐角三角函数的定义并能在解直角三角形中的灵活应用是解题的关键. 6、B 【分析】根据题意,画出直角三角形,再根据锐角三角函数的定义对选项逐个判断即可. 【详解】解:由题意可得,如下图:sinaAc=,则sina c A=⋅,A选项错误,不符合题意;cosaBc=,则cosa c B=⋅,B选项正确,符合题意;tanbBa=,则tanacB≠,C选项错误,不符合题意;sinaAc=,则sinacA=,D选项错误,不符合题意;故选B,【点睛】此题考查了锐角三角函数的定义,解题的关键是画出图形,根据锐角三角函数的定义进行求解.7、B【分析】根据锐角三角函数求解即可.【详解】解:在Rt△ABC中,∠C=90°,BC=5,AC=12,所以tanB=ACBC=125,故选:B.【点睛】本题考查锐角三角函数,掌握正切的定义:正切是指是直角三角形中,某一锐角的对边与另一相邻直角边的比,是正确解答的关键.8、B【分析】设出垂直高度,表示出水平距离,利用勾股定理求解即可.【详解】解:设小刚上升了x 米.根据勾股定理可得:)222100x +=. 解得50x =.即此时该小车离水平面的垂直高度为50米.故选:B .【点睛】考查了解直角三角形的应用-坡度坡角问题和勾股定理,熟悉且会灵活应用公式:坡度=垂直高度÷水平宽度是解题的关键.9、D【分析】由∠AFE +∠CFD =90°得cos sin CD AFE CFD CF∠=∠=,根据折叠的定义可以得到CB =CF ,则CD AB CF BC=,即可求出cos AFE ∠的值,继而可得出答案. 【详解】∵∠AFE +∠CFD =90°, ∴cos sin CD AFE CFD CF∠=∠=,由折叠可知,CB =CF ,矩形ABCD 中,AB =CD ,4cos 5CD AB AFE CF BC ∠===. 故选:D .【点睛】本题考查了折叠变换的性质及锐角三角函数的定义,解题关键是得到CB =CF .10、A【分析】在Rt OAB 中,sin AB OB α=,可得OB 的长度,在Rt OBC 中,tan BC BOC OB ∠=,代入即可得出答案. 【详解】解:∵1AB BC ==,在Rt OAB 中,sin AB OB α=, ∴1sin OB α=, 在Rt OBC 中,1tan sin 1sin BC BOC OB αα∠===.故选:A .【点睛】本题主要考查了解直角三角形的应用,熟练掌握解直角三角形的方法进行计算是解决本题的关键.二、填空题1、8.6米【分析】根据题意,利用锐角三角函数解直角三角形即可.【详解】解:由题意知,∠A =37°,∠DBC =53°,∠D =90°,AB =5,在Rt△CBD 中,tan∠DBC =CD BC , ∴BC =tan 53CD ≈34CD , 在Rt△CAD 中,tan∠A =CD AC ,即354CD CD +=tan37°≈34 ∴解得:CD =607≈8.6, 答:观光塔CD 的高度约为8.6米.【点睛】本题考查解直角三角形的实际应用,熟练掌握锐角三角函数解直角三角形的方法是解答的关键. 2、【分析】由斜面坡度为1:2有12BC AC =,解得AC =12,再由勾股定理求得AB 即可. 【详解】∵斜面坡度为1:2 ∴12BC AC = ∴212AC BC ==∵ACB △是直角三角形,故有AB====故答案为:【点睛】本题考察了直角三角形应用题,解直角三角形应用题的一般步骤(1)弄清题中的名词、术语的意义,如仰角、俯角、坡度、坡角等概念,然后根据题意画出几何图形,建立数学模型;(2)将实际问题中的数量关系归结为解直角三角形的问题,当有些图形不是直角三角形时,可适当添加辅助线,把它们分割成直角三角形或矩形;(3)寻找直角三角形,并解这个三角形.3【分析】由已知的DE AB ⊥,根据垂直的性质得到90AED ∠=︒,即三角形ADE 为直角三角形,在此直角三角形中,根据正弦函数得到60DE sin AD︒=,将AD 的值代入,利用特殊角的三角函数值,化简即可求出DE .【详解】解:∵DE AB ⊥,∴90AED ∠=︒,在Rt ADE 中,60BAD ∠=︒,2AD =, ∴60DE sin AD︒=,则·602DE AD sin =︒==题目主要考查利用锐角三角函数解三角形及特殊角的三角函数值,菱形的性质等,深刻理解锐角三角函数的性质是解题关键.4、30°【分析】根据正切定义,先求出tan B ,再求出B 的度数即可.【详解】解:在Rt ABC △中,90C ∠=︒,AC =,BC∴ tanAC B BC = 30B ∴∠=︒ ,故答案为:30【点睛】本题考查了解直角三角形,掌握三角形两锐角之间、三边之间和边角之间的关系是解题的关键.5、设直线y =+b 与x 轴交于点D ,作BE ⊥y 轴于E ,CF ⊥y 轴于F .首先证明∠ADO =60°,可得AB=2BE ,AC =2CF ,由直线y =+b 与双曲线y k x =在第一象限交于点B 、C 两点,可得+b kx=,整理得,2+bx ﹣k =0,由韦达定理得:x 1x 2=k ,即EB •FC k ,由此构建方程求出k 即可,第二个问题分别求出第一个,第二个,第三个,第四个三角形的周长,探究规律后解决问题.【详解】设直线y =+b 与x 轴交于点D ,作BE ⊥y 轴于E ,CF ⊥y 轴于F .∵y =+b ,∴当y =0时,x =b ,即点D ,0), 当x =0时,y =b ,即A 点坐标为(0,b ),∴OA =﹣b ,OD =.∵在Rt△AOD 中,tan∠ADO OA OD == ∴∠ADO =60°.∵直线y =+b 与双曲线y k x=在第三象限交于B 、C 两点,∴+bkx =,整理得,2+bx﹣k=0,由韦达定理得:x1x2,即EB•FC=k,∵EBAB=cos60°12=,∴AB=2EB,同理可得:AC=2FC,∴AB•AC=(2EB)(2FC)=4EB•FC==16,解得:k=由题意可以假设D1(m,,∴m2∴m=2∴OE1=4,即第一个三角形的周长为12,设D2(4+n),∵(4+n=解得n=2,∴E1E2=4,即第二个三角形的周长为12,设D3(a),由题意(a=解得a =…,∴第四个三角形的周长为∴前25个等边三角形的周长之和+=60,故答案为60.【点睛】本题考查了反比例函数与一次函数图象的交点问题,规律型问题等知识,解题的关键是学会探究规律的方法,属于中考常考题型.三、解答题1、126米/分钟【分析】过C 作CD AB ⊥于D ,则300CD =米,由解直角三角形求出AD 和BD 的长度,则求出AB 的长度,即可求出小明的速度.【详解】解:过C 作CD AB ⊥于D ,则300CD =米,∴903753CAD ∠=︒-︒=︒,∴300tan tan 53 1.3CAD AD∠=︒=≈, ∴231AD ≈,同理:400BD ≈631AB AD BD =+= 速度:631÷5≈126(米/分钟).【点睛】本题考查了解直角三角形的应用,以及解直角三角形,解题的关键是正确求出AD 和BD 的长度.2、(1)15 m(2)2y AB y x=- 【分析】(1)设AB a ,则BE =,根据GEF GBA ∽,列出比例式即可得出关于a 的方程,解方程求解即可,(2)根据,CD AB EF AB ∥∥可得,ECD EBA GEF GBA ∽∽,进而得出比例式,代入已知量,将等式变形即可求得AB .(1)设AB a ,由∠DEC =30°,CD BG ⊥在Rt ABE △中,tan AB BE AEB ==∠ EG =4,4BG BE EG ∴=+=+EF BG ⊥AB EF ∴∥∴GEF GBA ∽EF EG AB BG∴=即2a =解得815a =+≈∴旗杆AB 的高度为15m ;(2),CD AB EF AB ∥∥∴,ECD EBA GEF GBA ∽∽,CD CE EF EG AB BE AB BG∴== CE 的长为x ,EG 的长为y ,2CD EF ==22,x y AB BE AB BE y∴==+ 2AB x BE ⋅∴= 22y ABx AB y ∴=+ 整理得:2y AB y x =- 【点睛】本题考查了相似三角形的性质与判定,相似三角形的应用,勾股定理,根据题意找到相似三角形是解题的关键.3、(1)A (16,0),B (-9,0);(2)-24;(3)存在,(16,12)或(25,12)或(32,643)或(288384,2525)【分析】(1)解一元二次方程x 2﹣15x ﹣16=0,对称点A (16,0),根据直线BC 的解析式为y =kx +12,求出与y 轴交点C 为(0,12),利用三角函数求出tan∠BCO = tan∠OAC =3=4OB OC ,求出OB =3312944OC =⨯=即可; (2)过点D 作DE ⊥y 轴于E ,DF ⊥x 轴于F ,利用勾股定理求出AC20=,BC,根据三角函数求出tan∠CAD =1204CD CD AC ==,求出12054CD =⨯=,利用三角函数求出DE = CD sin∠BCO =3535⨯=,再利用勾股定理求出点D (-3,8)即可;(3)过点A 作AP 1与过点C 与x 轴平行的直线交于P 1,先证四边形COAP 1为矩形,求出点P 1(16,12),再证△P 1CA ∽△CAB ,作P 2A ⊥AC 交CP 1延长线于P 2,可得∠CAP 2=∠BCA =90°,∠P 2CA =∠CAB ,可证△CAP 2∽△ACB ,先求三角函数值cos∠CAO =164205CO AC ==,再利用三角函数值cos∠P 2CA = cos∠CAO =222045AC CP CP ==,求出225CP =,得出点P 2(25,12)作∠P 3CA =∠OCA ,在射线CP 3截取CP 3=CO =12,连结AP 3,先证△CP 3A ≌△COA (SAS )再证△P 3CA ∽△CAB ,设P 3(x ,y )利用勾股定理列方程()()22222216161212x y y x ⎧-+=⎪⎨-+=⎪⎩,解方程得出点P 3(2883842525,),延长CP 3与延长线交P 4,过P 4作PH ⊥x 轴于H ,先证△CAP 4∽△ACB ,再证△P 4P 3A ≌△P 4HA (ASA ),利用cos∠P 3CA =34123205PC CA CA CP ===,求得4510033CA CP ==即可. 【详解】解:(1)x 2﹣15x ﹣16=0,因式分解得()()1610x x -+=,解得12161x x ==-,,点A 在x 轴的正半轴上,OA =16,∴点A (16,0),∵直线BC的解析式为y=kx+12,与y轴交点C为(0,12),∴tan∠OAC=123=164,∠OCA+∠OAC=90°,∵AC⊥BC,∴∠BCO+∠OCA=90°,∴∠BCO=∠OAC,∴tan∠BCO= tan∠OAC=3=4 OBOC,∴OB=33129 44OC=⨯=,∴点B(-9,0);(2)过点D作DE⊥y轴于E,DF⊥x轴于F,在Rt△AOC中,AC20=,在Rt△BOC中,∵tan∠CAD=1204 CD CDAC==,∴12054CD=⨯=,∵sin∠BCO=93155 OBBC==,∴DE= CD sin∠BCO=3535⨯=,∴CE4=,OE=OC-EC=12-4=8,∴点D(-3,8),∵双曲线y =m x(m ≠0)的一个分支经过点D , ∴3824m xy ==-⨯=-;(3)过点A 作AP 1与过点C 与x 轴平行的直线交于P 1,则∠CP 1A =∠P 1CO =∠COA =90°,∴四边形COAP 1为矩形,∴点P 1(16,12),当点P 1(16,12)时,CP 1∥OA,∠P 1CA =∠CAB ,∠ACB =∠CP 1A ,∴△P 1CA ∽△CAB ,作P 2A ⊥AC 交CP 1延长线于P 2,∵∠CAP 2=∠BCA =90°,∠P 2CA=∠CAB,∴△CAP 2∽△ACB ,∴cos∠CAO =164205CO AC ==, ∴cos∠P 2CA = cos∠CAO =222045AC CP CP ==,∴225CP =,∴点P 2的横坐标绝对值=225CP =,纵坐标的绝对值=OC=12,∴点P 2(25,12),作∠P 3CA =∠OCA ,在射线CP 3截取CP 3=CO =12,连结AP 3,在△CP 3A 和△COA 中,33CP CO PCA OCA CA CA =⎧⎪∠=∠⎨⎪=⎩, ∴△CP 3A ≌△COA (SAS ),∴AP 3=OA =16, ∴33124164,155205CP P A CB CA ====, ∴3334,905CP P A CP A BCA CB CA ==∠=∠=︒ ∴△P 3CA ∽△CAB ,设P 3(x ,y )()()22222216161212x y y x ⎧-+=⎪⎨-+=⎪⎩, 整理得22223224x y x y x y ⎧+=⎨+=⎩, 解得:2882538425x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴点P 3(2883842525,),延长CP 3与延长线交P 4,过P 4作PH ⊥x 轴于H ,∵∠P 4CA =∠CAB ,∠P 4AC =∠BAC =90°,∴△CAP 4∽△ACB ,∵∠BAC +∠HAP 4=∠CAP 3+∠P 3AP 4=90°,∠CAP 3=∠BAC ,∴∠HAP 4=∠P 3AP 4,∠P 4P 3A =180°-∠CP 3A =180°-90°=90°=∠P 4HA ,在△P 4P 3A 和△P 4HA 中,34444434P AP HAP AP AP P P A P HA ∠=∠⎧⎪=⎨⎪∠=∠⎩, △P 4P 3A ≌△P 4HA (ASA ),∴AP 3=AH =16,P 3P 4=P 4H ,∵cos∠P 3CA =34123205PC CA CA CP ===, ∴4510033CA CP ==, ∴43443100641233P H P P CP CP ==-=-=,OH =OA +AH =OA +AP 3=16+16=32, ∴点464323P ⎛⎫ ⎪⎝⎭,, 综合直线CB 下方,使以C 、A 、P 为顶点的三角形与△ABC 相似.点P 的坐标(16,12)或(25,12)或64323⎛⎫ ⎪⎝⎭,或(2883842525,).【点睛】本题考查一元二次方程的解法,直线与y轴的交点,反比例函数解析式,锐角三角形函数,勾股定理,三角形全等判定与性质,矩形判定与性质,三角形相似,图形与坐标,解方程组,本题难度大,综合性强,涉及知识多,利用动点作出准确图形是解题关键.4、2【分析】原式利用负整数指数幂法则,绝对值、二次根式性质,以及特殊角的三角函数值计算即可求出值.【详解】解:原式22=-=.2【点睛】本题考查了实数的运算,解题的关键是熟练掌握运算法则.5、(1)见解析;(21【分析】(1)作线段AB 的垂直平分线即可;(2)由垂直平分线的性质求出45ADC DAC ∠=∠=︒,设AC x =,BD AD ==,在三角形ABC 中利用三角函数即可求解.【详解】(1)作图如下,(2)根据垂直平分线的性质知, BD AD =,22.5DBE DAE ∠=∠=︒, 在三角形ACD 中,45ADC DAC ∠=∠=︒设AC x =,∴AD ,∴BD AD =,∴在三角形ABC 中,9022.567.5BAC ∠=︒-︒=︒,∴tan 67.51BC AC ︒===. 【点睛】 本题考查的是作图−基本作图、线段垂直平分线的性质、三角函数,熟知线段垂直平分线的作法是解答此题的关键.。
北师大版九年级数学下册第一章测试题含答案2套第一章测试卷(1)一、选择题(每题3分,共30分) 1.cos30°的值为( )A.12B.32C.22D.332.如图,已知Rt △BAC 中,∠C =90°,AC =4,tan A =12,则BC 的长是( )A .2B .8C .2 5D .4 5(第2题) (第3题)3.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D 点,已知AC =5,BC =2,那么sin∠ACD 等于( ) A.53B.23C.253D.524.若3tan(α+10°)=1,则锐角α的度数是( )A .20°B .30°C .40°D .50°5.已知cos θ=0.253 4,则锐角θ约等于( )A .14.7°B .14°7′C .75.3°D .75°3′6.如图,某课外活动小组在测量旗杆高度的活动中,已测得仰角∠CAE =33°,AB =a ,BD=b ,则下列求旗杆CD 长的式子中正确的是( ) A .CD =b sin 33°+a B .CD =b cos33°+a C .CD =b tan33°+aD .CD =btan33°+a(第6题) (第7题)7.如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是( ) A .2B.255C.55D.128.在△ABC 中,∠A =30°,∠B =45°,AB =2(1+3),则BC 等于( )A .2B. 6C .2 2D .1+ 39.如图,在高楼前D 点测得楼顶的仰角为30°,向高楼前进60 m 到C 点,又测得仰角为45°,则该高楼的高度大约为( ) A .82 mB .163 mC .52 mD .30 m(第9题) (第10题)10.如图,钓鱼竿AC 长6 m ,露在水面上的鱼线BC 长3 2 m ,某钓者想看看鱼钓上的情况,把鱼竿AC 转动到AC ′的位置,此时露在水面上的鱼线B ′C ′长为3 3 m ,则鱼竿转过的角度是( ) A .60°B .45°C .15°D .90°二、填空题(每题3分,共30分)11.已知α为等腰直角三角形的一个锐角,则tan α=________. 12.若反比例函数y =kx 的图象经过点(tan30°,cos60°),则k =________.13.在△ABC 中,∠C =90°,BC =6,sin A =23,则AB =________.14.某梯子与地面所成的角α满足45°≤α≤60°时,人可以安全地爬上斜靠在墙面上的梯子的顶端,现有一个长6 m 的梯子,则使用这个梯子最高可以安全爬上__________高的墙.15.某游客在山脚处看见一个标注海拔40 m 的牌子,当他沿山坡前进50 m 时,他又看见一个标注海拔70 m 的牌子,于是他走过的山坡的坡度是__________.16.如图,△ABC 的顶点A ,C 的坐标分别是(0,23),(2,0),且∠ACB =90°,∠B =30°,则顶点B 的坐标是__________.(第16题) (第17题) (第18题) (第19题) (第20题)17.如图,一棵树的枝叶部分AB 在太阳光下的投影CD 的长是5.5 m ,此时太阳光线与地面的夹角是52°,则AB 的长约为__________ (结果精确到0.1 m .参考数据:sin 52°≈0.79,tan52°≈1.28).18.如图,秋千链子的长度OA =3 m ,静止时秋千踏板处于A 位置,此时踏板距离地面0.3m ,秋千向两边摆动,当踏板处于A ′位置时,摆角最大,此时∠AOA ′=50°,则在A ′位置,踏板与地面的距离约为________m(sin 50°≈0.766,cos50°≈0.642 8,结果精确到0.01 m).19.如图,轮船在A 处观测灯塔C 位于北偏西70°方向上,轮船从A 处以每小时20 n mile的速度沿南偏西50°方向匀速航行,1 h 后到达码头B 处,此时,观测灯塔C 位于北偏西25°方向上,则灯塔C 与码头B 的距离约是________n mile(结果精确到个位,参考数据:2≈1.4,3≈1.7,6≈2.4).20.如图,正方形ABCD 的边长为22,过点A 作AE ⊥AC ,AE =1,连接BE ,则tan E =________. 三、解答题(21题8分,26题12分,其余每题10分,共60分) 21.计算:(1)2-1-3sin 60°+(π-2 020)0+⎪⎪⎪⎪⎪⎪-12;(2)12-3+4cos60°·sin 45°-(tan60°-2)2.22.在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,2a =3b ,求∠B 的正弦、余弦和正切值.23.如图,在△ABD中,AC⊥BD于点C,BCCD=32,点E是AB的中点,tan D=2,CE=1,求sin∠ECB的值和AD的长.(第23题)24.为建设“宜居宜业宜游”山水园林城市,正在对某城市河段进行区域性景观打造.某施工单位为测得某河段的宽度,测量员先在河对岸岸边取一点A,再在河这边沿河边取两点B和C,在B处测得点A在北偏东30°方向上,在C处测得点A在西北方向上,如图,量得BC长为200 m,求该河段的宽度(结果保留根号).(第24题)25.如图,海中一小岛上有一个观测点A,某天上午9:00观测到某渔船在观测点A的西南方向上的B处跟踪鱼群由南向北匀速航行.当天上午9:30观测到该渔船在观测点A的北偏西60°方向上的C处.若该渔船的速度为30 n mile/h,在此航行过程中,该渔船从B处开始航行多少小时,离观测点A的距离最近?(计算结果用根号表示,不取近似值)(第25题)26.如图,MN表示一段笔直的高架道路,线段AB表示高架道路旁的一排居民楼.已知点A到MN的距离为15 m,BA的延长线与MN相交于点D,且∠BDN=30°.假设汽车在高架道路上行驶时,周围39 m以内会受到噪音的影响.(1)过点A作MN的垂线,垂足为点H.如果汽车沿着从M到N的方向在MN上行驶,当汽车到达点P处时,噪音开始影响这一排居民楼,那么此时汽车与点H的距离为多少米?(2)降低噪音的一种方法是在高架道路旁安装隔音板.当汽车行驶到点Q时,它与这一排居民楼的距离QC为39 m,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长?(结果精确到1 m,参考数据:3≈1.7)(第26题) 答案一、1.B 2.A 3.A 4.A 5.C 6.C 7.D 8.A 9.A10.C 点拨:∵sin ∠CAB =BC AC =326=22,∴∠CAB =45°.∵sin ∠C ′AB ′=B ′C ′AC ′=336=32,∴∠C ′AB ′=60°.∴∠CAC ′=60°-45°=15°,即鱼竿转过的角度是15°. 二、11.1 12.36 13.9 14.3 3 m 15.3∶4 16.(8,23)17.7.0 m 点拨:过点B 作BE ∥CD ,交AD 于点E .∵太阳光线与地面的夹角是52°,且太阳光线是平行的, ∴tan 52°=ABBE ,BE =CD =5.5 m.∴AB =5.5×tan 52°≈5.5×1.28=7.04≈7.0(m).18.1.37 点拨:如图,作A ′D ⊥OA 于点D ,A ′C 垂直地面于点C ,延长OA 交地面于点B .(第18题)易得四边形BCA ′D 为矩形, ∴A ′C =DB .∵∠AOA ′=50°,且OA =OA ′=3 m ,∴在Rt △OA ′D 中,OD =OA ′·cos ∠AOA ′≈3×0.642 8≈1.93(m). 又AB =0.3 m , ∴OB =OA +AB =3.3 m. ∴A ′C =DB =OB -OD ≈1.37 m. 19.2420.23 点拨:延长CA 到F 使AF =AE ,连接BF ,过B 点作BG ⊥AC ,垂足为G .根据题干条件证明△BAF ≌△BAE ,得出∠E =∠F ,然后在Rt △BGF 中,求出tan F 的值,进而求出tan E 的值.三、21.解:(1)原式=12-3×32+1+12=12-32+1+12=12;(2)原式=-(2+3)+4×12×22-(3-2)=-2-3+2-3+2=-23+ 2. 22.解:由2a =3b ,可得a b =32.设a =3k (k >0),则b =2k ,由勾股定理,得c =a 2+b 2=9k 2+4k 2=13k . ∴sin B =b c =2k 13k =21313,cos B =a c =3k 13k =31313,tan B =b a =2k 3k =23. 23.解:∵AC ⊥BD ,∴∠ACB =∠ACD =90°. ∵点E 是AB 的中点,CE =1, ∴BE =CE =1,AB =2CE =2. ∴∠B =∠ECB . ∵BC CD =32,∴设BC =3x ,则CD =2x . 在Rt △ACD 中,tan D =2, ∴ACCD =2. ∴AC =4x .在Rt △ACB 中,由勾股定理得AB =AC 2+BC 2=5x , ∴sin ∠ECB =sin B =AC AB =45.由AB =2,得x =25,∴AD =AC 2+CD 2=(4x )2+(2x )2=25x =25×25=455. 24.解:如图,过点A 作AD ⊥BC 于点D .(第24题)根据题意知∠ABC =90°-30°=60°,∠ACD =45°,∴∠CAD =45°. ∴∠ACD =∠CAD . ∴AD =CD .∴BD =BC -CD =200-AD . 在Rt △ABD 中,tan ∠ABD =ADBD ,∴AD =BD ·tan ∠ABD =(200-AD )·tan 60°=3(200-AD ). ∴AD +3AD =200 3.∴AD =20033+1=300-1003(m).答:该河段的宽度为(300-1003)m. 25.解:如图,过点A 作AP ⊥BC ,垂足为P ,设AP =x n mile.(第25题)在Rt △APC 中,∵∠APC =90°, ∠PAC =90°-60°=30°, ∴tan ∠PAC =CP AP =33. ∴CP =33x n mile.在Rt △APB 中,∵∠APB =90°, ∠PAB =45°, ∴BP =AP =x n mile.∵PC +BP =BC =30×12=15(n mile),∴33x +x =15. 解得x =15(3-3)2.∴PB =15(3-3)2 n mile. ∴航行时间为15(3-3)2÷30=3-34(h).答:该渔船从B 处开始航行3-34 h ,离观测点A 的距离最近.26.解:(1)如图,连接PA .(第26题)由已知得AP =39 m ,在Rt △APH 中,PH =AP 2-AH 2=392-152=36(m). 答:此时汽车与点H 的距离为36 m. (2)由题意,隔音板位置应从P 到Q ,在Rt △ADH 中,DH =AH tan 30°=1533=153(m);在Rt △CDQ 中,DQ =CQ sin 30°=3912=78(m).∴PQ =PH +HQ =PH +DQ -DH =36+78-153≈114-15×1.7≈89(m). 答:高架道路旁安装的隔音板至少需要89 m 长.第一章测试卷(2)一、选择题(每题3分,共30分) 1.已知cos A =32,则锐角A 的度数为( )A .30°B .45°C .50°D .60°2.在Rt △ABC 中,∠C =90°,tan B =32,BC =23,则AC 等于( )A .3B .4C .4 3D .63.在锐角三角形ABC 中,若⎝⎛⎭⎪⎫sin A -322+⎪⎪⎪⎪⎪⎪22-cos B =0,则∠C 等于( )A .60°B .45°C .75°D .105°4.如图,在由边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,则tan∠ABC 的值为( )A .35B .34C .105 D .1(第4题) (第5题) (第6题)5.如图,在Rt △ABC 中,CD 是斜边AB 上的中线,已知CD =5,AC =6,则tan B 的值为( )A .45B .35C .34D .436.为了测量被池塘隔开的A ,B 两点之间的距离,根据实际情况,作出如图所示的图形,其中AB ⊥BE ,EF ⊥BE ,AF 交BE 于点D ,C 在BD 上.有四位同学分别测量出以下4组数据:①BC ,∠ACB ;②CD ,∠ACB ,∠ADB ;③EF ,DE ,BD ;④DE ,DC ,BC .能根据所测数据,求出A ,B 两点之间距离的有( ) A .1组 B .2组 C .3组 D .4组7.如图,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边上的点F 处.已知AB =8,BC =10,则tan ∠EFC 的值为( )A .34B .43C .35D .458.如图所示,从热气球C 处测得地面A ,B 两点的俯角分别为30°,45°,如果此时热气球的高度CD 为100 m ,点A ,D ,B 在同一直线上,则A ,B 两点之间的距离是( ) A .200 m B .200 3 m C .220 3 m D .100(3+1)m(第8题) (第9题) (第10题) 9.如图,若△ABC和△DEF的面积分别为S1,S2,则()A.S1=12S2B.S1=72S2C.S1=85S2D.S1=S210.已知在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3在x轴上.若正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,则点A3到x轴的距离是()A.3+318B.3+118C.3+36D.3+16二、填空题(每题3分,共24分)11.计算:cos245°+tan 30°sin 60°=________.12.在Rt△ABC中,∠C=90°,BC=10,若△ABC的面积为5033,则∠A=_________度.13.如图,正方形ABCD的边长为4,点M在边DC上,M,N两点关于对角线AC所在的直线对称,若DM=1,则tan∠ADN=________.14.已知锐角A的正弦sin A是一元二次方程2x2-7x+3=0的根,则sin A=________.15.如图,将以A为直角顶点的等腰直角三角形ABC沿直线BC平移得到△A′B′C′,使点B′与C重合,连接A′B,则tan∠A′BC′=________.(第15题) (第16题) (第17题) (第18题)16.如图,一架梯子斜靠在墙上,若梯子底端到墙的距离AC=3 m,cos∠BAC=34,则墙高BC=________.17.如图,已知正方形ABCD的边长为2,如果将线段BD绕着点B旋转后,点D落在CB 的延长线上的D′处,那么tan∠BAD′=________.18.如图,甲、乙两渔船同时从港口O出发外出捕鱼,乙沿南偏东30°方向以10 n mile/h 的速度航行,甲沿南偏西75°方向以10 2 n mile/h的速度航行,当航行1 h后,甲在A 处发现自己的渔具掉在了乙船上,于是迅速改变航向和速度,仍以匀速沿南偏东60°方向追赶乙船,正好在B 处追上.则甲船追赶乙船的速度为________n mile/h. 三、解答题(19题12分,20题10分,21,22每题14分,23题16分,共66分) 19.计算:(1)3sin 60°-2cos 45°+38;(2)12-3+4cos 60°·sin 45°-(tan 60°-2)2.20.a ,b ,c 是△ABC 的三边,且满足等式b 2=c 2-a 2,5a -3c =0,求sin A +sin B 的值.21.如图,已知▱ABCD ,点E 是BC 边上的一点,将边AD 延长至点F ,使∠AFC =∠DEC.(1)求证:四边形DECF 是平行四边形.(2)若AB =13,DF =14,tan A =125,求CF 的长.22.为建设“宜居宜业宜游”山水园林城市,正在对某城市河段进行区域性景观打造.某施工单位为测得某河段的宽度,测量员先在河对岸岸边取一点A,再在河这边沿河边取两点B和C,在B处测得点A在北偏东30°方向上,在点C处测得点A在西北方向上,如图,量得BC长为200 m,求该河段的宽度(结果保留根号).23.某校教学楼后面紧邻着一个土坡,坡上面是一块平地,BC∥AD,斜坡AB长为22 m,坡角∠BAD=68°.为了防止山体滑坡,保障安全,学校决定对该土坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.(1)求改造前坡顶与地面的距离(精确到0.1 m).(2)为了确保安全,学校计划改造时保持坡的根部A不动,坡顶B沿BC前进到F点处,问BF至少是多少?(精确到0.1 m)(参考数据:sin 68°≈0.927 2,cos 68°≈0.374 6,tan 68°≈2.475 1,sin 50°≈0.766 0,cos 50°≈0.642 8,tan 50°≈1.191 8)答案一、1.A2.A 点拨:由tan B =AC BC 知AC =BC tan B =23×32=3.3.C 点拨:由题意,得sin A -32=0,22-cos B =0.所以sin A =32,cos B =22.所以∠A =60°,∠B =45°,所以∠C =180°-∠A -∠B =180°-60°-45°=75°. 4.B 5.C6.C 点拨:对于①,可由AB =BC ·tan ∠ACB 求出AB 的长;对于②,由BC =ABtan ∠ACB,BD =AB tan ∠ADB ,BD -BC =CD ,可求出AB 的长;对于③,易知△DEF ∽△DBA ,则DEEF =BDAB ,可求出AB 的长;对于④,无法求得AB 的长,故有①②③共3组,故选C . 7.A8.D 点拨:由题意可知,∠A =30°,∠B =45°,tan A =CD AD ,tan B =CDDB ,又CD =100 m ,因此AB =AD +DB =CD tan A +CD tan B =100tan 30°+100tan 45°=1003+100=100(3+1)(m). 9.D 点拨:如图,过点A 作AM ⊥BC 于点M ,过点D 作DN ⊥EF ,交FE 的延长线于点N .在Rt △ABM 中,∵sin B =AMAB ,∴AM =3×sin 50°,∴S 1=12BC ·AM =12×7×3×sin 50°=212sin 50°.在Rt △DEN 中,∠DEN =180°-130°=50°.∵sin ∠DEN =DN DE ,∴DN =7×sin 50°,∴S 2=12EF ·DN =12×3×7×sin 50°=212sin 50°,∴S 1=S 2.故选D .10.D 点拨:依题意知:D 1E 1=12,B 2C 2=33,B 3E 4=36,B 3C 3=13,A 3C 3=23,sin ∠A 3C 3x=sin(30°+45°)=sin 75°=2+64,∴A 3到x 轴的距离3+16. 二、11.1 点拨:cos 245°+tan 30°sin 60°=⎝ ⎛⎭⎪⎫222+33×32=1.12.60 点拨:∵BC =10,∴S △ABC =BC ·AC 2=10·AC 2=5033,则AC =1033,∴tan A =BC AC =101033=3,∴∠A =60°.13.43 14.1215.13 点拨:如图,过A ′作A ′D ⊥BC ′于点D ,设A ′D =x ,则B ′D =x ,BC =2x ,BD =3x .∴tan ∠A ′BC ′=A ′D BD =x 3x =13.16.7 m 点拨:由cos ∠BAC =AC AB =34,知3AB =34,∴AB =4 m.在Rt △ABC 中,BC =AB 2-AC 2=42-32=7(m). 17.2 点拨:由题意知BD ′=BD =2 2.在Rt △ABD ′中,tan ∠BAD ′=BD ′AB =222= 2.18.(10+103) 点拨:如图,由题意可知,∠DOB =30°,∠AOD =75°,∠2=90°-60°=30°.∵∠3=∠AOD =75°,∴∠1=90°-75°=15°,故 ∠1+∠2=15°+30°=45°.如图,过点O 作OC ⊥AB 于点C ,则∠AOC =90°-∠1-∠2=90°-45°=45°.易知OA =102n mile ,∠OAB =∠AOC =45°,∴OC =AC =OA ·sin 45°=102×22=10(n mile).在Rt △OBC 中, ∠BOC =∠AOD +∠BOD -∠AOC =75°+30°-45°=60°,∴BC = OC ·tan 60°=10 3 n mile ,∴AB =AC +BC =(10+103)n mile.∵OC =10 n mile ,∠B =30°,∴OB =2OC =2×10=20(n mile),乙船从O 到B 所用时间为20÷10=2(h ).∵甲船从O 到A 所用时间为1 h ,∴甲船从A 到B 所用时间为2-1=1(h),故甲船追赶乙船的速度为(10+103)n mile/h.三、19.解:(1)原式=3×32-2×22+2=32-1+2 =52.(2)原式=-(2+3)+4×12×22-(3-2)2 =-2-3+2-(2-3) =-2.20.解:由b 2=c 2-a 2,得a 2+b 2=c 2,∴△ABC 为直角三角形,∠C =90°. ∵5a -3c =0, ∴a c =35,即sin A =35. 设a =3k ,c =5k ,则b =(5k )2-(3k )2=4k . ∴sin B =b c =45, ∴sin A +sin B =35+45=75.21.(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC .∴∠ADE =∠DEC . 又∵∠AFC =∠DEC , ∴∠AFC =∠ADE . ∴DE ∥FC .∴四边形DECF 是平行四边形.(2)解:过点D 作DH ⊥BC 于点H ,如图所示.∵四边形ABCD 是平行四边形, ∴∠BCD =∠A ,AB =CD =13. 又∵tan A =125=tan ∠DCH =DHCH , ∴DH =12,CH =5. ∵DF =14, ∴CE =14. ∴EH =9.∴DE =92+122=15. ∴CF =DE =15.22.解:如图,过点A 作AD ⊥BC 于点D .根据题意,知∠ABC =90°-30°=60°,∠ACD =45°,∴∠CAD =45°. ∴∠ACD =∠CAD . ∴AD =CD .∴BD =BC -CD =200-AD . 在Rt △ABD 中,tan ∠ABD =ADBD ,∴AD =BD ·tan ∠ABD =(200-AD )·tan 60°=3(200-AD ). ∴AD +3AD =200 3.∴AD =20033+1=(300-1003)(m).故该河段的宽度为(300-1003)m.23.解:(1)如图,作BE⊥AD,E为垂足,则BE=AB·sin 68°=22 sin 68°≈20.4(m).即改造前坡顶与地面的距离约为20.4 m.(2)如图,作FG⊥AD,G为垂足,连接FA.则∠FAG=50°,FG=BE.∵AG=FGtan 50°≈20.41.191 8≈17.12(m),AE=AB·cos 68°=22cos 68°≈8.24(m),∴BF=GE=AG-AE≈8.9 m,即BF至少是8.9 m.。
北师大版九年级数学下册第一章直角三角形的边角关系综合压轴题专项训练试题1、如图,MN是表示某引水工程的一段设计路线,从M到N的走向为南偏东30°,在M的南偏东60°方向上有一点A,以A为圆心,500 米为半径的圆形区域为居民区,取MN上另一点B,测得BA的方向为南偏东75°,已知MB=400米,通过计算回答,如果不改变方向,输水路线是否会穿过居民区?2、如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD高6米,其中D 是BC的中点,且AD⊥BC.(1)求sin B的值;(2)现需要加装支架DE,EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F.求支架DE的长.3、如图,拦水坝的横断面为等腰梯形ABCD,坝顶宽BC为6 m,坝高为3.2 m,为了提高水坝的拦水能力需要将水坝加高2 m,并且保持坝顶宽度不变,迎水坡CD的坡度不变,但是背水坡的坡度由原来的1∶2变成1∶2.5(坡度是坡高与坡的水平长度的比).求加高后的坝底HD的长为多少.4、小红家的阳台上放置了一个晒衣架(如图∶),图∶是晒衣架的侧面示意图,立杆AB,CD相交于点O ,B ,D 两点立于地面,经测量:AB =CD =136 cm ,OA =OC =51 cm ,OE =OF =34 cm ,现将晒衣架完全稳固张开,扣链EF 成一条线段,且EF =32 cm (参考数据:sin 61.9°≈0.882,cos 61.9°≈0.471,tan 28.1°≈0.534).(1)求证:AC ∶BD .(2)求扣链EF 与立杆AB 的夹角∶OEF 的度数(结果精确到0.1°).(3)小红的连衣裙穿在晒衣架上的总长度达到122 cm ,垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由.5、如图,在电线杆上的C 处引拉线CE ,CF 固定电线杆,拉线CE 和地面成60°角,在离电线杆6米的点B 处安置测角仪,在点A 处测得电线杆上C 处的仰角为30°.已知测角仪高AB 为1.5米,求拉线CE 的长(结果保留根号).6、如图,两条笔直的公路AB CD 、相交于点O ,AOC ∠为36°,指挥中心M 设在OA 路段上,与O 地的距离为18千米.一次行动中,王警官带队从O 地出发,沿OC 方向行进,王警官与指挥中心均配有对讲机,两部对讲机只能在10千米之内进行通话,通过计算判断王警官在行进过程中能否实现与指挥中心用对讲机通话.【参考数据:sin360.59cos360.81tan360.73===°,°,°.】7、在建筑楼梯时,设计者要考虑楼梯的安全程度和占地面积,如图1—136(1)所示,虚线为楼梯的斜度线,斜度线与地板的夹角为锐角θ,一般情况下,锐角θ愈小,楼梯的安全程度愈高,但占地面积较多,如图l—136(2)所示,为提高安全程度,把倾角由θ1减至θ2,这样楼梯占用地板的长度由d1增加到d2,已知d1=4 m,θ1=40°,θ2=36°,求楼梯占用地板的长度增加了多少.(精确到0.01 m,参考数据:sin36°≈0.5878,cos36°≈0.8090,tan 36°≈0.7265,sin 40°≈0.6428,cos 40°≈0.7660,tan 40°≈0.8391)8、在旧城改造中,要拆除一烟囱AB,如图1—137所示,在地面上事先划定以B为圆心,半径与AB等长的圆形区域为危险区,现在从与B地水平距离相距(BD=21米)21米远的建筑物CD的顶端C点测得A点的仰角为45°,B点的俯角为30°,现在离B点25米远的地方有一受保护的文物,则该文物是否在危险区内?试说明理由.,精确到0.01米)9、通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图1,在∶ABC中,AB =AC ,顶角A 的正对记作sadA ,这时sadA =底边腰=BC AB .容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:(1)sad 60°=____________;(2)对于0°<∶A <180°,∶A 的正对值sadA 的取值范围是____________;(3)如图2,已知sinA =35,其中∶A 为锐角,试求sadA 的值. 10、根据道路管理规定,在羲皇大道秦州至麦积段上行驶的车辆,限速60千米/时.已知测速站点M 距离羲皇大道l (直线)的距离MN 为30米(如图8所示).现有一辆汽车由秦州向麦积方向匀速行驶,测得此车从点A 行驶到点B 所用时间为6秒,∠AMN =60°,∠BMN =45°.(1)计算AB 的长;(2)通过计算判断此车是否超速.11、如图所示,港口B 位于港口O 正西方向120 km 处,小岛C 位于港口O 北偏西60°的方向.一艘游船从港口O 出发,沿OA 方向(北偏西30°)以v km /h 的速度驶离港口O ,同时一艘快艇从港口B 出发,沿北偏东30°的方向以60 km /h 的速度驶向小岛C ,在小岛C 用1 h 加装补给物资后,立即按原来的速度给游船送去.(1)快艇从港口B 到小岛C 需要多长时间?(2)若快艇从小岛C 到与游船相遇恰好用时1 h ,求v 的值及相遇处与港口O 的距离.12、如图,修公路遇到一座山,于是要修一条隧道,为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C 在AB 的延长线上,设想过C 点作直线AB 的垂线l ,过点B 作一直线(在山的旁边经过),与l 相交于D 点,经测量∶ABD =135°,BD =800米,求直线l 上距离D 点多远的C 处开挖?(2≈1.414,结果精确到1米)13、已知:如图,在山脚的C 处测得山顶A 的仰角为 45°,沿着坡度为30°的斜坡前进400米到D 处(即 ∠,CD =400米),测得A 的仰角为,求山的高度AB .14、如图,在南北方向的海岸线MN 上,有A ,B 两艘巡逻船,现均收到故障船C 的求救信号.已知A ,B 两船相距1003+1)海里,船C 在船A 的北偏东60°方向上,船C 在船B 的东南方向上,MN 上有一观测点D ,测得船C 正好在观测点D 的南偏东75°方向上.(1)分别求出A 与C ,A 与D 间的距离AC 和AD (如果运算结果有根号,请保留根号).(2)已知距观测点D 处100海里范围内有暗礁,若巡逻船A 沿直线AC 去营救船C ,在23≈1.73)6015、如图,防洪大堤的横断面是梯形,背水坡AB的坡比i=1∶,且AB=30 m,李亮同学在大堤上A点处用高1.5 m的测量仪测出高压电线杆CD顶端D的仰角为30°,已知地面BC宽30 m,求高压电线杆CD的高度.(结果保留三位有效数字,≈1.732)16、如图,为了测量出楼房AC的高度,从距离楼底C处60米的点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1∶的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈,计算结果用根号表示,不取近似值).17、如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6 m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.(1)求∠BP Q的度数;(2)求该电线杆PQ的高度(结果精确到1 m).(参考数据:≈1.7,≈1.4)18、乌江快铁大桥是快铁渝黔线的一项重要工程,由主桥AB和引桥BC两部分组成(如图所示).建造前工程师用以下方式做了测量:无人机在A处正上方97 m处的P点,测得B处的俯角为30°(当时C处被小山体阻挡无法观测).无人机飞行到B处正上方的D处时能看到C处,此时测得C处的俯角为80°36′.(1)求主桥AB的长度;(2)若两观察点P,D的连线与水平方向的夹角为30°,求引桥BC的长度.(长度均精确到1 m,参考数据:3≈1.73,sin80°36′≈0.987,cos80°36′≈0.163,tan80°36′≈6.06)。
九年级下册数学第一章综合测试卷一、填空题(每小题2分,共48分) 1.sin45°=__;cot60°=____.2.若sin67°18′=0.9225,则cos22°42′=__。
3.在△ABC 中,∠C =90°,a=3,b=4,则cosA =____。
4.计算:2sin30°+tan60°-6cot60°=______。
5.如果锐角α满足2cos α=2,那么α=___。
6.在△ABC 中,∠C =90°,sinA=0.6,则tanA =___。
7.在△ABC 中,角A 、B 满足|tanA -1|+20.5cosB -=0,则△ABC 是 三角形. 8、在△ABC 中,∠C =90°,AC =24,BC =7,则tanA =__;cotA=_____.9.用计算器求cos24°的值,应先按键 ,再依次按键 , ,可得答案。
10.在△ABC 中,∠C =90°,∠A =60°,BC =4,则AC =__;AB =__。
11.如图,厂房屋顶人字架(等腰三角形)的跨度为10米,∠A =30°,则上弦AB 的长为____米。
12.菱形的两条对角线长的比是3∶1,那么菱形的相邻两个内角的度数为__.13.如果等腰三角形的顶角为120°,底边上的高为3,那么周长为___。
14.在△ABC 中,∠C =90°,∠A =60°,a +b=14,则a b =___。
15.如图,两建筑物的水平距离是36米,从A 点测得D 角α=30°,测得C 点的俯角β为45°,AB =__米,CD =___米。
16. 已知:sin α=0.5,则cos(90°-α)=____。
17.等边三角形的边长为2,则它的高等于___,面积等于_____。
18.平行四边形ABCD 中,已知:∠B =60°,AB =8cm ,BC =6cm ,则它的面积等于___。
19.三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( )A. 等边三角形;B. 钝角三角形;C. 直角三角形;D. 锐角三角形. 20.在直角三角形中,若各边的长度都扩大5倍,那么锐角∠A 的正弦值( ) A. 扩大5倍 B. 缩小5倍 C. 没有变化 D. 不能确定 21.在Rt △ABC 中,∠C=90° ,则等于( )(A)0 (B)1 (C)-1 (D)不确定 22.在Rt △ABC 中,已知a 边及∠A ,则斜边应为( ) A 、A a sin B 、A a sin C 、A a cos D 、Aa cos23.一个直角三角形有两条边长为3和4,则较小锐角的正切值是( )A 、43 B 、34 C 、37 D 、43或3724.Rt △ABC 中,∠C=90°,a=2,cosB=31,则b 的长为( ) A 、3102 B 、102 C 、24 D 、234二、选择题(每小题2分,共38分) 1.下列各式中错误的是( )A.tan50°=cot40°;B.tan45º=1;C.cos15º+cos30°=cos45°;D.sin39º=cos51° 2.等腰三角形底边长10cm ,周长为36cm ,则底角的余弦值( )。
A.1310 B.1312 C.125 D.135 3.在△ABC 中,∠C =90°,3a =3b,则∠A =( )。
A.30°B.45°C.60°D.90°4.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,下列关系中错误的是( )。
A.b=c ·cosB;B.b=a ·tanB;C.a=c ·sinA;D.a=b ·cotB5、在△ABC 中,∠C =90°,cotA =0.75,AB =10,那么AB 边上的高等于( ). A.512 B.524 C.2563 D.2584 6、若角A 满足sinA+cosA=2,则sinA ·cosA=( ). A.0.5 B.0.52 C.0.53 D.17.在平行四边形ABCD 中,AB =5,AD =2,它的面积为53,那么平行四边形ABCD 的相邻两内角的度数为( )。
A.30°,150°;B.45°,135°;C.60°,120°;D.75°,105° 8、如果∠A 为锐角,且sinA =0.6,那么( )。
A.0°<A ≤30°;B.30°<A <45°;C.45°<A ≤60°;D.60°<A ≤90° 9、已知sinA=0.5018, 求锐角A 。
用计算器操作的步骤是( )。
A.先按键2ndf 和键sin,再依次按键·、5、0、1、8、= B.先按键sin 和键2ndf,再依次按键·、5、0、1、8、= C.先按键sin ,再依次按键·、5、0、1、8、= D.先按键·、5、0、1、8,再按键sin 、=10.sin70°、cos70°、tan70°的大小关系是( )。
A.sin70°>cos70°>tan70°;B.tan70°>cos70°>sin70°C.cos70°>sin70º>tan70°;D.tan70º>sin70º>cos70º11.在△ABC 中,∠C =90°,已知c 和B 的值,则b 的值是( )。
A.c ·sinB B.c ·cosB C.c ·tanB D.c ·cotB12.当A 为锐角时,cosA 的值小于0.5,则∠A 的度数是( )。
A.小于30º B.大于30º C.小于60º D.大于60º 13.在△ABC 中,∠C =90°,cosB=31,则cotA=( ). A.32 B.42 C.23D.214.利用计算器求值(保留4位有效数字):cos75°12′= ; cot44°13′= .15.在锐角△ABC 中,∠A =75°,sinC =23,则∠B = . 16.若tan α·tan50°=1,则锐角α= _____度。
17.已知sinC=0.65,则锐角C= (精确到分)18.在Rt △ABC 中,∠C=90°,直角边AC 的长是斜边AB 长的31,则cosB 的值等于 .19.如图,在高2米,坡角为30°的楼梯表面铺地毯, 地毯的长度至少需 米。
(精确到0.1米)三、计算(每小题3分,共15分) 1、tan 230°+2sin60°-tan45°cos0°;2、︒+︒+︒cot601sin601cos60 ;3、tan44ºtan45ºtan46º+sin60ºcos30º;4、tan 230°-21cos30)-(︒+|1-tan60º|5.cos60º-tan 245º-︒-︒︒30sin 30cos 90sin +tan24º·tan66º;四、完成下列各题(共29分)1、要测得塔的高AB ,从与塔底部在同一水平直线上的C 、D 两处,测得塔顶部的仰角分别是α=30°和β=45°,CD =28米。
求塔的高度。
2、已知:在Rt △ABC 中,a=6,b =23。
解此直角三角形。
3、梯形ABCD 中,AB ∥CD ,AB =6,BC =10,CD =2,AD =32,求:梯形ABCD 的面积。
BD CA4、若关于x 的一元二次方程x 2-3(m +1)X +m 2-9m +20=0有两个实数根,已知:a 、b 、c 分别是△ABC 相应角的对边,且∠C =90°,cosB=53,b -a =3,问:是否存在整数m ,使上述一元二次方程有两个实数根的平方和等于Rt △ABC 的斜边的平方。
若存在,求m 的值,若不存在,请说明理由。
5.等腰三角形的两边长分别是4cm 和8cm ,求底角的正切值。
(4分)6.渔轮向东追逐鱼群,上午8点在一座灯塔的西南100海里处,下午4点驶抵灯塔的东南方向,求渔轮的航速。
(4分)7.如图,水库大坝的横断面是梯形,坝顶宽6米,坝高BE=CF=20米,斜坡AB 的坡角∠A=30°,斜坡CD 的坡度i =1:2.5,求坝底宽AD 的长.(答案保留根号)(5分)8.如图,在离旗杆60米的A 处,用测角仪测得旗杆顶端D 的仰角为300,测得旗杆底部C 的俯角为α,且tan α=401,求旗杆CD9.因过度采伐森林和破坏植被,使我国许多地区频频遭受沙尘暴的侵袭,近日,A 市气象局测得沙尘暴中心在A 市的正西方向300km 的B 处,以107km/h 的速度向东偏南30°的BF 方向移动,距沙尘暴中心200km 的范围是受沙尘暴严重影响的区域。
(1)通过计算说明A 市必然会受到这次沙尘暴的影响;(2)求A 市受沙尘暴影响的时间。
(7分)。