相交线与平行线6
- 格式:doc
- 大小:285.00 KB
- 文档页数:5
5.3.1 平行线的性质(第1课时)平行线的性质(一)一.教学目标1.知识与技能:经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算.2.过程与方法:经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力。
3.情感态度与价值观:培养学生合作交流意识和探索精神。
二.重点、难点重点:探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算.难点:能区分平行线的性质和判定,平行线的性质与判定的混合应用.三.教学过程(一)、引导学生逆向思维现在同学们已经掌握了利用同位角相等,或者内错角相等,或者同旁内角互补, 判定两条直线平行的三种方法.在这一节课里:大家把思维的指向反过来: 如果两条直线平行,那么同位角、内错角、同旁内角的数量关系又该如何表达?(二)、实践探究1.学生画图活动:用直尺和三角尺画出两条平行线a∥b,再画一条截线c与直线a、b相交,标出所形成的八个角(如课本P21图5.3-1).2.3.学生根据测量所得数据作出猜想.图中哪些角是同位角?它们具有怎样的数量关系?图中哪些角是内错角?它们具有怎样的数量关系?图中哪些角是同旁内角?它们具有怎样的数量关系?在详尽分析后,让学生写出猜想.4.学生验证猜测.学生活动:再任意画一条截线d,同样度量并计算各个角的度数,你的猜想还成立吗?c b a4321平行线具有性质:性质1:两条平行线被第三条直线所截,同位角相等,简称为两直线平行, 同位角相等.性质2:两条平行线被第三条直线所截,内错角相等,简称为两直线平行, 内错相等.性质3:两条直线按被第三条线所截,同旁内角互补,简称为两直线平行, 同旁内角互补.教师让学生结合右图,用符号语言表达平行线的这三条性质,教师同时板书平行线的性质和平行线的判定. 平行线的性质平行线的判定因为a∥b, 因为∠1=∠2,所以∠1=∠2 所以a∥b.因为a∥b, 因为∠2=∠3,所以∠2=∠3, 所以a∥b.因为a ∥b, 因为∠2+∠4=180°, 所以∠2+∠4=180°, 所以a ∥b.6.教师引导学生理清平行线的性质与平行线判定的区别. 学生交流后,师生归纳:两者的条件和结论正好相反:由角的数量关系(指同位角相等,内错角相等,同旁内角互补), 得出两条直线平行的论述是平行线的判定,这里角的关系是条件,两直线平行是结论.由已知的两条直线平行得出角的数量关系(指同位角相等,内错角相等, 同旁内角互补)的论述是平行线的性质,这里两直线平行是条件,角的关系是结论. 7.进一步研究平行线三条性质之间的关系.教师:大家能根据性质1,推出性质2成立的道理吗?结合上图,教师启发分析:考察性质1、性质2的结论发生了什么变化? 学生回答∠1换成∠3,教师再问∠1与∠3有什么关系?并完成说理过程,教师纠正学生错误,规范地给出说理过程. 因为a ∥b,所以∠1=∠2(两直线平行,同位角相等); 又∠3=∠1(对顶角相等),所以∠2=∠3.教师说明:这是有两步的说理,第一步推理根据平行线性质1,第二步推理的条件不仅有∠1=∠2,还有∠3=∠1.∠2=∠3是根据等式性质.根据等式性质得到的结论可以不写理由. 学生仿照以下说理,说出如何根据性质1得到性质3的道理. 8.平行线性质应用.例 (课本P23)如图是一块梯形铁片的线全部分,量得∠A=100°,∠B=115°,梯形另外两个角分别是多少度?教师把学生情况,可启发提问:①梯形这条件如何使用?②∠A 与∠D 、∠B 与∠C 的位置关系如何,数量关系呢?为什么? 讲解按课本.(三)、巩固练习 1.课本练习(P22). (四)课堂小结: 经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算 (五)课堂作业:练习卷 (六)课堂反馈 一、判断题.1.两条直线被第三条直线所截,则同旁内角互补.( )2.两条直线被第三条直线所截,如果同旁内角互补,那么同位角相等.( )3.两条平行线被第三条直线所截,则一对同旁内角的平分线互相平行.( ) 二、填空题.1.如图(1),若AD ∥BC,则∠______=∠_______,∠_______=∠_______, ∠ABC+∠_______=180°; 若DC ∥AB,则∠______=∠_______, ∠________=∠__________,∠ABC+∠_________=180°.87654321DCBAFEDC B A(1) (2) (3) 2.如图(2),在甲、乙两地之间要修一条笔直的公路, 从甲地测得公路的走向是南偏西56°,甲、乙两地同时开工,若干天后公路准确接通, 则乙地所修公路的走向是_________,因为____________.D C BA3.因为AB∥CD,EF∥CD,所以______∥______,理由是________.4.如图(3),AB∥EF,∠ECD=∠E,则CD∥AB.说理如下:因为∠ECD=∠E,所以CD∥EF( )又AB∥EF,所以CD∥AB( ).平行线的性质(第2课时)平行线的性质(二) 教学目标知识与技能:能够综合运用平行线性质和判定解题过程与方法.理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论. 情感态度与价值观:推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力. 重点、难点重点:平行线性质和判定综合应用,两条平行的距离,命题等概念. 难点:平行线性质和判定灵活运用.教学过程 一、复习引入1.平行线的判定方法有哪些?(注意:平行线的判定方法三种,另外还有平行公理的推论)2.平行线的性质有哪些.3.完成下面填空.已知:BE 是AB 的延长线,AD ∥BC,AB ∥CD,若∠D=100°,则∠C=_____, ∠A=______,∠CBE=________.4.a ⊥b,c ⊥b,那么a 与c 的位置关系如何?为什么? 二、进行新课已知:如上图,a ∥c,a ⊥b,直线b 与c 垂直吗?为什么?学生容易判断出直线b 与c 垂直.鉴于这一点,教师应引导学生思考:(1)要说明b ⊥c,根据两条直线互相垂直的意义, 需要从它们所成的角中说明某个角是90°,是哪一个角?通过什么途径得来?(2)已知a ⊥b,这个“形”通过哪个“数”来说理,即哪个角是90°.(3)上述两角应该有某种直接关系,如同位角关系、内错角关系、同旁内角关系,你能确定它们吗? 让学生写出说理过程,师生共同评价三种不同的说理.(1)下列各图中,已知AB ∥EF,点C 任意选取(在AB 、EF 之间,又在BF 的左侧).请测量各图中∠B 、∠C 、∠F 的度数并填入表格.通过上述实践,FECBAFECBA(1) (2) 教师投影题目:学生依据题意,画出类似图(1)、图(2)的图形,测量并填表,并猜想:∠B+∠F=∠C.在进行说理前,教师让学生思考:平行线的性质对解题有什么帮助? 教师视学生情况进一步引导: ①虽然AB ∥EF,但是∠B 与∠F 不是同位角,也不是内错角或同旁内角. 不能确定它们之间关系.②∠B 与∠C 是直线AB 、CF 被直线BC 所截而成的内错角,但是AB 与CF 不平行.能不能创造条件,应用平行线性质,学生自然想到过点C 作CD ∥AB,这样就能用上平行线的性质,得到∠B=∠BCD. ③如果要说明∠F=∠FCD,只要说明CD 与EF 平行,你能做到这一点吗?以上分析后,学生先推理说明, 师生交流,教师给出说理过程.E D CB AFEDCB A作CD ∥AB,因为AB ∥EF,CD ∥AB,所以CD ∥EF(两条直线都与第三条直线平行, 这两条直线也互相平行). 所以∠F=∠FCD(两直线平行,内错角相等).因为CD ∥AB.所以∠B=∠BCD(两直线平行,内错角相等).所以∠B+∠F=∠BCF. (2)教师投影课本P23探究的图(图5.3-4)及文字.①学生读题思考:线段B 1C 1,B 2C 2……B 5C 5都与两条平行线的横线A 1B 5和A 2C 5垂直吗?它们的长度相等吗?②学生实践操作,得出结论:线段B 1C 1,B 2C 2……,B 5C 5同时垂直于两条平行直线A1B5和A 2C 5,并且它们的长度相等.③师生给两条平行线的距离下定义.学生分清线段B 1C 1的特征:第一点线段B 1C 1两端点分别在两条平行线上,即它是夹在这两条平行线间的线段,第二点线段B 1C 1同时垂直这两条平行线. 教师板书定义:(像线段B 1C 1)同时垂直于两条平行线, 并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.④利用点到直线的距离来定义两条平行线的距离.F EDCBA教师画AB ∥CD,在CD 上任取一点E,作EF ⊥AB,垂足为F.学生思考:EF 是否垂直直线CD?垂线段EF 的长度d 是平行线AB 、CD 的距离吗? 这两个问题学生不难回答,教师归纳:两条平行线间的距离可以理解为:两条平行线中,一条直线上任意一点到另一条直线的距离. 教师强调:两条平行线的距离处处相等,而不随垂线段的位置改变而改变. 3.了解命题和它的构成.(1)教师给出下列语句,学生分析语句的特点.①如果两条直线都与第三条直线平行,那么这条直线也互相平行; ②等式两边都加同一个数,结果仍是等式; ③对顶角相等;④如果两条直线不平行,那么同位角不相等.这些语句都是对某一件事情作出“是”或“不是”的判断. (2)给出命题的定义.判断一件事情的语句,叫做命题.教师指出上述四个语句都是命题,而语句“画AB ∥CD”没有判断成分,不是命题.教师让学生举例说明是命题和不是命题的语句. (3)命题的组成.①命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项. ②命题的形成.命题通常写成“如果……,那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论.有的命题没有写成“如果……,那么……”的形式,题设与结论不明显,这时要分清命题判断了什么事情,有什么已知事项,再改写成“如果……,那么……”形式.师生共同分析上述四个命题的题设和结论,重点分析第②、③语句.第②命题中,“存在一个等式”而且“这等式两边加同一个数”是题设,“结果仍是等式”是结论。
二、 本章有四个数学基本事实1. 过直线外一点有且只有一条直线与这条直线平行; 2•过一点有且只有一条直线与这条直线垂直;3. 两条直线被第三条直线所截,如果同位角相等,那么两直线平行;4. 两直线平行,同位角相等.三、 本章共有19个概念1. 对顶角2.邻补角3.垂直4.垂线5.垂足6.垂线段7.点到直线的距离8.同位角9.内错角 10.同旁内角11.平行12.数学基本事实13.平行公理14命题15.真命题16.假命题 17.定理18.证明19.平移四、转化的数学思想 遇到新问题时,常常把它转化为已知(或已解决)的问题 .P14 五、平移1. 找规律2. 转化求面积 3作图(2009年安徽中考)学校植物园沿路护栏纹饰部分设计成若干个全等菱形图案,每增加一 个菱形图案,纹饰长度就增加 dem ,如图所示.已知每个菱形图案的边长 10 3 cm ,其一个内角为60°.【解】(2)当d = 20时,若保持(1 )中纹饰长度不变,则需要多少个这样的菱形图案?【解】(1 )若相交线与平行线知识点5.1相交线1、邻补角与对顶角图形 顶点 边的关系大小关系 对顶角/ 1 与/ 2有公共顶点/1的两边与/ 2的两边互为反 向延长线对顶角相等 即/ 1 = / 2邻补角/ 3 与/ 4 有公共顶点/ 3与/ 4有一 条边公共,另一 边互为反向延长线• / 3+/ 4=180 °注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角; ⑵如果/a 与是对顶角,那么一定有/a= /B ;反之如果/a =/3,那么/a 与/ B 不一定是对顶角⑶如果/a 与/B 互为邻补角,则一定有/a+ /3 =180 °;反之如果/a + /3 =180 ° ,则/a 与/B 不一定是邻补角.⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个2、垂线⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直, 其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足 符号语言记作:如图所示:AB 丄CD ,垂足为 0⑵垂线性质1:过一点有且只有一条直线与已知直线垂直 ⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,3、垂线的画法:⑴过直线上一点画已知直线的垂线;⑵过直线外一点画已知直线的垂线 注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上画法:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上,⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线4、点到直线的距离(与平行公理相比较记) 垂线段最短•简称:垂线段最短B直线外一点到这条直线的垂线段的长度,叫做点到直线的距离记得时候应该结合图形进行记忆•如图,P0丄AB,同P到直线AB的距离是PO的长P0是垂线段.PO是点P到直线AB所有线段中最短的一条•现实生活中开沟引水,牵牛喝水都是“垂线段最短”性质的应用5、如何理解“垂线”、“垂线段”、“两点间距离”、“点到直线的距离”这些相近而又相异的概念分析它们的联系与区别⑴垂线与垂线段区别:垂线是一条直线,不可度量长度;垂线段是一条线段,可以度量长度•联系:具有垂直于已知直线的共同特征•(垂直的性质)⑵两点间距离与点到直线的距离区别:两点间的距离是点与点之间,点到直线的距离是点与直线之间• 联系:都是线段的长度;点到直线的距离是特殊的两点(即已知点与垂足)间距离•⑶线段与距离距离是线段的长度,是一个量;线段是一种图形,它们之间不能等同5.2平行线1平行线的概念:在同一平面内,不相交的两条直线叫做平行线,直线a与直线b互相平行,记作a // b.2、两条直线的位置关系在同一平面内,两条直线的位置关系只有两种:⑴相交;⑵平行因此当我们得知在同一平面内两直线不相交时,就可以肯定它们平行;反过来也一样(这里,我们把重合的两直线看成一条直线)判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定:①有且只有一个公共点,两直线相交;②无公共点,则两直线平行;③两个或两个以上公共点,则两直线重合(因为两点确定一条直线)3、平行公理一一平行线的存在性与惟一性经过直线外一点,有且只有一条直线与这条直线平行4、平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行如左图所示,••• b // a , c // a••• b // c注意符号语言书写,前提条件是两直线都平行于第三条直线, 才会结论,这两条直线都平行 •5、三线八角 两条直线被第三条直线所截形成八个角,它们构成了同位角、内错角与同旁内角 如图,直线a,b 被直线I 所截 ①/ 1与/5在截线|的同侧,同在被截直线 叫做同位角(位置相同) ②/ 5与/ 3在截线|的两旁(交错),在被截直线a,b 之间 (内),叫做内错角(位置在内 且交错) ③/ 5与/ 4在截线I 的同侧,在被截直线 a,b 之间(内), 叫做同旁内角. ④三线八角也可以成模型中看出 •同位角是“ F ”型;内错角是“ Z ”型;同旁内角是“ U ” 型.6、如何判别三线八角 判别同位角、内错角或同旁内角的关键是找到构成这两个角的“三线” 的部分“抽出”或把无关的线略去不看,有时又需要把图形补全 例如: ,有时需要将有关⑴/ 1与/ 2;⑵/ 1与/ 7;⑶/ 1与/ BAD ;⑷/ 2 与/ 6;⑸/ 5与/ 8. 我们将各对角从图形中抽出来(或者说略去与有关角无关的线)如图所示,不难看出/ 1与/ 2是同旁内角;/ 1与/ 7是同位角;/ 角;/ 2与/ 6是内错角;/ 5与/ 8对顶角. ,得到下列各图•1与/ BAD 是同旁内 AA5C注意:图中/ 2与/ 9,它们是同位角吗?不是,因为/ 2与/ 9的各边分别在四条不同直线上,不是两直线被第三条直线所截而成7、两直线平行的判定方法方法一两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行简称:同位角相等,两直线平行方法二两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行简称:内错角相等,两直线平行方法三两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行简称:同旁内角互补,两直线平行几何符号语言:•// 3=7 2••• AB //CD (同位角相等,两直线平行)•/7 1=7 2•AB // CD (内错角相等,两直线平行)•/7 4+7 2= 180°•AB // CD (同旁内角互补,两直线平行)请同学们注意书写的顺序以及前因后果,平行线的判定是由角相等,然后得出平行•平行线的判定是写角相等,然后写平行注意:⑴几何中,图形之间的“位置关系”一般都与某种“数量关系”有着内在的联系,常由“位置关系”决定其“数量关系”,反之也可从“数量关系”去确定“位置关系”•上述平行线的判定方法就是根据同位角或内错角“相等”或同旁内角“互补”这种“数量关系”,判定两直线“平行”这种“位置关系”⑵根据平行线的定义和平行公理的推论,平行线的判定方法还有两种:①如果两条直线没有交点(不相交),那么两直线平行•②如果两条直线都平行于第三条直线,那么这两条直线平行典型例题:判断下列说法是否正确,如果不正确,请给予改正:⑴不相交的两条直线必定平行线•⑵在同一平面内不相重合的两条直线,如果它们不平行,那么这两条直线一定相交•⑶过一点可以且只可以画一条直线与已知直线平行解答:⑴错误,平行线是“在同一平面内不相交的两条直线”•“在同一平面内”是一项重要条件,不能遗漏•⑵正确⑶不正确,正确的说法是“过直线外一点”而不是“过一点” 已知直线上,是•因为如果这一点不在作不出这条直线的平行线的典型例题:如图,根据下列条件,可以判定哪两条直线平行,并说明判定的根据是什么?解答:⑴由7 2=7 B可判定AB // DE,根据是同位角相等,两直线平行; ⑵由7 1 = 7 D可判定AC // DF,根据是内错角相等,两直线平行;E C⑶由/ ACF + Z F = 180°可判定AC // DF ,根据同旁内角互补,两直线平行5.3平行线的性质1、平行线的性质:性质1 :两直线平行,同位角相等; 性质2 :两直线平行,内错角相等; 性质3 :两直线平行,同旁内角互补几何符号语言:•/ AB // CD•••/ 1 = Z 2 (两直线平行,内错角相等)•/ AB // CD3 =Z 2 (两直线平行,同位角相等)•/ AB // CD•••/ 4 +Z 2= 180°(两直线平行,同旁内角互补)AB // CD , EF 丄AB 于E , EF 丄CD 于F ,则称线段 EF 的长度为两平行线 ABA1GEBC_□ H DF注意:直线AB // CD ,在直线AB 上任取一点 G ,过点G 作CD 的垂线段GH ,则垂线段GH 的长度也就是直线AB 与CD 间的距离. 3、命题:⑴命题的概念:判断一件事情的语句,叫做命题 ⑵命题的组成两直线平行 <^=>同位角相等; 两直线平行 <^=> 内错角相等; 两直线平行 <= =>同旁内角互补2、两条平行线的距离 如图,直线 与CD 间的距离.每个命题都是题设、结论两部分组成 题常写成“如果……,那么……”的形式 是题设,用“那么”开始的部分是结论有些命题,没有写成“如果……,那么 题,要经过分析才能找出题设和结论,•题设是已知事项;结论是由已知事项推出的事项 .具有这种形式的命题中,用“如果”开始的部分.命注意:命题的题设(条件)部分,有时也可用“已知… 题的结论部分,有时也可用“求证……”或“则……” 4、平行线的性质与判定①平行线的性质与判定是互逆的关系•…”的形式,题设和结论不明显 .对于这样的命也可以将它们改写成 “如果……,那么……”的形式. …”或者“若……”等形式表述;命等形式表述 那么其中,由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质典型例题:已知/ 1=Z B,求证:/ 2=Z C证明:•••/ 1 = Z B (已知)••• DE // BC (同位角相等,两直线平行)•••/ 2 =Z C (两直线平行同位角相等)注意,在了DE // BC,不需要再写一次了,得到了典型例题:如图,AB // DF , DE // BC,/ 1 = 65°求/ 2、/ 3的度数解答:••• DE // BC (已知)2 =/ 1 = 65°(两直线平行,内错角相等)•/ AB // DF (已知)• AB // DF (已知)•/ 3 +/ 2 = 180°(两直线平行,同旁内角互补)•••/3 = 180° -/ 2 = 180°—65°= 115°5.4平移1、平移变换①把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.②新图形的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点③连接各组对应点的线段平行且相等2、平移的特征:①经过平移之后的图形与原来的图形的对应线段平行(或在同一直线上)且相等,对应角相等,图形的形状与大小都没有发生变化.②经过平移后,对应点所连的线段平行(或在同一直线上)且相等典型例题:如图,△ ABC经过平移之后成为△ DEF,那么:⑴点A的对应点是点_______________________ ;⑵点⑶点__________ 的对应点是点F;⑷线段AB的对应线段是线段_________________ ;⑸线段BC的对应线段是线段___________________ ;⑹/ A的对应角是_______________ .⑺________ 的对应角是/ F.解答:⑴D;⑵E;⑶C;⑷DE ;⑸EF;⑹/ D ;⑺/ACB. 思维方式:利用平移特征:平移前后对应线段相等,A//\ //\\B EC F DE // BC,这可以把它当作条件来用了BB的对应点是点_______________ 对应点的连线段平行或在同一直线上解答•考点一:对相关概念的理解对顶角的性质,垂直的定义,垂线的性质,点到直线的距离, 垂线性质与平行公理的区别等例1: 判断下列说法的正误。
第7讲 平行线与相交线【学习目标】1. 了解垂直概念,能说出垂线的性质,会用三角尺或量角器过一点画一条直线的垂线;2. 通过比较,观察,掌握同位角,内错角,同旁内角的特征,并能正确识别这些角;3. 了解平行线的概念、平面内两条直线的相交和平行的两种位置关系,知道平行公理以及平行公理的推论;4. 会用符号语言表示平行公理推论,会用三角尺和直尺过已知直线外一点画这条直线的平行线;5. 经历探索直线平行的条件的过程,掌握直线平行的条件,领悟归纳和转化的数学思想的方法。
【学习重点】1. 探索和掌握平行公理及其推论; 2. 探索并掌握直线平行的条件;【学习难点】1.对平行线本质属性的理解,用几何语言描述图形的性质; 2.选取适当判定直线平行的方法进行说理。
【知识梳理】一、余角和补角:1、如果两个角的和是直角,称这两个角互余. ∵αβ+= 90º;∴αβ与互为余角2、如果两个角的和是平角,称这两个角互补. ∵αβ+= 180º ∴αβ与互为补角 二、余角和补角的性质: 同角或等角的余角相等. 同角或等角的补角相等. 三、对顶角的性质: 对顶角相等.四、“三线八角” :1.同位角 2.内错角 3.同旁内角同位角:F 型 内错角:Z 型 同旁内角:U五、平行线的判定: 1.同位角相等, 两直线平行. 2.内错角相等, 两直线平行.3.同旁内角互补, 两直线平行.4.同平行于一条直线的两条直线平行.5.同垂直于一条直线的两条直线平行.六、平行线的性质:1.两直线平行,同位角相等; 2.两直线平行, 内错角相等; 3.两直线平行,同旁内角互补.MN EC A NM B C N MC AP D C B A 图1 PD C B A 图2【典例剖析】考点一:平行线与相交线例1:已知∠1的两边分别平行∠2的两边,∠2=500,则∠1的度数为 。
变式训练:已知∠A 的两条边和∠B 的两条边分别平行,且∠A 比∠B 的3倍少20°,则∠B= 。
相交线与平行线第一节相交线一:相交线对顶角与邻补角二:垂线垂线段最短点到直线的距离第二节平行线及其判定一:平行线平行线平行线公理及推论二:平行线的判定同位角、内错角同旁内角平行线的判定第三节平行线的性质平行线的性质1、平行线性质定理定理1:两条平行线被第三条直线所截;同位角相等.简单说成:两直线平行;同位角相等.定理2:两条平行线被地三条直线所截;同旁内角互补..简单说成:两直线平行;同旁内角互补.定理3:两条平行线被第三条直线所截;内错角相等.简单说成:两直线平行;内错角相等.2、两条平行线之间的距离处处相等平行线的判定及性质(1)平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.(2)2应用平行线的判定和性质定理时;一定要弄清题设和结论;切莫混淆.(3)3平行线的判定与性质的联系与区别(4)区别:性质由形到数;用于推导角的关系并计算;判定由数到形;用于判定两直线平行.(5)联系:性质与判定的已知和结论正好相反;都是角的关系与平行线相关.(6)4辅助线规律;经常作出两平行线平行的直线或作出联系两直线的截线;构造出三类角平行线之间的距离(1)平行线之间的距离(2)从一条平行线上的任意一点到另一条直线作垂线;垂线段的长度叫两条平行线之间的距离.(3)2平行线间的距离处处相等第四节平移生活中的平移现象1、平移的概念2、在平面内;把一个图形整体沿某一的方向移动;这种图形的平行移动;叫做平移变换;简称平移.3、2、平移是指图形的平行移动;平移时图形中所有点移动的方向一致;并且移动的距离相等.4、3、确定一个图形平移的方向和距离;只需确定其中一个点平移的方向和距离平移的性质②新图形中的每一点;都是由原图形中的某一点移动后得到的;这两个点是对应点.连接各组对应点的线段平行且相等作图----平移变换。
相交线与平行线相交线与平行线是在几何学中经常研究的一个重要问题。
相交线和平行线是直线的两种基本排列方式,它们在几何学中有着不同的性质和应用。
首先,相交线是指两条直线在某一点相交。
相交线的性质有很多,其中最基本的是垂直和水平相交线。
当两条直线垂直相交时,它们的交点称为垂直交点,垂直交点是一个角度为90度的直角。
相反,当两条直线水平相交时,它们的交点称为水平交点,水平交点是一个平行于地平线的线。
此外,相交线还有一些重要的性质,如交叉角、交叉线和交叉点。
交叉角是指由两条相交线所形成的角度,它有四个特例:锐角、直角、钝角和平角。
交叉线是指由两条相交线所形成的直线,例如三角形的内心、外心和重心都位于三边的交叉线上。
而交叉点是指两条直线相交的点。
和相交线相对的是平行线。
平行线是指在同一平面上,永远不相交的两条直线。
平行线的性质也有很多,其中包括共面、同向、互补和曲率。
共面是指所有的线都在同一个平面上,同向是指两条平行线的方向相同,互补是指在同一平面上,与同一直线垂直的两条平行线之间的夹角相等,曲率是指平行线之间的间距可以是任意的。
相交线和平行线在几何学中有着广泛的应用。
它们可以用来解决各种问题,如图形的构造、角度的计算和线段的比较等。
在实际应用中,相交线和平行线也有很多的应用。
例如,在建筑设计中,相交线和平行线可以用来确定建筑物的结构和布局;在地图制作中,相交线和平行线可以用来表示不同地理要素之间的关系;在电路设计中,相交线和平行线可以用来确定电路元件的连接方式。
总的来说,相交线和平行线是直线的两种基本排列方式。
它们在几何学中具有重要的性质和应用,对于解决各种问题和实际应用具有重要的意义。
无论是在学术研究还是在实际应用中,相交线和平行线都是不可或缺的几何概念。
平行线与相交线1. 引言在几何学中,平行线与相交线是基本概念,它们在直线几何中具有重要的作用和应用。
本文将详细介绍平行线与相交线的定义、性质以及相关的定理,通过例题展示其应用。
2. 平行线的定义与性质2.1 平行线的定义平行线是指在同一个平面上,永不相交的直线。
用符号"||"表示。
2.2 平行线的性质(1) 平行线具有传递性,即若直线L1与直线L2平行,直线L2与直线L3平行,那么直线L1与直线L3也平行。
(2) 平行线具有对称性,即若直线L1与直线L2平行,则直线L2与直线L1也平行。
(3) 平行线与同一条直线交叉时,其内外的对应角相等。
(4) 平行线与同一平面上的直线交叉时,形成对应角相等的等角。
3. 相交线的定义与性质3.1 相交线的定义相交线是指在同一个平面上,交叉于一点的两条直线。
3.2 相交线的性质(1) 两条相交线形成的交点是唯一的。
(2) 两条相交线的垂直平分线通过交点,并且垂直平分线相互垂直。
(3) 两条相交线形成的交点两侧的对应角相等。
(4) 两条相交线形成的内角之和等于180度。
4. 平行线与相交线的关系4.1 平行线与相交线的特殊关系(1) 平行线与相交线形成的对应角相等。
(2) 平行线与相交线形成的内角,外角之和均为180度。
(3) 平行线与一个相交线的两组对应角互为补角。
4.2 平行线截断相交线的性质(1) 平行线截断相交线,对所截断的相交线上的任意两点,其间距与平行线上对应两点的间距相等。
(2) 平行线截断相交线后,所截线段互相平分。
5. 相关定理与应用5.1 同位角定理若两条平行线被一条横截线相交,则同位角相等。
5.2 平行线的判定定理若两条直线的同位角相等,则这两条直线平行。
5.3 平行线的性质定理若一条直线与平行线相交,则生生四个对应角中,有两个角互为补角。
5.4 平行线的倾斜角定理若两条平行线被一条横截线相交,则被横截线所分段的两条平行线倾斜角相等。
七年级下册数学相交线与平行线知识点归纳相交线与平行线1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。
性质是对顶角相等。
2、三线八角:对顶角(成正比),邻补角(优势互补),同位角,内错角,同旁内角。
3、两条直线被第三条直线所截:同位角f(在两条直线的同一旁,第三条直线的同一侧)内错角z(在两条直线内部,位于第三条直线两侧)同旁内角u(在两条直线内部,坐落于第三条直线同侧)4、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。
其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。
5、横向三要素:横向关系,横向记号,像距6、垂直公理:过一点有且只有一条直线与已知直线垂直。
7、垂线段最长。
8、点到直线的距离:直线外一点到这条直线的垂线段的长度。
9、平行公理:经过直线外一点,存有且只有一条直线与这条直线平行。
推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
如果b//a,c//a,那么b//c10、平行线的认定:①同位角相等,两直线平行。
②内错角成正比,两直线平行。
③同旁内角互补,两直线平行。
11、推断:在同一平面内,如果两条直线都旋转轴同一条直线,那么这两条直线平行。
(一)正负数1.正数:大于0的数。
2.负数:小于0的数。
3.0即不是正数也不是负数。
4.正数大于0,负数小于0,正数大于负数。
(二)有理数1.有理数:由整数和分数组成的数。
包括:正整数、0、负整数,正分数、负分数。
可以写成两个整之比的形式。
(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。
如:π)2.整数:正整数、0、正数整数,泛称整数。
3.分数:正分数、负分数。
(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。
(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。
平行线与相交线是初一数学下学期学习的第二章内容,主要讲述了相交线、平行线及其判定、平行线的性质等,通过对本篇的学习,相信同学们会更进一步的了解在平面内不重合的两条相交与平行的两种位置的关系,运用平移设计一些优美的图案。
初一下册数学知识点:相交线与平行线第五章相交线与平行线一、目标与要求1.理解对顶角和邻补角的概念,能在图形中辨认;2.掌握对顶角相等的性质和它的推证过程;3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力。
二、重点在较复杂的图形中准确辨认对顶角和邻补角;两条直线互相垂直的概念、性质和画法;同位角、内错角、同旁内角的概念与识别。
三、难点在较复杂的图形中准确辨认对顶角和邻补角;对点到直线的距离的概念的理解;对平行线本质属性的理解,用几何语言描述图形的性质;能区分平行线的性质和判定,平行线的性质与判定的混合应用。
四、知识框架五、知识点、概念总结1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
3.对顶角和邻补角的关系4.垂直:两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。
5.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
6.垂足:如果两直线的夹角为直角,那么就说这两条直线互相垂直,它们的交点叫做垂足。
7.垂线性质(1)在同一平面内,过一点有且只有一条直线与已知直线垂直。
(2)连接直线外一点与直线上各点的所有线段中,垂线段最短。
简单说成:垂线段最短。
(3)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
8.同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
9.平行:在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。
相交线与平行线6
(检测时间80分钟满分100分)
班级_________________ 姓名_____________ 得分_____
一、选择(共30分)
1、在同一平面内,两条直线的位置关系可能是( A )。
A、相交或平行
B、相交或垂直
C、平行或垂直
D、不能确定
2、如图1,下列说法错误的是( B )。
A、∠A与∠C是同旁内角
B、∠1与∠3是同位角
C、∠2与∠3是内错角
D、∠3与∠B是同旁内角
4、如图2,∠1=20°,AO⊥CO,点B、O、D在同一直线上,则∠2的度数为( C )。
A、70°
B、20°
C、110°
D、160°
5、在5×5方格纸中将图3-1中的图形N平移后的位置如图3-2所示,那么下面平移中正确的是( C )。
A. 先向下移动1格,再向左移动1格;
B. 先向下移动1格,再向左移动2格
C. 先向下移动2格,再向左移动1格;
D. 先向下移动2格,再向左移动2格
6、两条直线被第三条直线所截,那么内错角之间的大小关系是( D ).
(A)相等(B)互补(C)不相等(D)无法确定
7、如图4,AB∥DE,∠1=∠2,则AE与DC的位置关系是( B )。
A、相交
B、平行
C、垂直
D、不能确定
8、如图5,AB∥EF∥DC,EG∥BD,则图中与∠1相等的角有( C )。
A、2个
B、4个
C、5个
D、6个
9、如图6,BO平分∠ABC,CO平分∠ACB,且MN∥BC,设AB=12,BC=24,AC=18,则△AMN的周长为()。
A、30
B、36
C、42
D、18
10、如图7,直线a、b都与直线c相交,给出下列条件:①∠1=∠2;
②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°。
其中能判断
a∥b的条件是()。
A 、①②
B 、②④
C 、①③④
D 、①②③④ 二、填空题(共20 分) 1、如果∠A =35°18′,那么∠A 的余角等于_____;
2、如图①,直线a 、b 被直线c 所截(即直线c 与直线a 、b 都相交), 且a ∥b ,若∠1=118°,则∠2的度数=_____;
3、一个角的补角比这个角的余角大___度;
4、推理填空,如图③ ∵∠B =___;
∴AB ∥CD (____________); ∵∠DGF =___;
∴CD ∥EF (____________); ∵AB ∥EF ;
∴∠B +___=180°(____________);
4、如图、已知直线AB 、CD 相交于点O ,OE 平分∠BOC ,
若∠AOC=40°,则∠BOC= 度, ∠DOE= 度。
5
、如图 ∵
(己知) ∴BC ∥AD(内错角相等,两直线平行)
6、如图,CD AB //,且 25=∠A , 45=∠C ,则E ∠的度数是_______
7、把命题“对顶角相等”写成“如果……,那么……”的形式为: 。
8、如图:(1)已知∠2=∠3,则______∥______. (2)已知∠1=∠4,则______∥______.
A B
E
C O D
4题图 D 5题图
E
D C
B
A
8题图
A
C
D
F
B
E
1
2
9、如图,因为EF ∥AB ,FC ∥AB ,所以E ,C ,F 在一条直线上,根据( ).
10、一个角的补角比这个角的余角大___度.
三、将以下各推理过程的理由填入括号内。
(共10 分) 1、如图EF ∥AD ,∠1=∠2,∠BAC=70 o ,求∠AGD 。
解:∵EF ∥AD ,
∴∠2= ( ) 又∵∠1=∠2, ∴∠1=∠3,
∴AB ∥ ( ) ∴∠BAC+ =180 o ( )
∵∠BAC=70 o ,∴∠AGD= 。
2、完成推理过程并填写推理理由:
已知:如图BE//CF ,BE 、CF 分别平分∠ABC 和∠BCD 求证:AB//CD.
证明:∵BE 、CF 分别平分∠ABC 和∠BCD ( )
∴∠1=21∠ ∠2=2
1
∠ ( )
∵BE//CF (已知)∴∠1=∠2( ) ∴
21∠ABC=2
1
∠BCD ( ) 即∠ABC=∠BCD ∴AB//CD ( )
四、解答题(共40 分)
1、如图,EB ∥DC ,∠C=∠E ,请你说出∠A=∠ADE 的理由。
2、如图,已知∠1=80°,∠2=100°,∠BAC =60°求∠C 的度数。
A
B
C
D
E 2
1
图
3、如图、已知BE 是∠B 的平分线,交AC 于E ,其中∠l =∠2, 那么DE ∥BC 吗?为什么?
4、如图,已知CD AB //,CF AE //,求证:DCF BAE ∠=∠。
5、如图,直线AB 、CD 被直线MN 所截,EG 平分∠BEF ,FH 平分∠DFE , 问:∠1与∠2应满足什么关系时,AB//CD ?写出完整的说理过程。
6、如图所示,己知∠1=∠2,∠3=∠4,∠5=∠C , 试探究ED 与FB 的位置关系,并说明理由。
A
B C
D
E F M
H G
1 2
B
C
A E G
3
1 5 44
2 F
F
E
D
C
B
A
7、如图,已知直线 1l ∥2l ,且
3l 和1l 、2l 分别交于A 、B 两点,点P 在AB
上。
(1)试找出∠1、∠2、∠3之间的关系并说出理由;
(2)如果点P 在A 、B 两点之间运动时,问 ∠1、∠2、∠3 之间的关系是否发生
变化? (3)如果点P 在A 、B 两点外侧运动时,试探究 ∠1、∠2、∠3 之间的关系(点
P 和A 、B 不重合)
A P
B 1
l 2
l 3
l 1 2
3。