学案2
- 格式:doc
- 大小:184.50 KB
- 文档页数:1
7.1 文化的内涵与功能一学科核心素养政治认同:认同、传承和发展中国特色社会主义文化,坚定文化自信。
科学精神:利用相关知识科学分析社会文化现象、实质和功能。
公共参与:在生活中积极主动参与健康有益的文化活动。
二学习重难点重点:理解文化的内涵;理解文化与经济、政治的关系;理解文化与文明的关系;明确文化的功能。
难点:明确文化与文明的区别与联系;把握文化的功能。
三知识梳理㈠什么是文化1.哲学是文化的灵魂。
2.广义的文化是指人类认识和改造世界的一切活动及其创造的物质成果和精神成果。
3狭义的文化是相对于经济、政治而言的人类全部精神现象,既包括世界观、人生观、价值观等具有意识形态性质的内容,又包括自然科学和技术等非意识形态的内容。
4.文化是人类社会实践的产物,纯粹自然的东西不能称为文化;5.经济是基础,政治是经济的集中表现,经济、政治决定文化,文化是经济和政治的反映。
一定的文化由一定的经济、政治所决定;一定的文化反作用于一定的经济、政治,给予经济、政治以重大影响;6.文化的核心是世界观、人生观、价值观。
7.文化具有相对独立性,文化的发展与经济、政治的发展不完全同步。
8.文明与野蛮相对立,是人类进步和开化状态的标志。
只要是文明就是积极向上的。
文明包括物质文明、精神文明、制度文明、生态文明等。
9.文化有先进与落后的区分,反映先进的经济和政治的文化形成了先进文化,反映腐朽落后的经济和政治的文化形成了落后文化。
先进文化是人类文明的一项重要内容。
10.不同性质的文化对经济、政治的影响不同。
先进的、健康的文化会促进经济社会的发展,落后的、腐朽的文化则会阻碍经济社会的发展。
11.文化要通过物质载体呈现出来。
12.文化载体是多种多样的,器物、行为、制度、民俗等都是文化的载体。
人类所从事的物质生产活动及其结果都不是文化本身,其体现和传导出来的思想、价值观、审美、意境和精神追求等才是文化。
㈡文化的功能1.文化具有引领风尚、教育人民、服务社会、推动发展的功能。
2 《水浒传》——李逵负荆◎课文导读历史的喧嚣让曾经叱咤风云的英雄豪杰都已沉沉睡去,但是当我们翻开《水浒传》时,依然能看到那些提着朴刀的梁山好汉正行走在崎岖的山道之上。
《李逵负荆》通过李逵误听宋江强抢民女、大闹忠义堂、破旗骂宋江、刘家庄对质、负荆请罪、戴罪立功等一系列情节,生动地塑造了李逵正直、刚毅又鲁莽的性格。
同时也讴歌了梁山英雄除暴安良、纪律严明、与群众血肉相连的高大形象。
◎思路梳理[国学知识诵读区]◎背名句1.《庄子·逍遥游》中描写迁徙南冥的大鹏击水之广、飞升之高的句子是“水击三千里,抟扶摇而上者九万里”。
2.韩愈在《师说》中说:从师与年纪无关,比自己年纪大的人,闻道在自己之先,要以之为师;而“生乎吾后,其闻道也亦先乎吾,吾从而师之”。
3.屈原在《离骚》中表现自己同情百姓的苦难生活,并因此流泪叹息的名句是“长太息以掩涕兮,哀民生之多艰”。
◎读经典经典:天下皆知美之为美,斯恶已;皆知善之为善,斯不善已。
——《老子》翻译:天下人都知道美之所以为美,那是由于有丑陋的存在。
都知道善之所以为善,那是因为有恶的存在。
赏析:老子认为,当天下人都知道“美”之所以为美,这就知道丑了;知道“善”之所以为善,这就知道恶了。
知道什么是美、什么是丑,就会崇尚美、厌恶丑;知道什么是善、什么是恶,就会追求善、斥责恶。
于是,“美”与“善”,已不仅是审美标准,更是一种社会规范、道德修养。
从某种意义上说,人类社会的文明程度,与人对“美”的理解及追求成正比。
文明程度越高,对“美”的理解就越深刻,对“美”的追求就越执着。
当人类走出蒙昧时代,就有了追求美、创造美的欲望。
凡心智正常的人,都有求美、羞恶之心,这正是人区别于动物的地方。
能将美与善发扬光大者,就是圣人。
黄帝、唐尧、虞舜、夏禹,这些中华民族的祖先,都有仁、义、礼、智、信各方面的美德,所以世世代代被称颂。
人们敬仰圣人,就是人性崇尚美、追求善的反映。
[课文助读预习区]◎作者简介施耐庵(1296~约1370),本名彦端,号子安,别号耐庵,元末明初小说家。
八年级英语下册学案及答案2文章来源莲山课件w ww.5 Y k 二、重点难点:1.熟练掌握直接引语和间接引语2.进一步巩固重点句型三、学习过程:Step1 learn the new words预习导学:1.do well in 在……方面做得好;擅长………相当于________________eg: 他英语学得好。
He ______ ______ ______ English.他比我更擅长弹钢琴。
He ______ ______ ______ ______ the piano than me.2.be in good health 身体健康相当于:_________________eg: 我希望你身体健康。
I hope you ______ ______ ______ ______ .拓展:be in danger _________be in trouble _______;be in safety ________3.nervous adj. 神经紧张的;不安的试译:变得紧张________________ 不要紧张________________4.envelope n. 信封试译:一张信封___________5.semester n. 学期相当于:______6.true adj. 真实的;正确的;忠诚的其副词形式为:______其名词形式为:______; tell the truth ________________eg: 这是一个真实的故事。
This is a ______ story.7.区别:disappointing / disappointed①disappointing “令人扫兴的;使人失望的”常用来修饰物;②disappointed 指人“感到失望的”常用来修饰人;eg: 听到这个令人失望的消息时,我们都感到很失望。
When we heard the ______ news, we all felt ______.8.lucky adj. 幸运的其反义词为:______;其副词形式为:______其名词形式为:______;good luck _______;bad luck __________eg: 幸运的是他通过了考试。
【新教材】5.2.2 同角三角函数的基本关系(人教A 版)1.理解并掌握同角三角函数基本关系式的推导及应用.2.会利用同角三角函数的基本关系式进行化简、求值与恒等式证明.1.数学抽象:理解同角三角函数基本关系式;2.逻辑推理: “sin α±cos α”同“sin αcos α”间的关系;3.数学运算:利用同角三角函数的基本关系式进行化简、求值与恒等式证明. 重点:理解并掌握同角三角函数基本关系式的推导及应用;难点:会利用同角三角函数的基本关系式进行化简、求值与恒等式证明.一、 预习导入阅读课本182-183页,填写。
1.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=________.商数关系:sin αcos α=________⎝⎛⎭⎫α≠k π+π2,k ∈Z . (2)语言叙述:同一个角α 的正弦、余弦的 ________等于1,________等于角α的正切. 思考:“同角”一词的含义是什么?[提示] 一是“角相同”,如sin 2α+cos 2β=1就不一定成立.二是对任意一个角(在使得函数有意义的前提下),关系式都成立,即与角的表达式形式无关,如sin 215°+cos 215°=1,sin 2π19+cos 2π19=1等. 1.判断(正确的打“√”,错误的打“×”.)(1)对任意角α,sin 23α+cos 23α=1都成立.( )(2)对任意角α,sinα2cos α2=tan α2都成立.( ) (3)若sin α=12,则cos α=32.( ) 2.化简1-sin 2π5的结果是( ) A .cos π5 B .-cos π5C .sin π5D .-sin π53.若sin α=45,且α是第二象限角,则tan α的值等于( ) A .-43 B .34C .±34D .±434.已知tan α=2,则cos α-5sin α3cos α+sin α=________. 题型一 应用同角三角函数关系求值例1(1)若3sin 5α=-,求cos α,tan α的值;(2)已知cos α=-817,求sin α,tan α的值. 跟踪训练一1.已知sin α+3cos α=0,求sin α,cos α的值.题型二 三角函数式的化简、求值例2(1)化简:1-2sin 130°cos 130°sin 130°+1-sin 2130°; (2)若角α是第二象限角,化简:tan α1sin 2α-1. 跟踪训练二1.化简:(1)cos 36°-1-cos 236°1-2sin 36°cos 36°; (2)sin θ-cos θtan θ-1. 题型三 三角函数式的证明 例3 求证:cos 1sin .1sin cos x x x x +=-.跟踪训练三1.求证:1+2sin x cos x cos 2x -sin 2x =1+tan x 1-tan x. 题型四 “sin α±cos α”同“sin αcos α”间的关系例4 已知sin α+cos α=15,且0<α<π. 求:(1)sin αcos α的值;(2)求sin α-cos α的值.跟踪训练四1.已知sin α+cos α=713,α∈(0,π),则tan α=. 2.已知sin α+cos αsin α-cos α=2,计算下列各式的值: (1)3sin α-cos α2sin α+3cos α; (2)sin 2α-2sin αcos α+1.1.下列各式中成立的是( )A .sin 2α+cos 2β=1B .tan α=sin αcos α(α任意)C .cos 2α2=1-sin 2α2D .sin α=1-cos 2α2.已知α∈⎣⎢⎡⎦⎥⎤π2,5π2,cos α=45,则tan α=( ) A .±34B .34C .-34D .433.已知tan α=-12,则2sin αcos αsin 2α-cos 2α的值是. 4.已知sin α+cos α=12,则sin αcos α=________.5.已知tan α=43,且α是第三象限的角,求sin α,cos α的值.6.(1)化简sin 2α-sin 4α,其中α是第二象限角;(2)求证:1+tan 2α=1cos 2α.答案小试牛刀1.(1)√(2)×(3)×.2.A3.A4.-95. 自主探究例1【答案】(1)当α是第三象限角时,cos α=-45,tan α=34. α是第四象限角时,cos α=45,tan α=-34 (2)如果α是第二象限角,那么sin α=1517,tan α=-158. 如果α是第三象限角, sin α=-1517,tan α=158. 【解析】(1)∵sin α=-35,α是第三、第四象限角, 当α是第三象限角时,cos α=-1-sin 2α=-45,tan α=sin αcos α=34. α是第四象限角时,cos α=1-sin 2α=45,tan α=sin αcos α=-34 (2) ∵cos α=-817<0, ∴α是第二或第三象限的角.如果α是第二象限角,那么sin α=1-cos 2α=1-⎝⎛⎭⎫-8172=1517, tan α=sin αcos α=1517-817=-158. 如果α是第三象限角,同理可得sin α=-1-cos 2α=-1517,tan α=158. 跟踪训练一1.【答案】角α的终边在第二象限时,cos α=-1010,sin α=31010; 当角α的终边在第四象限时,cos α=1010,sin α=-31010. 【解析】∵sin α+3cos α=0,∴sin α=-3cos α.又sin 2α+cos 2α=1,∴(-3cos α)2+cos 2α=1,即10cos 2α=1,∴cos α=±1010. 又由sin α=-3cos α,可知sin α与cos α异号, ∴角α的终边在第二或第四象限. 当角α的终边在第二象限时,cos α=-1010,sin α=31010; 当角α的终边在第四象限时,cos α=1010,sin α=-31010. 例2【答案】(1)1; (2)-1.【解析】(1)原式=sin 2130°-2sin 130°cos 130°+cos 2130°sin 130°+cos 2130°=|sin 130°-cos 130°|sin 130°+|cos 130°|=sin 130°-cos 130°sin 130°-cos 130°=1. (2)原式=tan α1-sin 2αsin 2α=tan αcos 2αsin 2α=sin αcos α×|cos α||sin α|,因为α是第二象限角,所以sin α>0,cos α<0,所以原式=sin αcos α×|cos α||sin α|=sin αcos α×-cos αsin α=-1. 跟踪训练二 1.【答案】(1)1;(2) cos θ.【解析】 (1)原式=cos 36°-sin 236°sin 236°+cos 236°-2sin 36°cos 36°=cos 36°-sin 36°cos 36°-sin 36°2=cos 36°-sin 36°|cos 36°-sin 36°|=cos 36°-sin 36°cos 36°-sin 36°=1. (2)原式=sin θ-cos θsin θcos θ-1=cos θsin θ-cos θsin θ-cos θ=cos θ. 例3 【答案】见解析【解析】跟踪训练三1.【答案】见解析【解析】证明: 右边=1+sin x cos x 1-sin x cos x=cos x +sin x cos x -sin x =cos x +sin x 2cos x -sin x cos x +sin x =1+2sin x cos x cos 2x -sin 2x=左边, ∴原等式成立.例4【答案】(1)-1225; (2)75.【解析】证明:(1)∵sin α+cos α=15,∴(sin α+cos α)2=125, ∴1+2sin αcos α=125,即sin αcos α=-1225. (2)∵(sin α-cos α)2=1-2sin αcos α=1+2425=4925. 又∵0<α<π,且sin αcos α<0,∴sin α>0,cos α<0,∴sin α-cos α>0,∴sin α-cos α=75. 跟踪训练四1、【答案】-125. 【解析】法一:(构建方程组)因为sin α+cos α=713,① 所以sin 2α+cos 2α+2sin αcos α=49169, 即2sin αcos α=-120169. 因为α∈(0,π),所以sin α>0,cos α<0.所以sin α-cos α=(sin α-cos α)2=1-2sin αcos α=1713.② 由①②解得sin α=1213,cos α=-513, 所以tan α=sin αcos α=-125. 法二:(弦化切)同法一求出sin αcos α=-60169,sin αcos αsin 2α+cos 2α=-60169,tan αtan 2α+1=-60169, 整理得60tan 2α+169tan α+60=0,解得tan α=-512或tan α=-125. 由sin α+cos α=713>0知|sin α|>|cos α|,故tan α=-125. 2.【答案】(1)89;(2)1310. 【解析】由sin α+cos αsin α-cos α=2, 化简得sin α=3cos α,所以tan α=3.(1)法一(换元)原式=3×3cos α-cos α2×3cos α+3cos α=8cos α9cos α=89. 法二(弦化切)原式=3tan α-12tan α+3=3×3-12×3+3=89. (2)原式=sin 2α-2sin αcos αsin 2α+cos 2α+1 =tan 2α-2tan αtan 2α+1+1=32-2×332+1+1=1310. 当堂检测1-2. CA3.434.-385.【答案】sin α=43,cos α=-45.【解析】由tan α=sin αcos α=43得sin α=43cos α.①又∵sin 2α+cos 2α=1,②由①②得169cos 2α+cos 2α=1.∴cos 2α=925.又∵α是第三象限的角,∴cos α=-35.∴sin α=43,cos α=-45.6.【答案】见解析【解析】(1)因为α是第二象限角,所以sin α>0,cos α<0,所以sin αcos α<0, 所以sin 2α-sin 4α=sin 2α(1-sin 2α) =sin 2αcos 2α=-sin αcos α.sin2αcos2α=cos2α+sin2αcos2α=1cos2α.(2)证明:1+tan2α=1+。
其次节海底地形的分布[学习目标定位] 1.阅读海底地形景观图或海底地形示意图,推断不同海底地形,并归纳海底地形的分布规律。
2.理解各种海底地形的景观特征。
一、海底地形分布规律海底地形的分布具有明显的规律性,从大陆边缘到大洋中心,海底地形依次是a.①大陆架、b.②大陆坡、c.③岛弧、d.④海沟、e.⑤洋盆、f.⑥洋中脊。
二、主要海底地形1.大陆架(1)位置:从⑦低潮线起向海洋方向延长至坡度显著⑧增大的地方为止。
(2)特点:水深在200米以内,坡度⑨较缓,光照充分,养分丰富,⑩海洋生物繁盛。
(3)范围:平均宽度约75千米,占海底总面积的8%。
2.大陆坡(1)位置:大陆架向外延长,⑪海底坡度突然增大的斜坡。
(2)深度:200~4 000米。
(3)特点:⑫坡度大,宽度从十几千米到几百千米。
3.岛弧(1)位置:大陆与⑬洋盆之间,大陆坡前缘。
(2)特点:弧形分布,也称“岛链”或“⑭弧形列岛”。
4.海沟(1)位置:⑮岛弧外缘,一般是大陆坡与⑯洋盆的分界线。
(2)特点:⑰深度大。
马里亚纳海沟是地球上最深的地方,最深处超过11 000米。
5.洋盆(1)位置:海沟与⑱洋中脊之间。
(2)深度:4 000~6 000米。
(3)特点:⑲地壳活动相对稳定,地形较为平坦。
构成大洋底的主体;内部分布着⑳海底火山、海底丘陵及海底山脉。
6.洋中脊(1)位置:常分布在○21大洋中心部位。
(2)特点:中轴为○22裂谷,裂谷两侧群峰对峙,内壁陡峻。
思维活动1.大陆架为什么海洋生物繁盛?答案大陆架接受来自大陆的河流沉积物和养分盐类,海水较浅,阳光可照射至海底,因此海洋生物繁盛。
2.为什么西太平洋地区多海沟和岛弧分布?答案太平洋地壳厚度小而密度大,所处的位置又相对较低。
在海底扩张的作用下,与东亚大陆地壳相碰撞时,太平洋地壳便俯冲到东亚大陆地壳之下,从而使大洋一侧消灭深度巨大的海沟;同时大陆地壳的连续运动使它前缘的表层沉积物相互叠合到一起,形成了岛弧。
两条直线平行和垂直的判定学习目标核心素养1理解并掌握两条直线平行的条件及两条直线垂直的条件.2.能根据已知条件判断两直线的平行与垂直.3.能应用两条直线的平行或垂直解决实际问题通过对两条直线平行与垂直的学习,提升直观想象、逻辑推理和数学运算的数学素养魔术师的地毯有一天,著名魔术大师拿了一块长宽都是13分米的地毯去找地毯匠,要求把这块正方形的地毯改制成宽8分米,长21分米的矩形,地毯匠对魔术师说:这不可能吧,正方形的面积是169平方分米,而矩形的面积只有168平方分米,除非裁去1平方分米.魔术师拿出事先准备好的两张图,对地毯匠说:“你就按图1的尺寸把地毯分成四块,然后按图2的样子拼在一起缝好就行了,我不会出错的,你尽管放心做吧”.地毯匠照着做了,缝了一量,果真是宽8分米,长21分米.魔术师拿着改好的地毯得意洋洋地走了.而地毯匠还在纳闷哩,这是什么回事呢?1 2为了破解这个谜底,今天我们学习直线的平行与垂直.1.两条直线平行与斜率之间的关系类型斜率存在斜率不存在条件α1=α2≠90°α1=α2=90°对应关系1∥2⇔1=21∥2⇔两直线斜率都不存在图示思考:如果两条直线平行,那么这两条直线的斜率一定相等吗?[提示]不一定.只有在两条直线的斜率都存在的情况下斜率才相等.2.两条直线垂直与斜率之间的关系图示对应关系1⊥2两条直线的斜率都存在,且都不为零⇔12=-11的斜率不存在,2的斜率为0⇒1⊥21.思考辨析正确的打“√”,错误的打“×”1平行的两条直线的斜率一定存在且相等.2斜率相等的两条直线两直线不重合一定平行.3只有斜率之积为-1的两条直线才垂直.4若两条直线垂直,则斜率乘积为-1.[提示]1×2√3×4×2.已知A2,0,B3,3,直线∥AB,则直线的斜率等于A.-3B.3C.-错误!D.错误!B[AB=错误!=3,∵∥AB,∴=3]3.若直线1,2的方向向量分别为1,-3和1,,且1⊥2,则=________错误![由于1⊥2,则1,-3·1,=0,即1-3=0,∴=错误!]4.教材,当1⊥2时,m的值为________.-错误![由条件1⊥2得-错误!×错误!=-1,解得m=-错误!]两直线平行的判定及应用12①1经过点A2,3,B-4,0,2经过点M-3,1,N-2,2;②1的斜率为-错误!,2经过点A4,2,B2,3;③1平行于轴,2经过点的值,使过点Am+1,0,B-5,m的直线与过点C-4,3,D0,5的直线平行.[思路探究]1先求出两直线的斜率,再利用斜率进行判断;2利用两直线平行的条件建立方程,解方程求得.[解]1①AB=错误!=错误!,MN=错误!=1,AB≠MN,所以1与2不平行.②1的斜率1=-错误!,2的斜率2=错误!=-错误!,1=2,所以1与2平行或重合.③由题意,知1的斜率不存在,且不与轴重合,2的斜率也不存在,且与轴重合,所以1∥2④由题意,知EF=错误!=1,GH=错误!=1,EF=GH,所以1与2平行或重合.需进一步研究E,F,G,H四点是否共线,FG=错误!=1所以E,F,G,H四点共线,所以1与2重合.2由题意知CD的斜率存在,则与其平行的直线AB的斜率也存在,AB=错误!,CD=错误!=错误!由于AB∥CD,所以AB=CD,即错误!=错误!解得m=-2经验证m=-2时,直线AB的斜率存在,故m的值为-2判断两条不重合直线是否平行的步骤[跟进训练]1.已知▱ABCD的三个顶点的坐标分别为A0,1,B1,0,C4,3,求顶点D的坐标.[解]设Dm,n,由题意,得AB∥DC,AD∥BC,则有AB=DC,AD=BC所以错误!解得错误!所以顶点D的坐标为3,4两直线垂直的判定及应用12①1经过点A-1,-2,B1,2;2经过点M-2,-1,N2,1;②1的斜率为-10;2经过点A10,2,B2021;③1经过点A3,4,B3,10;2经过点M-10,40,N10,40.2已知直线1经过点A3,a,Ba-2,3,直线2经过点C2,3,D1,a-2,如果1⊥2,求a的值.[思路探究]1判断两直线垂直,当斜率存在时,利用12=-1,若有一条斜率不存在时,判断另一条斜率是否为02含字母的问题判断要分存在和不存在两种情况来解题.[解]1①1=错误!=2,2=错误!=错误!,=1,∴1与2不垂直.12②1=-10,2=错误!=错误!,12=-1,∴1⊥2③由A,B的横坐标相等得的倾斜角为90°,则1⊥轴.1=错误!=0,则2∥轴,∴1⊥222因为直线2经过点C2,3,D1,a-2,所以2的斜率存在,设为2当2=0,即a-2=3,亦即a=5时,A3,5,B3,3,显然直线1的斜率不存在,满足1⊥2;当2≠0,即a-2≠3,亦即a≠5时,显然1的斜率存在,设为1,要满足题意,则12=-1,得错误!·错误!=-1,解得a=2综上可知,a的值为5或2利用斜率公式来判定两直线垂直的方法1一看:就是看所给两点的横坐标是否相等,若相等,则直线的斜率不存在只需看另一条直线的两点的纵坐标是否相等,若相等,则垂直,若不相等,则进行第二步.2二代:就是将点的坐标代入斜率公式.3三求:计算斜率的值,进行判断.尤其是点的坐标中含有参数时,应用斜率公式要对参数进行讨论.[跟进训练]2.已知A-m-3,2,B-2m-4,4,C-m,m,D3,3m+2,若直线AB⊥CD,求m的值.[解]∵A,B两点纵坐标不相等,∴AB与轴不平行.∵AB⊥CD,∴CD与轴不垂直,∴-m≠3,m≠-3①当AB与轴垂直时,-m-3=-2m-4,解得m=-=-1时C,D两点的纵坐标均为-1∴CD∥轴,此时AB⊥CD,满足题意.②当AB与轴不垂直时,由斜率公式得=错误!=错误!,AB=错误!=错误!CD∵AB⊥CD,∴AB·CD=-1,即错误!·错误!=-1,解得m=1综上,m的值为1或-1两直线平行与垂直的综合应用[探究问题]1.两直线1∥2⇔1=2成立的前提条件是什么?[提示]1两条直线的斜率存在;2两直线不重合.2.对任意两条直线,如果1⊥2,一定有12=-1吗?为什么?[提示]不一定.当两条直线的斜率都存在时,12=-1,还有另一种情况就是,一条直线斜率不存在,另一条直线斜率为零.【例3】△ABC的顶点A5,-1,B1,1,C2,m,若△ABC是以点A为直角顶点的直角三角形,求m的值.[思路探究]由A为直角顶点可得AB·AC=-1[解]因为∠A为直角,则AC⊥AB,所以AC·AB=-1,即错误!·错误!=-1,得m=-71.[变条件]本例中,将“C2,m”改为“C2,3”,你能判断三角形的形状吗?[解]如图,AB边所在的直线的斜率AB=-错误!,BC边所在直线的斜率BC=·BC=-1,得AB⊥BC,即∠ABC=90°∴△ABC是以点B为直角顶点的直角三角形.2.[变条件]本例中若改为∠A为锐角,其他条件不变,如何求解m的值?[解]由于∠A为锐角,故∠B或∠C为直角.若∠B为直角,则AB⊥BC,所以AB·BC=-1,则错误!·错误!=-1,得m=3若∠C为直角,则AC⊥BC,所以AC·BC=-1,即错误!·错误!=-1,得m=±2综上可知,m=3或m=±23.[变条件]若将本例中的条件“点A为直角顶点”去掉,改为若△ABC为直角三角形,如何求解m的值?[解]若∠A为直角,则AC⊥AB,所以AC·AB=-1,即错误!·错误!=-1,得m=-7;若∠B为直角,则AB⊥BC,所以AB·BC=-1,即错误!·错误!=-1,得m=3;若∠C为直角,则AC⊥BC,所以AC·BC=-1,即错误!·错误!=-1,得m=±2综上可知,m=-7或m=3或m=±2利用两条直线平行或垂直判定图形形状的步骤1.两直线平行或垂直的判定方法斜率直线斜率均不存在平行或重合一条直线的斜率为0,另一条直线的斜率不存在垂直相等平行或重合斜率均存在积为-1垂直2在两条直线平行或垂直关系的判断中体会分类讨论的思想.1.下列说法正确的是A.若直线1与2倾斜角相等,则1∥2B.若直线1⊥2,则12=-1C.若直线的斜率不存在,则这条直线一定平行于轴D.若两条直线的斜率不相等,则两直线不平行D[对A,两直线倾斜角相等,可能重合;对B,若1⊥2,1与2中可能一条斜率不存在,另一条斜率为0;对C,若直线斜率不存在,可能与轴重合;对D,若两条直线斜率不相等,则两条直线一定不平行,综合可知D正确.]2.若直线1的斜率为a,1⊥2,则直线2的斜率为A.错误!B.aC.-错误!D.-错误!或不存在D[由1⊥2,当a≠0时,2=-错误!,当a=0时,2的斜率不存在,故应选D]3.若经过点Mm,3和N2,m的直线与斜率为-4的直线互相垂直,则m的值是________.错误![由题意知,直线MN的斜率存在,因为MN⊥,所以MN=错误!=错误!,解得m=错误!]4.若两条直线1,2的方向向量分别为1,2和1,,当1∥2时,的值为________.2[1∥2时1=2或斜率均不存在,由条件可知=2]5.直线1经过点Am,1,B-3,4,直线2经过点C1,m,D-1,m+1,当1∥2或1⊥2时,分别求实数m的值.[解]直线1的方向向量为-3-m,3,直线2的方向向量为-2,1.当1∥2时错误!=错误!,得m=3;当1⊥2时,-2-3-m+3=0得m=-错误!,故1∥2时m=3,1⊥2时m=-错误!。
【人教B版】高中数学选修2-2学案全集(全册共65页附答案)目录1.2 导数的运算1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理2.1.1 合情推理2.1.2 演绎推理2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法3.1.2 复数的概念3.1.3 复数的几何意义3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法1.2 导数的运算1.掌握基本初等函数的导数公式,并能利用这些公式求基本初等函数的导数. 2.熟练运用导数的运算法则.3.正确地对复合函数进行求导,合理地选择中间变量,认清是哪个变量对哪个变量求导数.1.基本初等函数的导数公式表y =f (x ) y′=f′(x )(1)求导公式在以后的求导数中可直接运用,不必利用导数的定义去求. (2)幂函数的求导规律:求导幂减1,原幂作系数.【做一做1-1】给出下列结论:①若y =1x 3,则y′=-3x 4;②若y =3x ,则y′=133x ;③若y =1x2,则y′=-2x -3;④若y =f (x )=3x ,则f′(1)=3;⑤若y =cos x ,则y′=sin x ;⑥若y =sin x ,则y′=cos x .其中正确的个数是( ).A .3B .4C .5D .6【做一做1-2】下列结论中正确的是( ).A .(log a x )′=a xB .(log a x )′=ln 10xC .(5x )′=5xD .(5x )′=5xln 5 2.导数的四则运算法则(1)函数和(或差)的求导法则: 设f (x ),g (x )是可导的,则(f (x )±g (x ))′=__________,即两个函数的和(或差)的导数,等于这两个函数的____________.(2)函数积的求导法则:设f (x ),g (x )是可导的,则[f (x )g (x )]′=____________,即两个函数的积的导数等于第一个函数的导数乘上第二个函数,加上第一个函数乘上第二个函数的导数.由上述法则立即可以得出[Cf (x )]′=Cf′(x ),即常数与函数之积的导数,等于常数乘以____________.(3)函数的商的求导法则:设f (x ),g (x )是可导的,g (x )≠0,则⎣⎢⎡⎦⎥⎤f (x )g (x )′=________________.(1)比较:[f (x )g (x )]′=f′(x )g (x )+f (x )g ′(x ),⎣⎢⎡⎦⎥⎤f (x )g (x )′=g (x )f ′(x )-f (x )g ′(x )g 2(x ),注意差异,加以区分.(2)f (x )g (x )≠f ′(x )g ′(x ),且⎣⎢⎡⎦⎥⎤f (x )g (x )′≠g (x )f ′(x )+f (x )g ′(x )g 2(x ).(3)两函数的和、差、积、商的求导法则,称为可导函数四则运算的求导法则.(4)若两个函数可导,则它们的和、差、积、商(商的分母不为零)必可导. 若两个函数不可导,则它们的和、差、积、商不一定不可导.例如,设f (x )=sin x +1x ,g (x )=cos x -1x,则f (x ),g (x )在x =0处均不可导,但它们的和f (x )+g (x )=sin x +cos x 在x =0处可导. 【做一做2】下列求导运算正确的是( ).A .⎝ ⎛⎭⎪⎫x +1x ′=1+1x2B .(log 2x )′=1x ln 2C .(3x )′=3x·log 3eD .(x 2cos x )′=-2x sin x 3.复合函数的求导法则对于两个函数y =f (u )和u =g (x ),如果通过变量u ,y 可以表示成x 的函数,那么称这个函数为函数y =f (u )和u =g (x )的复合函数,记作y =f [g (x )].如函数y =(2x +3)2是由y =u 2和u =2x +3复合而成的.复合函数y =f [g (x )]的导数和函数y =f (u ),u =g (x )的导数间的关系为 y′x =y′u ·u ′x .即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.对于复合函数的求导应注意以下几点:(1)分清复合函数是由哪些基本函数复合而成的,适当选定中间变量.(2)分步计算的每一步都要明确是对哪个变量进行求导的,而其中要特别注意的是中间变量的导数.如(sin 2x )′=2cos 2x ,而(sin 2x )′≠cos 2x .(3)根据基本初等函数的导数公式及导数的运算法则,求出各函数的导数,并把中间变量转换成自变量的函数.如求y =sin ⎝ ⎛⎭⎪⎫2x +π3的导数,设y =sin u ,u =2x +π3,则y′x =y′u ·u ′x =cos u ·2=2cos ⎝⎛⎭⎪⎫2x +π3. (4)复合函数的求导熟练后,中间步骤可省略不写. 【做一做3】函数y =ln(2x +3)的导数为________.1.如何看待导数公式与用定义法求导数之间的关系?剖析:导数的定义本身给出了求导数的最基本的方法,但由于导数是用极限定义的,因此求导数总是归结到求极限,这在运算上很麻烦,有时甚至很困难,利用导数公式就可以比较简捷地求出函数的导数.2.导数公式表中y′表示什么?剖析:y′是f′(x )的另一种写法,两者都表示函数y =f (x )的导数. 3.如何理解y =C (C 是常数),y′=0;y =x ,y′=1?剖析:因为y =C 的图象是平行于x 轴的直线,其上任一点的切线即为本身,所以切线的斜率都是0;因为y =x 的图象是斜率为1的直线,其上任一点的切线即为直线本身,所以切线的斜率为1.题型一 利用公式求函数的导数 【例题1】求下列函数的导数:(1)y =x x ;(2)y =1x4;(3)y =5x 3;(4)y =log 2x 2-log 2x ;(5)y =-2sin x2(1-2cos 2x4).分析:熟练掌握常用函数的求导公式.运用有关的性质或公式将问题转化为基本初等函数后再求导数.反思:通过恒等变形把函数先化为基本初等函数,再应用公式求导. 题型二 利用四则运算法则求导 【例题2】求下列函数的导数:(1)y =x 4-3x 2-5x +6; (2)y =x ·tan x ;(3)y =(x +1)(x +2)(x +3);(4)y =x -1x +1.分析:仔细观察和分析各函数的结构规律,紧扣求导运算法则,联系基本函数求导公式,不具备求导法则条件的可适当进行恒等变形,然后进行求导.反思:对于函数求导问题,一般要遵循先化简再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用.在实施化简时,必须注意变换的等价性,避免不必要的运算错误.题型三 求复合函数的导数 【例题3】求下列函数的导数:(1)y =(2x +1)n(x ∈N +);(2)y =⎝⎛⎭⎪⎫x 1+x 5;(3)y =sin 3(4x +3);(4)y =x cos x 2.分析:选择中间变量是复合函数求导的关键.必须正确分析复合函数是由哪些基本函数经过怎样的顺序复合而成的,分清其间的复合关系.要善于把一部分量、式子暂时当作一个整体,这个暂时的整体就是中间变量.求导时需要记住中间变量,注意逐层求导,不遗漏,其中还应特别注意中间变量的关系,求导后,要把中间变量转换成自变量的函数.反思:对于复合函数的求导,要注意分析问题的具体特征,灵活恰当地选择中间变量.易犯错误的地方是混淆变量,或忘记中间变量对自变量求导.复合函数的求导法则,通常称为链条法则,因为它像链条一样,必须一环一环套下去,而不能丢掉其中的一环.题型四 易错辨析易错点:常见函数的导数公式、导数的四则运算法则、复合函数的求导法则等,记忆不牢或不能够灵活运用,所以在求导时容易出错.牢记公式、灵活应用法则是避免求导出错的关键.【例题4】求函数y =12(e x +e -x)的导数.错解:y′=⎣⎢⎡⎦⎥⎤12(e x +e -x )′=12(e x +e -x )′=12[(e x )′+(e -x )′]=12(e x +e -x).1下列各组函数中导数相同的是( ). A .f (x )=1与f (x )=xB .f (x )=sin x 与f (x )=cos xC .f (x )=1-cos x 与f (x )=-sin xD .f (x )=x -1与f (x )=x +12已知函数f (x )=ax 3+3x 2+2,若f′(-1)=4,则a 的值为( ). A .193 B .103 C .133 D .1633函数y =cos xx的导数是( ).A .-sin xx2 B .-sin xC .-x sin x +cos x x 2D .-x cos x +cos xx 24设y =1+a +1-x (a 是常数),则y′等于( ).A .121+a +121-xB .121-xC .121+a -121-xD .-121-x5已知抛物线y =ax 2+bx -5(a ≠0),在点(2,1)处的切线方程为y =-3x +7,则a =________,b =________.答案:基础知识·梳理1.nxn -1a xln a1x ln acos x -sin x 【做一做1-1】B 由求导公式可知,①③④⑥正确. 【做一做1-2】D2.(1)f′(x )±g′(x ) 导数和(或差) (2)f′(x )g (x )+f (x )g′(x ) 函数的导数 (3)fx g x -f x gxg 2x【做一做2】B 由求导公式知,B 选项正确.⎝⎛⎭⎪⎫x +1x′=x ′+(x -1)′=1-x -2=1-1x2.(3x )′=3x ln 3,(x 2cos x )′=(x 2)′cos x +x 2(cos x )′=2x cos x -x 2sin x . 【做一做3】y′=22x +3函数y =ln(2x +3)可看作函数y =ln u 和u =2x +3的复合函数,于是y′x =y′u ·u ′x =(ln u )′·(2x +3)′=1u ×2=22x +3.典型例题·领悟【例题1】解:(1)y′=(x x )′=⎝ ⎛⎭⎪⎫x 32′=32x 32-1=32x . (2)y′=⎝ ⎛⎭⎪⎫1x4′=(x -4)′=-4x -4-1=-4x -5=-4x5.(3)y′=(5x 3)′=⎝ ⎛⎭⎪⎫x 35′=35x 35-1=35x -25=355x 2. (4)∵y =log 2x 2-log 2x =log 2x ,∴y′=(log 2x )′=1x ln 2. (5)∵y =-2sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4=2sin x 2⎝ ⎛⎭⎪⎫2cos 2x 4-1=2sin x 2cos x2=sin x ,∴y′=cos x .【例题2】解:(1)y′=(x 4-3x 2-5x +6)′=(x 4)′-3(x 2)′-5x ′-6′=4x 3-6x -5.(2)y′=(x ·tan x )′=⎝ ⎛⎭⎪⎫x ·sin x cos x ′=x ·sin x ′·cos x -x ·sin x cos x ′cos 2x=sin x +x ·cos x ·cos x +x ·sin 2xcos 2x=sin x ·cos x +x ·cos 2x +x ·sin 2x cos 2x =12sin 2x +x cos 2x +x sin 2x cos 2x =sin 2x +2x 2cos 2x . (3)方法1:y′=[(x +1)(x +2)]′(x +3)+(x +1)(x +2)(x +3)′=[(x +1)′(x +2)+(x +1)(x +2)′](x +3)+(x +1)(x +2) =(x +2+x +1)(x +3)+(x +1)(x +2) =(2x +3)(x +3)+(x +1)(x +2)=3x 2+12x +11.方法2:y =x 3+6x 2+11x +6, y′=3x 2+12x +11.(4)方法1:y′=⎝ ⎛⎭⎪⎫x -1x +1′=x -1′x +1-x -1x +1′x +12=x +1-x -1x +12=2x +12.方法2:y =1-2x +1, y′=⎝ ⎛⎭⎪⎫1-2x +1′=⎝ ⎛⎭⎪⎫-2x +1′=-2′x +1-2x +1′x +12=2x +12.【例题3】解:(1)y′=[(2x +1)n]′=n (2x +1)n -1·(2x +1)′=2n (2x +1)n -1.(2)y′=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x 1+x 5′=5·⎝ ⎛⎭⎪⎫x 1+x 4·⎝ ⎛⎭⎪⎫x 1+x ′=5x4x +16.(3)y′=[sin 3(4x +3)]′=3sin 2(4x +3)[sin(4x +3)]′=3sin 2(4x +3)·cos(4x +3)·(4x +3)′=12sin 2(4x +3)cos(4x +3).(4)y′=(x cos x 2)′=x ′·cos x 2+(cos x 2)′·x=cos x 2-2x 2sin x 2.【例题4】错因分析:y =e -x 的求导错误,y =e -x 由y =e u与u =-x 复合而成,因此其导数应按复合函数的求导法则进行.正解:令y =e u ,u =-x ,则y′x =y′u ·u ′x ,所以(e -x )′=(e u )′(-x )′=e -x×(-1)=-e -x,所以y′=⎣⎢⎡⎦⎥⎤12x +e -x ′=12[(e x )′+(e -x )′]=12(e x -e -x ). 随堂练习·巩固1.D2.B f′(x )=3ax 2+6x ,∴f′(-1)=3a -6=4,∴a =103.3.C y′=⎝⎛⎭⎪⎫cos x x ′=xx -cos x ·x ′x =-x sin x -cos xx =-x sin x +cos xx 2.4.D 由x 是自变量,a 是常数,可知(1+a )′=0,所以y′=(1+a )′+(1-x )′=[(1-x )12]′=12(1-x )-12·(1-x )′=-121-x .5.-3 9 ∵y′=2ax +b ,∴y′|x =2=4a +b ,∴方程y -1=(4a +b )(x -2)与方程y =-3x +7相同,即⎩⎪⎨⎪⎧4a +b =-3,1-a +b =7,即4a +b =-3,又点(2,1)在y =ax 2+bx -5上, ∴4a +2b -5=1.即4a +2b =6.由⎩⎪⎨⎪⎧4a +b =-3,4a +2b =6,得⎩⎪⎨⎪⎧a =-3,b =9.1.3.1 利用导数判断函数的单调性1.理解可导函数单调性与其导数的关系,会用导数确定函数的单调性. 2.通过比较体会用导数求函数单调区间的优越性.用函数的导数判定函数单调性的法则1.如果在(a ,b )内,f′(x )>0,则f (x )在此区间是______,(a ,b )为f (x )的单调增区间;2.如果在(a ,b )内,f′(x )<0,则f (x )在此区间是______,(a ,b )为f (x )的单调减区间.(1)在(a ,b )内,f′(x )>0(<0)只是f (x )在此区间是增(减)函数的充分条件而非必要条件.(2)函数f (x )在(a ,b )内是增(减)函数的充要条件是在(a ,b )内f′(x )≥0(≤0),并且f′(x )=0在区间(a ,b )上仅有有限个点使之成立.【做一做1-1】已知函数f (x )=1+x -sin x ,x ∈(0,2π),则函数f (x )( ). A .在(0,2π)上是增函数 B .在(0,2π)上是减函数C .在(0,π)上是增函数,在(π,2π)上是减函数D .在(0,π)上是减函数,在(π,2π)上是增函数【做一做1-2】设f′(x )是函数f (x )的导数,f′(x )的图象如图所示,则f (x )的图象最有可能是( ).1.函数的单调性与其导数有何关系?剖析:(1)求函数f(x)的单调增(或减)区间,只需求出其导函数f′(x)>0(或f′(x)<0)的区间.(2)若可导函数f(x)在(a,b)内是增函数(或减函数),则可以得出函数f(x)在(a,b)内的导函数f′(x)≥0(或f′(x)≤0).2.利用导数判断函数单调性及单调区间应注意什么?剖析:(1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域,解决问题时只能在定义域内,通过讨论导数的符号,来判断函数的单调区间.(2)在对函数划分单调区间时,要注意定义域内的不连续点和不可导点.(3)如果一个函数具有相同单调性的单调区间不止一个,这些单调区间不能用“∪”连接,而只能用“逗号”或“和”字隔开.题型一求函数的单调区间【例题1】求下列函数的单调区间:(1)f(x)=x-x3;(2)f(x)=x ax-x2(a>0).分析:先求f′(x),然后解不等式f′(x)>0得单调增区间,f′(x)<0得单调减区间.反思:运用导数讨论函数的单调性需注意如下几点:(1)确定函数的定义域,解决问题时,只能在函数的定义域内,通过讨论函数导数的符号,来判断函数的单调区间;(2)在对函数划分单调区间时,要注意定义域内的不连续点和不可导点;(3)在某一区间内f′(x)>0(或f′(x)<0)是函数f(x)在该区间上为增(或减)函数的充分不必要条件.题型二根据函数的单调性求参数的取值范围【例题2】已知函数f(x)=2ax-1x2,x∈(0,1],若f(x)在x∈(0,1]上是增函数,求a 的取值范围.分析:函数f(x)在(0,1]上是增函数,则f′(x)≥0在(0,1]上恒成立.反思:函数f(x)在区间M上是增(减)函数,即f′(x)≥0(≤0)在x∈M上恒成立.题型三证明不等式【例题3】已知x>1,求证:x>ln(1+x).分析:构造函数f(x)=x-ln(1+x),只要证明在x∈(1,+∞)上,f(x)>0恒成立即可.反思:利用可导函数的单调性证明不等式,是不等式证明的一种重要方法,其关键在于构造一个合理的可导函数.此法的一般解题步骤为:令F(x)=f(x)-g(x),x≥a,其中F(a)=f(a)-g(a)=0,从而将要证明的不等式“当x>a时,f(x)>g(x)”转化为证明“当x>a时,F(x)>F(a)”.题型四易错辨析易错点:应用导数求函数的单调区间时,往往因忘记定义域的限制作用从而导致求解结果错误,因此在求函数的单调区间时需先求定义域.【例题4】求函数f (x )=2x 2-ln x 的单调减区间.错解:f′(x )=4x -1x =4x 2-1x ,令4x 2-1x <0,得x <-12或0<x <12,所以函数f (x )的单调减区间为⎝ ⎛⎭⎪⎫-∞,-12,⎝ ⎛⎭⎪⎫0,12.1在区间(a ,b )内f′(x )>0是f (x )在(a ,b )内为增函数的( ). A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件2函数y =x cos x -sin x 在下面哪个区间内是增函数( ). A .⎝ ⎛⎭⎪⎫π2,3π2 B .(π,2π)C .⎝ ⎛⎭⎪⎫3π2,5π2 D .(2π,3π)3若f (x )=ax 3+bx 2+cx +d 为增函数,则一定有( ).A .b 2-4ac ≤0 B.b 2-3ac ≤0C .b 2-4ac ≥0 D.b 2-3ac ≥04如果函数f (x )=-x 3+bx (b 为常数)在区间(0,1)上是增函数,则b 的取值范围是__________.5函数y =-13x 3+x 2+5的单调增区间为________,单调减区间为________.答案:基础知识·梳理 1.增函数 2.减函数 【做一做1-1】A f′(x )=1-cos x ,当x (0,2π)时,f′(x )>0恒成立,故f (x )在(0,2π)上是增函数.【做一做1-2】C 由f′(x )的图象知,x (-∞,0)或x (2,+∞)时,f′(x )>0,故f (x )的增区间为(-∞,0),(2,+∞),同理可得f (x )的减区间为(0,2).典型例题·领悟【例题1】解:(1)f (x )′=1-3x 2.令1-3x 2>0,解得-33<x <33.因此函数f (x )的单调增区间为⎝ ⎛⎭⎪⎫-33,33. 令1-3x 2<0,解得x <-33或x >33.因此函数f (x )的单调减区间为⎝⎛⎭⎪⎫-∞,-33和⎝ ⎛⎭⎪⎫33,+∞. (2)由ax -x 2≥0得0≤x ≤a ,即函数的定义域为[0,a ].又f (x )′=ax -x 2+x ×12(ax -x 2)-12·(a -2x )=-4x 2+3ax 2ax -x2, 令f (x )′>0,得0<x <3a 4;令f (x )′<0,得x <0或x >34a ,又x [0,a ],∴函数f (x )的单调增区间为⎝ ⎛⎭⎪⎫0,3a 4,单调减区间为⎝ ⎛⎭⎪⎫3a 4,a .【例题2】解:由题意,得f′(x )=2a +2x3.。
《劝学》学案高一语文编写人:张军会一.学习目标:1.分析课文第四自然段,掌握并积累重要的文言实词,虚词。
2.学习本文比喻论证,对比论证的方法。
3.明确学习的重要性,及学习必须“积累”“坚持”“专一”的道理。
二.重点难点:1.归纳掌握“劝、中、疾、致、假、绝、兴、功强”等词义。
2.理解比喻的含义以及比喻与比喻之间的内在联系。
3.背诵全文。
三.知识链接:《劝学》是我国古代教育史上的一篇著名作品。
这篇作品极少抽象说教,而是运用譬喻和推理的方法,从不同的侧面、不同的角度去阐明学习的重要性和学习的方法。
人们通过浅近明白的道理和具体生动的形象,受到启发和教育。
文章开宗明义,首先提出“学不可以已”的论点,接着从三个不同的角度,阐明了学习的重要性。
一是以青胜于蓝和冰寒于水这一生活现象作为论据,说明人们必须向前人学习,后人经过坚持不懈的努力学习,取得不断进步,必然会超过前人。
二是用“木直中绳,輮以为轮”、“木受绳则直”和“金就砺则利”相比。
指出客观条件变化,可以引起事物自身特性的改变。
人们如果博学又能用所学到的事理时刻对照省察,就会智慧高明而不犯错误。
三是用冥思苦想不如实地去学习和登高才能望远,顺风而呼闻者彰明,以及借助舆马、舟楫等生活事例作比,从同一个角度反复说明君子利用客观条件学习的重要性。
作者还论述了学习的态度和方法:要注意知识的积累,孜孜不倦,勤奋刻苦。
作者以“积土成山”和“积水成渊”、“积善成德”为衬托,阐明了想做一个学问渊博的人,必须从一点一滴做起。
作者进一步用骐骥、驽马、朽木、金石两组四个比喻,论述做学问应当具有坚持不懈的精神,要脚踏实地,持之以恒。
说明了滴水穿石、铁杵成针的道理。
《劝学》在写作方法上的主要特点是:作者将珠串璧连的比喻与言简意赅的议论溶为一体,契合无间,达到交相辉映的地步。
文章中还善于运用大量短句、排比和对偶的句式,从正反两个方面论述了文章的主旨,呈现出错综与齐整之美,增强了全文的气势和雄辩的色彩,感染力极强。
平抛运动
朱俊敬 王翠娟
一.高考大纲解读
平抛运动(Ⅱ) 二.课前预习导学
1.自学密码52页基础自主梳理中的三
2. 自学密码55页变式探究 三.课堂学习研讨 (一)预习检测
1. 平抛运动是匀变速曲线运动,故相等时间内速度变化量_________。
2. 在“平抛物体的频闪照片上”用铅笔画几条竖直线和水平线,用刻度尺测量这些小球之间的水平距离和竖直距离,再用学过的知识计算一下能得出什么结果?
3.一个有用的推论:
平抛物体任意时刻瞬时速度方向的反向延长线与初速度延长线的交点到抛出点的距离都等于水平位移的一半。
试证明。
4.如图所示,以15m/s 的水平速度抛出的小球,飞行
一段时间后,垂直地撞在倾角为θ=37°的斜面上,则小球完成这
段飞行的时间t= ______。
小球在空中的位移s=_______。
5.小球从倾角α的斜面顶端被水平抛出,恰好打在斜面底端,如图所示,已知斜面长L 。
试求:(1)小球初速度v 0
(2)小球抛出后经多长时间离斜面最远?
问题(1)恰好打到斜面底端隐含什么条件?
(2)什么情况下(小球速度方向)离斜面最远?
(3)如果以不同初速度水平抛出物体,它们撞击到斜
面上的速度方向、位移方向有什么区别?
(二)自查自纠,总结归纳 (三)教师总结
四.课堂知识拓展
1.在研究平抛物体运动的实验中,用一张印有小方格的纸记录轨
迹,小方格的边长L=1.25cm ,若小球在平抛运动过程中的几个位置如图中的a 、b 、c 、d 所示,则小球平抛初速度的计算式为V 0=_____________(用L、g表示),其值是
___________。
(取
g=9.8m/s 2
)
问题(1)观察图中水平方向和竖直方向各有什么特点?
问题(2)从图中看出,相邻两点间的竖直距离差之比为1:
2:3,而非1:3:5,这说明了什么?ΔS=aT 2还适用吗?
2.已知网高H ,半场长L ,扣球点高h ,扣球点离网水平距离S ,为了使水平扣出的球既不触网、又不出界,求:水平扣球速度v 的取值范围。
3. 测水管中水的流量(单位时间内流出水的体积)
(1)先用直尺测出水流的______________;(2)再用卡尺测出___________________; (3)流量Q =_____________________。
4. 从倾角为θ=30°的斜面顶端以初动能E =6J 向下坡方向平抛出一个小球,则小球落到斜面上时的动能E /为______J 。
5. 如图所示,在坡度一定的斜面顶点以大小相同的初速v 同
时水平向左与水平向右抛出两个小球A 和B ,两侧斜坡的倾角 分别为37°和53°,小球均落在坡面上,若不计空气阻力,
则A 和B 两小球的运动时间之比为( )
A .3 : 4
B .4 : 3
C .9 : 16
D .16 : 9 6.图中,AB 为斜面,BC 为水平面,从A 点以水平速度v 0抛出一小球,其第一次落点到A 的水平距离为S 1;从A 点以水平速度3v 0抛出小球,其第一次落点到A 的水平距离为S 2,不计空气阻力,则 S 1﹕S 2不可能等于( )
A .1﹕3
B .1﹕6
C .1﹕9
D .1﹕12
7. 将一个小球以速度v 水平抛出,要使小球能够垂直打到一个斜面上,斜面与水平方向的平角为α0,那么( )
A .若保持水平速度v 不变,斜面与水平方向的夹角α越大,小球的飞行时间越长
B .若保持水平速度v 不变,斜面与水平方向的夹角α越大,小球的飞行时间越短
C .若保持斜面倾角α不变,水平速度v 越大,小球的飞行时间越长
D .若保持斜面倾角α不变,水平速度v 越大,小球的飞行时间越短
X。