云南省昆明一中2012届高三第一次摸底考试 数学理试题
- 格式:doc
- 大小:2.03 MB
- 文档页数:12
云南省部分名校高2012届第一次统一考试(昆明三中、楚雄一中、玉溪一中)理科综合命题:昆明三中高三理综备课组本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至4页,第Ⅱ卷5至14页。
共300分考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码中“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
第Ⅱ卷用黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答案无效。
3.考试结束,监考员将试题卷、答题卡一并收回。
第Ⅰ卷本卷共21小题,每小题6分,共126分。
以下数据可供解题时参考可能用到的相对原子质量:C 12 H 1 O 16 N 14 Cl 35.5 Fe 56 Na 23 S 32一、选择题:本大题共13小题,每小题6分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列叙述错误的是A.图甲中共有8种核苷酸B.构成人体的化合物乙约有20种C.组成丙化合物的单糖是脱氧核糖D.在小鼠的体细胞内检测到的化合物丁很可能是蔗糖2.右图中三条曲线表示某种酶在不同的pH条件下,酶的活性与温度之间的关系。
据图可知A.pH从5升高到7,酶的活性逐渐降低B.该酶的最适pH为7C.pH从5升高到7,酶的最适温度不变D.温度相同pH逐渐升高,反应速度先减慢后增快。
3.下列叙述正确的是A.一个mRNA中含有多个密码子,一个tRNA中只含有一个反密码子B.萨顿运用假说—演绎法,提出了基因在染色体上的假说C.葡萄糖、乳酸、氨基酸依次是光合作用、细胞呼吸、基因表达的产物D.人在剧烈运动时,乳酸进入血液,血浆由弱碱性变为弱酸性4.右图为基因型AABb的雌性动物某细胞分裂示意图,相关判断正确的是A.此细胞可能是次级精母细胞或次级卵母细胞或极体B.产生a基因的原因可能是联会时期发生了非姐妹染色单体间的交叉互换C.此细胞的子细胞发育成的个体是单倍体D.用秋水仙素处理此细胞可得到四倍体5.某种昆虫体色深浅受一对等位基因的控制体色深的基因型为BB,浅为bb,中间型为Bb。
云南昆明一中2012届高三上学期12月月考试题(数学理) 说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22题为选考题,其它题为必考题。
考生作答时,将答案写在答题卡上,在本试卷上答题无效.全卷满分150分,答题时间为120分钟. 第Ⅰ卷(选择题,共60分) 一、选择题(12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.集合, ,则A. B. C. D. 2.已知,为虚数单位,且,则的值为A.4 B.4+4 C. D.2.下列判断错误的是A.”是a 0, b>0)被圆x2+y2+2x-4y+1=0截得的弦长为4,则的最小值A.B.C.2D.4 .当0<xk0)0.100.0250.010K2.7065.0246.635(本小题满分12分) 已知函数. (Ⅰ)求函数的单调区间; (Ⅱ)设,若对任意,,不等式 恒成立,求实数的取值范围.21.(本小题满分12分) 已知椭圆C的中心在原点,焦点在x轴上,离心率等于它的一个顶点恰好是抛物线的焦点, (Ⅰ)求椭圆C的标准方程; (Ⅱ)过椭圆C的右焦点作直线l交椭圆C于A、B两点,交y轴于M点,若 为定值. 本小题满分10分请在题中任选一题作答,A.【选修4-1:几何证明选讲】 如图,Δ是内接于⊙O, ,直线切⊙O于点,弦, 与相交于点. (I):; (Ⅱ),.选修44:坐标系与参数方程以直角坐标系的原点为极点,轴的正半轴为极轴,已知点的直角坐标为,点的极坐标为,若直线过点,且倾斜角为,圆以为 圆心、为半径。
(I)直线的参数方程和圆的极坐标方程; (Ⅱ)试判定直线和圆的位置关系。
选修4—5:不等式选讲 >1),且的最小值为,若,求的取值范围。
参考答案 一、选择题(本大题共12小题,每小题5分,共60分) 题次123456789101112答案BCDABCABDCAD 二、填空题(本大题共4小题,每小题5分,共20分)13. 14.1 15.30 16. (Ⅰ)是与2的等差中项, ∴ ① ………2分 ∴ ② 由①-②得 ………4分 再由 得 ∴ ………6分 。
2012年云南省昆明市高三复习教学质量检测数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合A={y|y−2>0},集合B={x|x2−2x≤0},则A∪B等于()A.[0, +∞)B.(−∞, 2]C.[0, 2)∪(2, +∞)D.R2. 若复数a+i1−2i是纯虚数,其中i是虚数单位,则实数a的值为()A.2B.15C.−12D.−253. 若tanα=2,则1sin2α的值等于()A.−54B.54C.−45D.454. 由直线x=π3,x=2π3,y=0与y=sin x所围成的封闭图形的面积为()A.1 2B.1C.√32D.√35. 下列命题中,真命题的个数有()①∀x∈R,x2−x+14≥0;②∃x>0,ln x+1ln x≤2;③”a>b”是“ac2>bc2”的充要条件;④y=2x−2−x是奇函数.A.1个B.2个C.3个D.4个6. 一个棱锥的三视图如图(尺寸的长度单位为m),则该棱锥的全面积是(单位:m2).()A.4+2√6 B.4+√6 C.4+2√2 D.4+√27. 设双曲线x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1、F2,A是双曲线渐近线上的一点,AF2⊥F1F2,原点O到直线AF1的距离为13|OF1|,则渐近线的斜率为()A.√5或−√5B.√2或−√2C.1或−1D.√22或−√228. 如图是“二分法”解方程x2−2=0的程序框图(在区间[a, b]上满足f(a)f(b)<0),那么在①、②处应填写的内容分别是()A.f(b)f(m)<0;a=mB.f(a)f(m)<0;m=aC.f(a)f(m)<0;a=mD.f(b)f(m)<0;b=m9. 已知函数f(x)={√x−1,x>02−|x|+1,x≤0.若关于x的方程f(x)+2x−k=0有且只有两个不同的实根,则实数k 的取值范围为()A.(−1, 2]B.(−∞, 1]∪(2, +∞)C.(0, 1]D.[1, +∞)10. 若函数f(t)=500+100sin(t2+2φ)(0<φ<π)图象的一条对称轴为t=3π,则函数y=f(t)在下列区间上递减的是()A.[15, 20]B.[10, 15]C.[5, 10]D.[0, 5]11. 已知函数f(x)是(−∞, +∞)上的偶函数,且f(5+x)=f(5−x),在[0, 5]上只有f(1)=0,则f(x)在[−2012, 2012]上的零点个数为()A.804B.805C.806D.80812. 已知球O 的表面积为20π,SC 是球O 的直径,A 、B 两点在球面上,且AB =BC =2,AC =2√3,则三棱锥S −AOB 的高为( ) A.12B.√22C.√32D.1二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上.从某学习小组10名同学中选出3人参加一项活动,其中甲、乙两人都被选中的概率是________.在△ABC 中,已知AC 2+AB 2=3,BC =1,则△ABC 面积的最大值为________.已知抛物线x 2=4y 的焦点为F ,准线与y 轴的交点为M ,N 为抛物线上的一点,且满足|NF|=λ|MN|,则λ的取值范围是________.如图所示,在等腰梯形ABCD 中,AB // DC ,AB =3,DC =1,tan B =2,点M 是梯形ABCD 内(含边界)的一个动点,则AD →⋅AM →的最大值是________.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.已知等差数列{a n }的前n 项和为S n ,a 2=3,S 10=100. (1)求数列{a n }的通项公式; (2)设b n =(13)n a n ,求数列{b n }的前n 项和T n .如图所示,长方体ABCD −A 1B 1C 1D 1中,P 是线段AC 上任意一点.(1)判断直线B 1P 与平面A 1C 1D 的位置关系并证明;(2)若AB =BC ,E 是AB 中点,二面角A 1−DC 1−D 1的余弦值是√105,求直线B 1E 与平面A 1C 1D 所成角的正弦值.某地区因干旱缺水,政府向市民宣传节约用水,并进行广泛动员,三个月后,统计部门在一个小区随机抽取了100户家庭,分别调查了他们在政府动员前后三个月的平均用水量(单位:吨),将所得数据分组,画出频率分布直方图(如图所示)(1)已知该小区共有居民10000户,在政府进行节水动员前平均每月用水量是8.96×104吨,请估计该小区在政府动员后比动员前平均每月节约用水多少吨;(2)为了解动员前后市民的节水情况.媒体计划在上述家庭中,从政府动员前月均用水量在[12, 16)范围内的家庭中选出5户作为采访对象,其中在[14, 16)内的抽到X 户,求X 的分布列和期望.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点(−1,−√22),两焦点为F 1、F 2,短轴的一个端点为D ,且DF 1→⋅DF 2→=0.(1)求椭圆的方程;(2)直线l 交椭圆C 于A 、B 两点(A 、B 不是上下顶点),当以AB 为直径的圆恒过定点P(0, 1)时,试问:直线l 是否过定点,若过定点.求出该点的坐标;若不过定点,请说明理由.已知函数f(x)=1−e λx (λ∈R 且λ≠0). (1)讨论f(x)的单调性;(2)当x >−1时,f(x)≥x x+1恒成立,求出λ的值.四、选考题(本小题满分10分)请考生在第(22)、(23)、(24)三道题中任选一题作答,并用2B 铅笔在答题卡第I 卷选择题区域内把所选的题号涂黑.注意:所做题目必须与所涂题号一致,如果多做,则按所做的第一题计分.选修4−1:几何证明选讲:如图,已知⊙为△ABC的外接圆,AF切⊙O于点A,交△ABC的高CE的延长线于点F,BD⊥AC.证明:(1)∠F=∠DBC;(2)ADDC =FEEC.已知直角坐标系xOy,以O为极点,x轴的非负半轴为极轴建立极坐标系,P点的极坐标为(2,π3),直线l经过点P,倾斜角为α.(1)写出点P的直角坐标及直线l的参数方程;(2)设l与圆ρ=3相交于A,B两点,求弦AB长度的最小值.选修4−5:不等式选讲:设函数f(x)=√|ax−2|+|ax−a|−2(a∈R).(1)当a=1时,求函数f(x)的定义域;(2)若函数f(x)的定义域为R,试求a的取值范围.参考答案与试题解析2012年云南省昆明市高三复习教学质量检测数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】A【考点】一元二次不等式的解法并集及其运算【解析】首先整理两个集合,这是两个数集,要求两个集合的并集,只要在数轴上表示出两个集合包含的所有的数集.【解答】解:∵集合A={y|y−2>0}={y|y>2},集合B={x|x2−2x≤0}={x|0≤x≤2},∴A∪B=[0,+∞).故选A.2.【答案】A【考点】复数代数形式的乘除运算复数的基本概念【解析】利用复数的长数形式的乘除运算,得到a+i1−2i =a−25+1+2a5i,再由纯虚数的定义,能够求出实数a的值.【解答】解:∵a+i1−2i =(a+i)(1+2i) (1−2i)(1+2i)=a+i+2ai+2i25=a−25+1+2a5i是纯虚数,∴{a−25=01+2a 5≠0,∴a=2.故选A.3.【答案】B【考点】同角三角函数间的基本关系求二倍角的正弦【解析】将所求式子的分子“1”利用同角三角函数间的基本关系化为sin2α+cos2α,分母利用二倍角的正弦函数公式化简,然后分子分母同时除以cos2α,利用同角三角函数间的基本关系弦化切后,将tanα的值代入计算,即可求出值.【解答】解:∵tanα=2,∴1sin2α=sin2α+cos2α2sinαcosα=tan2α+12tanα=22+12×2=54.故选B4.【答案】B【考点】定积分在求面积中的应用【解析】先根据题意画出直线x=π3,x=2π3,y=0与y=sin x所围成的封闭图形,然后利用定积分表示区域面积,最后转化成等价形式.【解答】解:先画出直线x=π3,x=2π3,y=0与y=sin x所围成的封闭图形,图形的面积为S=∫ 2ππ3 sin xdx=−cos x| 2π3π3=−cos2π3+cosπ3=1故选B.5.【答案】C【考点】全称命题与特称命题必要条件、充分条件与充要条件的判断【解析】①由配方可判断出其真假;②取x∈(0, 1),即可知命题的真假;③取c=0即可否定③;④利用奇函数的定义可判断出是否是奇函数.【解答】解:①∵∀x∈R,x2−x+14=(x−12)2≥0,∴ ①是真命题.②当0<x<1时,ln x<0,∴∃x>0,ln x+1ln x<0≤2,∴ ②是真命题.③当c=0时,由a>b⇒ac2=bc2=0;而由ac2>bc2⇒a>b,故“a>b”是“ac2>bc2”的必要而不充分条件,因此③是假命题.④∵∀x∈R,f(−x)=2−x−2x=−(2x−2−x)=−f(x),∴函数f(x)=2x−2−x是奇函数,故④是真命题.综上可知①②④是真命题.故选C.6.【答案】A【考点】由三视图求体积【解析】由三视图可以看出,此几何体是一个侧面与底面垂直的三棱锥,垂直于底面的侧面是一个高为2,底连长也为2的等腰直角三角形,底面与垂直于底面的侧面全等,此两面的面积易求,另两个与底面不垂直的侧面是全等的,可由顶点在底面上的射影作出此两侧面底边的高,将垂足与顶点连接,此线即为侧面三角形的高线,求出侧高与底面的连长,用三角形面积公式求出此两侧面的面积,将四个面的面积加起来即可【解答】解:由三视图可以看出,此几何体是一个侧面与底面垂直且底面与垂直于底面的侧面全等的三棱锥由图中数据知此两面皆为等腰直角三角形,高为2,底面连长为2,故它们的面积皆为12×2×2=2,由顶点在底面的投影向另两侧面的底边作高,由等面积法可以算出,此二高线的长度长度相等,为√5,将垂足与顶点连接起来即得此两侧面的斜高,由勾股定理可以算出,此斜高为2√65,同理可求出侧面底边长为√5,可求得此两侧面的面积皆为12×2√65×√5=√6,故此三棱锥的全面积为2+2+√6+√6=4+2√6,故选A.7.【答案】D【考点】双曲线的特性【解析】设出点A的坐标,确定直线AF1的方程,利用点到直线的距离公式,及原点O到直线AF1的距离为13|OF1|,建立方程,即可求得渐近线的斜率.【解答】解:双曲线的渐近线方程为y=±bax不妨设A在第一象限,则A(c, bca),∴直线AF1的方程为y−bca=bca2c(x−c)即b2ax−y+bc2a=0∴原点O到直线AF1的距离为bc2a√b24a2+1∵原点O到直线AF1的距离为13|OF1|,∴bc2a√b24a2+1=13c∴a=√2b∴ba=√22故选D.8.【答案】C【考点】程序框图【解析】用二分法求方程x2−2=0的近似解,首先给出精确度d和两个区间端点初始值a、b,然后求区间端点的中点值m,再判断f(a)f(m)<0(或f(b)f(m)<0 ),从而确定下一区间的范围,该框图中的条件结构是在满足判断框中的条件下执行的“b=m”,所以断定判断框中的条件应为f(a)f(m)<0,那么不满足条件时应执行的是“a=m”.【解答】解:算法步骤中的前三步是用顺序结构来表示的,第四步用的是条件结构,在这个条件结构中,“是”分支用的是“b=m”,说明第二个区间取的是[a, m],也就是说判断框中的条件是“f(a)f(m)<0”,则:“否”分支执行的应该是“a=m”,所以该程序框图在①、②处应填写的内容分别是f(a)f(m)<0;a=m.故选C.9.【答案】A【考点】函数的零点与方程根的关系【解析】作出函数f(x)的图象,根据方程构造函数,将关于x的方程f(x)+2x−k=0有且只有两个不同的实根,转化为图象的交点个数问题,即可求得结论.【解答】解:作出函数f(x)的图象如图,与y轴的交点分别为(0.−1),(0, 2)由f(x)+2x−k=0可得f(x)=−2x+k构造函数g(x)=−2x+k由图象可知,关于x的方程f(x)+2x−k=0有且只有两个不同的实根时,实数k的取值范围为(−1, 2]故选A.10.【答案】B【考点】正弦函数的单调性正弦函数的对称性【解析】根据函数f(t)=500+100sin(t2+2φ)(0<φ<π)图象的一条对称轴为t=3π,求得2φ=π,再求出函数的单调区间,即可得到结论.【解答】解:∵函数f(t)=500+100sin(t2+2φ)(0<φ<π)图象的一条对称轴为t=3π,∴sin(3π2+2φ)=±1∴cos2φ=±1∴2φ=kπ(k∈Z)∵0<φ<π∴2φ=π∴f(t)=500+100sin(t2+π)=500−100sin t2令−π2+2kπ≤t2≤π2+2kπ(k∈Z),则−π+4kπ≤t≤π+4kπ(k∈Z),此时函数递减当k=1时,3kπ≤t≤5kπ,故B符合题意故选B.11.【答案】C【考点】函数的零点与方程根的关系函数奇偶性的性质【解析】确定函数关于直线x=5对称且以10为周期,利用函数在[0, 5]上只有f(1)=0,可得在[0, 10]上有两个零点,由此可得结论.【解答】解:∵f(5+x)=f(5−x),∴函数关于直线x=5对称,f(10+x)=f(−x),∵函数f(x)是(−∞, +∞)上的偶函数,∴f(10+x)=f(x),即函数以10为周期∵在[0, 5]上只有f(1)=0,∴在[0, 10]上有两个零点∵2012=201×10+2∴f(x)在[0, 2012]上的零点的个数为403∵函数f(x)是(−∞, +∞)上的偶函数,∴f(x)在[−2012, 2012]上的零点的个数为806故选C.12.【答案】C【考点】球内接多面体柱体、锥体、台体的体积计算【解析】将三棱锥S−AOB的高,转化为C到平面AOB的距离,利用等体积法,即可求得结论.【解答】解:∵球O的表面积为20π,∴球O的半径为√5,∵SC是球O的直径,∴三棱锥S−AOB的高等于C到平面AOB的距离,设为ℎ∵AB=BC=2,AC=2√3,∴cos A=2×2×2√3=√32∴sin A=12∴△ABC外接圆半径为BC2sin A=2∴O到平面ABC的距离为1∵S△OAB=12×2×√5−1=2,S△ABC=12×2×2√3×sin A=√3∴13×2×ℎ=13×√3×1∴ℎ=√32故选C.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上.【答案】115【考点】古典概型及其概率计算公式【解析】求出所有的选法共有C103=120种,其中甲、乙两人都被选中的选法有C81=8种,由此求得甲、乙两人都被选中的概率.【解答】解:所有的选法共有C103=120种,其中甲、乙两人都被选中的选法有C81=8种,故甲、乙两人都被选中的概率是8120=115,故答案为115.【答案】√54【考点】余弦定理的应用【解析】先利用余弦定理,计算cos A,再用三角形的面积公式,结合基本不等式,即可求△ABC面积的最大值.【解答】解:设三角形的三边分别为a,b,c,则b2+c2=3,a=1∴cos A=b2+c2−a22bc =1bc∴S2=14b2c2(1−cos2A)=14b2c2−14∵b2+c2=3≥2bc∴bc≤32∴S2≤516∴S≤√54即△ABC面积的最大值为√54故答案为:√54【答案】[√22, 1]【考点】抛物线的求解【解析】由题意可得F(0, 1),M(0, −1),过点N作NH垂直于准线y=−1,垂足为H,由条件可得λ=|NF||MN|=|NH||MN|,当点N与原点O重合时,|NH|=|MN|,λ有最大值为1;当直线MN和抛物线相切时,λ=|NH||MN|=sinθ有最小值.求出切线的斜率,可得sinθ的值,即为λ的最小值.【解答】解:由题意可得F(0, 1),M(0, −1),过点N作NH垂直于准线y=−1,垂足为H,由抛物线的定义可得|NF|=|NH|.由条件可得λ=|NF||MN|=|NH||MN|,如图所示:故当点N与原点O重合时,|NH|=|MN|,λ有最大值为1.当直线MN和抛物线相切时,λ=|NH||MN|=sinθ有最小值,这里θ=∠NMF.设当直线MN和抛物线相切时,MN的方程为y+1=kx,代入抛物线方程化简可得x2−4kx+4=0.由题意可得,此方程的判别式△=0,即16k2−16=0,∴k=±1,即tanθ=1,故sinθ=√22,故λ的最小值为√22.综上可得λ∈[√22, 1],故答案为[√22, 1].【答案】6【考点】平面向量数量积【解析】以A点为坐标原点,AB所在直线为x轴,建立坐标系,然后表示出AD→⋅AM→,求出最值即可.【解答】解:以A 点为坐标原点,AB 所在直线为x 轴,建立如图坐标系,可得 A(0, 0),B(3, 0),C(2, 2),D(1, 2), 则直线BC 方程为y =−2x +6 设M(λ, −2λ+6),(2≤λ≤3)可得则AM →=(λ, −2λ+6),AD →=(1, 2), ∴ AD →⋅AM →=λ+2(−2λ+6)=12−3λ ∵ 2≤λ≤3,∴ 当λ=2时,AD →⋅AM →=6取得最大值.故答案为:6三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.【答案】解:(1)设数列的公差为d , 则{a 1+d =3,10a 1+10×9d2=100, ∴ a 1=1,d =2,∴ a n =1+2(n −1)=2n −1. (2)∵ b n =(13)n a n =(2n −1)⋅(13)n ,∴ T n =13+3×(13)2+⋯+(2n −3)×(13)n−1+(2n −1)×(13)n ①,13T n =(13)2+3×(13)3+⋯+(2n −3)×(13)n +(2n −1)×(13)n+1②,令①−②得,23T n =13+2[(13)2+(13)3+⋯+(13)n ]−(2n −1)×(13)n+1 =2−(2n+2)×(13)n3. ∴ T n =1−n+13n.【考点】 数列的求和等差数列的通项公式【解析】设数列的公差为d ,则根据等差数列的通项公式及求和公式可建立公差d 与首 项a 1的方程,解方程可求d ,a 1,根据等差数列的通项公式即可求解(2)由(1)可求b n =(13)n a n ,结合数列的特点,考虑利用错位相减求解数列的和 【解答】解:(1)设数列的公差为d , 则{a 1+d =3,10a 1+10×9d2=100, ∴ a 1=1,d =2,∴ a n =1+2(n −1)=2n −1. (2)∵ b n =(13)n a n =(2n −1)⋅(13)n ,∴ T n =13+3×(13)2+⋯+(2n −3)×(13)n−1+(2n −1)×(13)n ①,13T n =(13)2+3×(13)3+⋯+(2n −3)×(13)n +(2n −1)×(13)n+1②,令①−②得,23T n =13+2[(13)2+(13)3+⋯+(13)n ]−(2n −1)×(13)n+1 =2−(2n+2)×(13)n3. ∴ T n =1−n+13n.【答案】 解:(1)直线B 1P // 平面A 1C 1D ,证明如下:连接AB 1与B 1C ,则A 1C 1 // AC ,A 1D // B 1C ∵ AC ∩B 1C =C∴ 平面AB 1C // 平面A 1C 1D ∵ B 1P ⊂平面AB 1C ∴ B 1P // 平面A 1C 1D ;(2)建立如图所示的直角坐标系,设A(1, 0, 0),D 1(0, 0, a),则C 1(0, 1, a),C(0, 1, 0),A(1, 0, a),B(1, 12, 0),B 1(1, 1, a) ∴DA 1→=(1,0,a),DC 1→=(0,1,a)设平面A 1C 1D 的法向量为n →=(x, y, z),则{x +az =0y +az =0,∴ 可取n →=(a,a,−1)∵ 平面D 1C 1D 的法向量为DA →=(1,0,0) ∴ cos <n →,DA →>=a √2a 2+1=√105∴ a =√2 ∴ EB 1→=(0,12,√2) ∴ cos <n →,EB 1→>=√22−√2√5×32=−√1015∴直线B 1E 与平面A 1C 1D 所成角的正弦值√1015.【考点】用空间向量求直线与平面的夹角 空间中直线与直线之间的位置关系 直线与平面所成的角【解析】(1)直线B 1P // 平面A 1C 1D ,证明平面AB 1C // 平面A 1C 1D ,利用面面平行的性质,即可求得B 1P // 平面A 1C 1D ;(2)建立直角坐标系,求出平面A 1C 1D 、平面D 1C 1D 的法向量,利用二面角A 1−DC 1−D 1的余弦值是√105,确定EB 1→=(0,12,√2),再利用向量的夹角公式,可求直线B 1E 与平面A 1C 1D 所成角的正弦值. 【解答】 解:(1)直线B 1P // 平面A 1C 1D ,证明如下:连接AB 1与B 1C ,则A 1C 1 // AC ,A 1D // B 1C ∵ AC ∩B 1C =C∴ 平面AB 1C // 平面A 1C 1D ∵ B 1P ⊂平面AB 1C ∴ B 1P // 平面A 1C 1D ;(2)建立如图所示的直角坐标系,设A(1, 0, 0),D 1(0, 0, a),则C 1(0, 1, a),C(0, 1, 0),A(1, 0, a),B(1, 12, 0),B 1(1, 1, a)∴ DA 1→=(1,0,a),DC 1→=(0,1,a)设平面A 1C 1D 的法向量为n →=(x, y, z),则{x +az =0y +az =0,∴ 可取n →=(a,a,−1)∵ 平面D 1C 1D 的法向量为DA →=(1,0,0) ∴ cos <n →,DA →>=√2a 2+1=√105∴ a =√2 ∴ EB 1→=(0,12,√2)∴ cos <n →,EB 1→>=√22−√2√5×32=−√1015∴ 直线B 1E 与平面A 1C 1D 所成角的正弦值√1015.【答案】解:(1)根据直方图估计该小区在政府动员后平均每户居民的月均用水量为1×0.015+3×0.03+5×0.105+7×0.2+9×0.12+11×0.03)×2=6.88(吨)于是可估计该小区在政府动员后比动员前平均每月可节约用水8.98×104−6.88×104=2.08×104(2)由动员前的直方图计算得月平均用水量在[12, 14)范围内的家庭有6户,在[14, 16)内的有3户,因此X 可能取值有0,1,2,3,P(X=0)=C65C95=6126=121;P(X=1)=C31C64C95=45126=514;P(X=2)=C32C63C95=60126=1021;P(X=3)=C33C62C95=15126=542∴X的分布列为∴EX=1×514+2×1021+3×542=53【考点】频率分布直方图离散型随机变量的期望与方差【解析】(1)将直方图中的每个组中值乘以每个矩形的面积相加即可求出所求;(2)由动员前的直方图计算得月平均用水量在[12, 14)范围内的家庭有6户,在[14, 16)内的有3户,因此X可能取值有0,1,2,3,分别求出相应的概率,最后根据数学期望的公式解之即可.【解答】解:(1)根据直方图估计该小区在政府动员后平均每户居民的月均用水量为1×0.015+3×0.03+5×0.105+7×0.2+9×0.12+11×0.03)×2=6.88(吨)于是可估计该小区在政府动员后比动员前平均每月可节约用水8.98×104−6.88×104=2.08×104(2)由动员前的直方图计算得月平均用水量在[12, 14)范围内的家庭有6户,在[14, 16)内的有3户,因此X可能取值有0,1,2,3,P(X=0)=C65C95=6126=121;P(X=1)=C31C64C95=45126=514;P(X=2)=C32C63C95=60126=1021;P(X=3)=C33C62C95=15126=542∴X的分布列为∴EX=1×514+2×1021+3×542=53【答案】解:(1)∵焦点为F1、F2,短轴的一个端点为D,且DF1→⋅DF2→=0∴△DF1F2为等腰直角三角形,且b=c∴a=√2b∴x22b2+y2b2=1∵椭圆C:x2a+y2b=1(a>b>0)经过点(−1,−√22),∴12b2+12b2=1∴b=1∴a=√2∴椭圆的方程为x22+y2=1;(2)①当直线l的斜率不存在时,设l:x=m,代入椭圆方程,可得y=±√1−m22∴A(m, √1−m22),B(m, −√1−m22),∵以AB为直径的圆恒过定点P(0, 1)∴PA→⋅PB→=0∴(m, √1−m22−1)•(m, −√1−m22−1)=0,∴m=0∴l:x=0;②当直线l的斜率存在时,设l:y=kx+b,代入椭圆方程,消去y可得(1+2k2)x2+4kbx+2b2−2=0△=16k2−8b2+8>0,∴2k2>b2−1设A(x1, y1),B(x2, y2),则x1+x2=−4kb1+2k2,x1x2=2b2−21+2k2∵以AB为直径的圆恒过定点P(0, 1)∴PA→⋅PB→=0∴PA→⋅PB→=x1x2+y1y2−(y1+y2)+1=0∴3b2−2b−1=0∴b=−13或b=1当b=1时,不符合题意;当b=−13时,直线l恒过定点(0, −13).【考点】直线与椭圆结合的最值问题椭圆的标准方程【解析】(1)根据焦点为F 1、F 2,短轴的一个端点为D ,且DF 1→⋅DF 2→=0,可得△DF 1F 2为等腰直角三角形,且b =c ,再利用椭圆C :x 2a +y 2b =1(a >b >0)经过点(−1,−√22),即可求得椭圆的方程;(2)①当直线l 的斜率不存在时,设l:x =m ,代入椭圆方程,求得A ,B 的坐标,利用以AB 为直径的圆恒过定点P(0, 1),可求l 的方程;②当直线l 的斜率存在时,设l:y =kx +b ,代入椭圆方程,利用以AB 为直径的圆恒过定点P(0, 1),结合韦达定理,可得结论. 【解答】解:(1)∵ 焦点为F 1、F 2,短轴的一个端点为D ,且DF 1→⋅DF 2→=0 ∴ △DF 1F 2为等腰直角三角形,且b =c ∴ a =√2b ∴x 22b2+y 2b 2=1∵ 椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点(−1,−√22), ∴ 12b 2+12b 2=1∴ b =1 ∴ a =√2∴ 椭圆的方程为x 22+y 2=1;(2)①当直线l 的斜率不存在时,设l:x =m ,代入椭圆方程,可得y =±√1−m 22∴ A(m, √1−m 22),B(m, −√1−m 22),∵ 以AB 为直径的圆恒过定点P(0, 1) ∴ PA →⋅PB →=0 ∴ (m, √1−m 22−1)•(m, −√1−m 22−1)=0,∴ m =0∴ l:x =0;②当直线l 的斜率存在时,设l:y =kx +b ,代入椭圆方程,消去y 可得(1+2k 2)x 2+4kbx +2b 2−2=0 △=16k 2−8b 2+8>0,∴ 2k 2>b 2−1设A(x 1, y 1),B(x 2, y 2),则x 1+x 2=−4kb1+2k 2,x 1x 2=2b 2−21+2k 2 ∵ 以AB 为直径的圆恒过定点P(0, 1) ∴ PA →⋅PB →=0∴ PA →⋅PB →=x 1x 2+y 1y 2−(y 1+y 2)+1=0 ∴ 3b 2−2b −1=0 ∴ b =−13或b =1当b =1时,不符合题意;当b =−13时,直线l 恒过定点(0, −13).【答案】解:(1)∵ f(x)=1−e λx (λ∈R 且λ≠0), ∴ f′(x)=−λe λx ,当λ<0时,f′(x)>0,f(x)在(−∞, +∞)是单调递增; 当λ>0时,f′(x)<0,f(x)在(−∞, +∞)是单调递减.(2)当x >−1时,f(x)≥xx+1恒成立等价于(x +1)e λx −1≤0, 设g(x)=(x +1)e λx −1(x >−1), 则g(x)≤0恒成立,g(0)=0, g′(x)=(λx +λ+1)e λx ,若λ>0,当x >0时,有g(x)>1×1−1=0, 故g(x)≤0不恒成立,所以λ<0,由g′(x)=0,得x 0=−1−1λ,当λ=−1时,x 0 有g(x)≤g(0)=0,故g(x)≤0恒成立;当−1<λ<0时,x 0>0,g(x)在[0, x 0]单调增. 有g(x 0)>g(0)=0,故g(x)≤0不恒成立;当λ<−1时,−1<x 0<0,g(x)在[x 0, 0]单调减, 有g(x 0)>g(0)=0,故g(x)≤0不恒成立. 所以当f(x)≥x x+1在(−1, +∞)上恒成立时,λ=−1.【考点】利用导数研究函数的单调性导数在最大值、最小值问题中的应用【解析】(1)由f(x)=1−e λx (λ∈R 且λ≠0),得f′(x)=−λe λx ,由此能讨论f(x)的单调性.(2)当x >−1时,f(x)≥xx+1恒成立等价于(x +1)e λx −1≤0,设g(x)=(x +1)e λx −1(x >−1),则g(x)≤0恒成立,g(0)=0,g′(x)=(λx +λ+1)e λx ,若λ>0,当x >0时,有g(x)>1×1−1=0,故g(x)≤0不恒成立,所以λ<0,由g′(x)=0,得x 0=−1−1λ,由此列表讨论得到当f(x)≥xx+1在(−1, +∞)上恒成立时,λ=−1.【解答】 解:(1)∵ f(x)=1−e λx (λ∈R 且λ≠0), ∴ f′(x)=−λe λx ,当λ<0时,f′(x)>0,f(x)在(−∞, +∞)是单调递增; 当λ>0时,f′(x)<0,f(x)在(−∞, +∞)是单调递减.(2)当x >−1时,f(x)≥xx+1恒成立等价于(x +1)e λx −1≤0, 设g(x)=(x +1)e λx −1(x >−1), 则g(x)≤0恒成立,g(0)=0, g′(x)=(λx +λ+1)e λx ,若λ>0,当x >0时,有g(x)>1×1−1=0, 故g(x)≤0不恒成立,所以λ<0,由g′(x)=0,得x 0=−1−1λ,当λ=−1时,x 0 有g(x)≤g(0)=0,故g(x)≤0恒成立;当−1<λ<0时,x 0>0,g(x)在[0, x 0]单调增. 有g(x 0)>g(0)=0,故g(x)≤0不恒成立;当λ<−1时,−1<x 0<0,g(x)在[x 0, 0]单调减, 有g(x 0)>g(0)=0,故g(x)≤0不恒成立. 所以当f(x)≥xx+1在(−1, +∞)上恒成立时,λ=−1.四、选考题(本小题满分10分)请考生在第(22)、(23)、(24)三道题中任选一题作答,并用2B 铅笔在答题卡第I 卷选择题区域内把所选的题号涂黑.注意:所做题目必须与所涂题号一致,如果多做,则按所做的第一题计分. 【答案】 证明:(1)连接ED ,则∵ AF 切⊙O 于点A ,∴ ∠FAE =∠DCB ∵ BD ⊥AC ,FE ⊥AB ∴ ∠AEF =∠BDC =90″ ∴ ∠F =∠DBC ;(2)∵ BD ⊥AC ,CE ⊥AB ∴ D ,E ,B ,C 四点共圆 ∴ ∠DEC =∠DBC ∵ ∠F =∠DBC∴ ∠DEC =∠F ∴ DE // AF ∴ ADDC =FEEC【考点】与圆有关的比例线段 【解析】(1)连接ED ,利用AF 切⊙O 于点A ,可得∠FAE =∠DCN ,再证明∠AEF =∠BDC =90″,即可证得∠F =∠DBC ;(2)由BD ⊥AC ,CE ⊥AB ,可得D ,E ,B ,C 四点共圆,从而有∠DEC =∠DBC ,利用∠F =∠DBC ,可得∠DEC =∠F ,从而DE // AF ,故可证得结论. 【解答】 证明:(1)连接ED ,则∵ AF 切⊙O 于点A ,∴ ∠FAE =∠DCB∵ BD ⊥AC ,FE ⊥AB ∴ ∠AEF =∠BDC =90″ ∴ ∠F =∠DBC ;(2)∵ BD ⊥AC ,CE ⊥AB ∴ D ,E ,B ,C 四点共圆 ∴ ∠DEC =∠DBC ∵ ∠F =∠DBC ∴ ∠DEC =∠F ∴ DE // AF ∴ ADDC =FEEC 【答案】解:(1)点P(2, π3)的直角坐标为P(1, √3),由l 的倾斜角为α,则l 的参数方程为: {x=1+t cos α,y =√3+t sin α,(t 为参数).(2)圆ρ=3的直角坐标方程为x 2+y 2=9,∵ A ,B 在直线l 上,A ,B 对应的参数分别为t 1,t 2, 将l 的参数方程代入x 2+y 2=9, 得(1+t cos α)2+(√3+t sin α)2=9,化简,得t2+(2cosα+2√3sinα)t−5=0,t1+t2=−(2cosα+2√3sinα),t1⋅t2=−5,|AB|=√(t1+t2)2−4t1t2=√(2cosα+2√3sinα)2−4×(−5)=√24+8sin2α+8√3sinαcosα=√28+4√3sin2α−4cos2α=√28+8sin(2α−π6),当sin(2α−π6)=−1,即α=5π6时,|AB|的最小值是2√5.【考点】参数方程与普通方程的互化圆的极坐标方程两点间的距离公式【解析】(1)点P(2, π3)的直角坐标为P(1, √3),由l的倾斜角为α,能求出l的参数方程.(2)圆ρ=3的直角坐标方程为x2+y2=9,由A、B在直线l上,A,B对应的参数分别为t1,t2,将l的参数方程代入x2+y2=9,得t2+(2cosα+2√3sinα)t−5=0,由此能求出|AB|的最小值.【解答】解:(1)点P(2, π3)的直角坐标为P(1, √3),由l的倾斜角为α,则l的参数方程为:{x=1+t cosα,y=√3+t sinα,(t为参数).(2)圆ρ=3的直角坐标方程为x2+y2=9,∵A,B在直线l上,A,B对应的参数分别为t1,t2,将l的参数方程代入x2+y2=9,得(1+t cosα)2+(√3+t sinα)2=9,化简,得t2+(2cosα+2√3sinα)t−5=0,t1+t2=−(2cosα+2√3sinα),t1⋅t2=−5,|AB|=√(t1+t2)2−4t1t2=√(2cosα+2√3sinα)2−4×(−5)=√24+8sin2α+8√3sinαcosα=√28+4√3sin2α−4cos2α=√28+8sin(2α−π6),当sin(2α−π6)=−1,即α=5π6时,|AB|的最小值是2√5.【答案】解:(1)由题设知:|x−2|+|x−1|−2≥0等价于:{x≤1−x+2−x+1−2≥0⇒x≤12,或{1<x<2−x+2+x−1−2≥0⇒x∈⌀,或{x≥2x−2+x−1−2≥0⇒x≥52,综上所述,当a=1时,函数f(x)的定义域为(−∞, 12]∪[52, +∞).(2)由题设知,当x∈R时,恒有|ax−2|+|ax−a|−2≥0,即|ax−2|+|ax−a|≥2恒成立,∵|ax−2|+|ax−a|≥|(ax−2)−(ax−a)|=|a−2|,∴只需|a−2|≥2,解得a≤0,或a≥4.【考点】函数的定义域及其求法绝对值不等式【解析】(1)由题设知:|x−2|+|x−1|−2≥0,由此能求出a=1时,函数f(x)的定义域.(2)由题设知,当x∈R时,恒有|ax−2|+|ax−a|−2≥0,即|ax−2|+|ax−a|≥2恒成立,由此能求出a的取值范围.【解答】解:(1)由题设知:|x−2|+|x−1|−2≥0等价于:{x≤1−x+2−x+1−2≥0⇒x≤12,或{1<x<2−x+2+x−1−2≥0⇒x∈⌀,或{x≥2x−2+x−1−2≥0⇒x≥52,综上所述,当a=1时,函数f(x)的定义域为(−∞, 12]∪[52, +∞).(2)由题设知,当x∈R时,恒有|ax−2|+|ax−a|−2≥0,即|ax−2|+|ax−a|≥2恒成立,∵|ax−2|+|ax−a|≥|(ax−2)−(ax−a)|=|a−2|,∴只需|a−2|≥2,解得a≤0,或a≥4.。
2012届高中毕业班第一次模拟试题数 学(理科)本试卷共4页,21小题,满分150分. 考试用时120分钟.一、选择题:本大题共8小题,每小题5分,满分40分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若复数(5)(3)z x x i =-+-在复平面内对应的点位于第三象限,则实数x 的取值范围是 A. (,5)-∞ B. (3,)+∞ C. (3,5) D. (5,)+∞ 2.已知集合{0,1,2}M =,集合N 满足N M ⊆,则集合N 的个数是 A.6 B. 7 C. 8 D. 93.已知函数()lg f x x =的定义域为M ,函数2,231,1x x y x x ⎧>=⎨-+<⎩的定义域为N ,则M N =A. (0,1)B. (2,)+∞C. (0,)+∞D. (0,1)(2,)+∞ 4.“1m <”是“函数2()f x x x m =++有零点”的 A .充分非必要条件 B.充要条件 C .必要非充分条件 D.非充分必要条件 5.已知函数()(cos 2cos sin 2sin )sin f x x x x x x =+,x ∈R,则()f x 是 A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为2π的奇函数D .最小正周期为2π的偶函数 6.已知向量(4,3)=a , (2,1)=-b ,如果向量λ+a b 与b 垂直,则|2|λ-a b 的值为( ) A .1 BC.5 D.7.已知,x y 满足3,2,326,39x y x x y y x ≤⎧⎪≥⎪⎨+≥⎪⎪≤+⎩,则2z x y =-的最大值是( ).A. 152B. 92C. 94D. 28.设M 为平面内一些向量组成的集合,若对任意正实数λ和向量M ∈a ,都有M λ∈a ,则称M 为“点射域”,则下列平面向量的集合为“点射域”的是A.2{(,)|}x y y x ≥B.0(,)|0x y x y x y ⎧-≥⎫⎧⎨⎨⎬+≤⎩⎩⎭C.22{(,)|20}x y x y y +-≥D.22{(,)|32120}x y x y +-<二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9.2||2||150x x -->的解集是 ▲ .10.在1041x x ⎛⎫+ ⎪⎝⎭的展开式中常数项是 ▲ .(用数字作答)11.某中学举行了一次田径运动会,其中有50名学生参加了一次百米比赛,他们的成绩和频率如图所示.若将成绩小于15秒作为奖励的条件,则在这次百米比赛中获奖的人数共有 ▲ 人.12. 离心率23e =的椭圆的两焦点为12,F F ,过1F 作直线交椭圆于,A B 两点,则2ABF ∆的周长为 ▲13.如果实数,x y 满足等式22(2)1x y -+=,那么31y x +-的取值范围是 ▲( ) ▲14.(坐标系与参数方程选做题)在极坐标系中,圆2ρ=上的点到直线()6sin 3cos =+θθρ的距离的最小值为 ▲15.(几何证明选讲选做题)如图2,点P 是⊙O 外一点,PD 为⊙O 的一切线,D是切点,割线经过圆心O ,若030=∠EFD ,32=PD ,则=PE ▲三、解答题:本大题共6小题,满分80分. 解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知数列{}n a 是一个等差数列,且21a =,55a =-. (I )求{}n a 的通项n a ;(II )设52n n a c -=,2n cn b =,求2122232log log log log n T b b b b =++++ 的值。
2012年云南省第一次高中毕业生复习统一检测理科数学一、选择题1.函数()()4tan 23f x x π=+的最小正周期等于A .4πB .3πC .2πD .π2.抛物线220x y +=的准线方程是A .18x =B .18y =C .18x =-D .18y =-3.已知i 是虚数单位,1220122012,13z i z i =+=-,那么复数212z z z =在复平面内对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 4.在()()()567111x x x +++++的展开式中,4x 的系数等于A .22B .25C .52D .555.下图是一个几何体的三视图,其中正视图是边长为2的等边三角形,侧视图是直角边长分别为1的直角三角形,俯视图是半径为1的半圆,则该几何体的体积等于A.6B.3C.3D .12π6.函数221223x y x x --=-+的极大值等于A .15B .1-C .1D .2-7.在等比数列{}n a 中,6a 与7a 的等差中项等于48,645678910128a a a a a a a =.如果设{}n a 的前n 项和为n S ,那么n S =A .54n -B .43n -C .32n- D .21n -正视图 侧视图俯视图8.某校对高三年级学生进行体检,并将高三男生的体重()kg 数据进行整理后分成五组,绘制成下图所示的频率分布直方图.如果规定,高三男生的体重结果只分偏胖、偏瘦和正常三个类型,超过65kg 属于偏胖,低于55kg 属于偏瘦.已知图中从左到右第一、第三、第四、第五小组的频率分别为0.25,0.2,0.1,0.05,第二小组的频数为400.若该校高三男生的体重没有55kg 和65kg ,则该校高三年级的男生总数和体重正常的频率分别为A .1000,0.5B .800,0.5C .800,0.6D .1000,0.69.已知()()1,2,3,5=-=a b ,则向量a 在向量b 方向上的投影等于A.5- B.34- C5D3410.已知,αβ是两个互相垂直的平面,,m n 是一对异面直线,下列四个结论: ① //,m n αβ⊂;② ,//m n αβ⊥;③ ,m n αβ⊥⊥;④ //,//m n αβ,且m 与α的距离等于n 与β的距离.其中是m n ⊥的充分条件的为A .①B .②C .③D .④11.已知椭圆E 的长轴的两个端点分别为()15,0A -、()25,0A ,点P 在椭圆E 上,如果1214425P A P A ⋅=- ,12A P A ∆的面积等于9,那么椭圆E 的方程是A .221259xy+= B .2212516xy+= C .221259yx+= D .216125y+=)12.运行下图所示的程序,如果输出结果为1320sum =,那么判断框中应填A .9i ≥B .10i ≥C .9i ≤D .10i ≤二、填空题13.在一个水平放置的底面半径等于6的圆柱形量杯中装有适量的水,现放入一个半径等于r 的实心球,如果球完全浸没于水中且无水溢出,水面高度恰好上升r ,那么r =____.14.已知e 是自然对数的底数,(),031,0x e x f x x x ⎧>=⎨+≤⎩,计算定积分()42f x dx -⎰,得()42fx d x -=⎰_____________.15.设数列{}n a 的前n 项和为n S ,如果136,73n n S a a n ==+,那么45a =__________.16.如果直线10ax by ++=被圆2225x y +=截得的弦长等于8,那么2235ab+的最小值等于______72+.17.在A B C ∆中,三个角A 、B 、C 对的边分别为a 、b 、c ,设平面向量()()2cos sin ,sin ,cos sin ,sin ,cos C B B C B C A =+-=-⋅=m n m n .(Ⅰ)求A 的值;(Ⅱ)设4,5a b c =+=,求A B C ∆的边B C 上的高h .18.盒子内装有5张卡片,上面分别写着数字1,1,2,2,2,每张卡片被取到的概率相等.先从盒子中随机任取1张卡片,记下在上面的数字x ,然后放回盒子内搅匀,再从盒子中随机任取1张卡片,记下它上面的数字y .设()2318,55M x y f t t M t =+=-+.(Ⅰ)求随机变量M 的分布列和数学期望; (Ⅱ)设“函数()231855f t t M t =-+在区间()2,4内有且只有一个零点”为事件A ,求A的概率()P A .19.如图,在空间几何体SA B C D 中,四边形A B C D 为矩形,,,SD AD SD AB ⊥⊥2,AB AD SD ==.(Ⅰ)证明:平面SD B ⊥平面A B C D ; (Ⅱ)求二面角A SB D --的余弦值. 解析:几何法(Ⅱ)取SB 的中点E ,连A E设A D x =,则2,,AS AB x SD ===所以A E SB ⊥,记二面角A SB D --的大小为θ 只需得到A E 及A 到平面S B D 的距离h 即可得到sin θ容易得到AE =利用等体积法(B SAD A SBD V V --=)易得5h x =所以sin 5h AE θ==所以cos 5θ=20.双曲线S 的中心在原点,焦点在x轴上,离心率2e =,倾斜角等于56π的直线l 经过点()0,1P ,直线l 上的点与双曲线S. (Ⅰ)求点P 与双曲线S 上的点的距离的最小值;(Ⅱ)设直线()2y k x =+与双曲线S 交与A 、B 两点,且A B P ∆是以A B 为底的等腰三角形,求常数k 的值.解析:(Ⅰ)由题意可得直线l的方程为:13l y x -=-即0x +-=又双曲线的左焦点到直线l所以2=c =又2e =,所以a =1b ==所以双曲线的方程为2212xy -=在双曲线上任取一点(),M x y ,则M P ====所以m in 133M P ===(Ⅱ)联立()2y k x =+与2212xy -=,设()()1122,,,A x y B x y有()222212xkx -+=,整理得()2222128820k xk x k ----=所以2122812kx x k+=-,()121224412k y y k x x k k+=++=-所以A B 中点为22242,1212k k Q k k ⎛⎫⎪--⎝⎭由题意得PQ AB ⊥所以22221121412kk k kk--⋅=--整理得22610k k +-=得342k -±==当0k =时显然是满足题意的所以32k -±=或0k =21.已知实数a 是常数,()()()23ln 15f x x a x =+-+-,当0x >时,()f x 是增函数. (Ⅰ)求a 的取值范围; (Ⅱ)设数列2113nn ⎧⎫+⎨⎬⎩⎭的前n 项和为n S ,比较()ln 1n +与n S 的大小.解析:(Ⅰ)()()3322211f x x a x a x x '=+-=-+++显然()f x '在()1,-+∞上为增函数所以,在()0,+∞上()()023f x f a ''>=- 又当0x >时,()f x 是增函数 所以230a -≥,得32a ≥(Ⅱ)(本题解题思路见文科21题)令32a =,则()()233ln 152f x x x ⎛⎫=+-+- ⎪⎝⎭所以当0x >时,()()0f x f >即()22333ln 15522x x ⎛⎫⎛⎫+-+->- ⎪ ⎪⎝⎭⎝⎭整理得()2ln 13xx x +>+令10x n=>所以21111ln 1ln3n nn n n +⎛⎫+>+= ⎪⎝⎭所以()11lnln 1nn k k S n k=+>=+∑22.选修4-1:几何证明选讲如图,四边形ABCD 是○· O 的内接四边形,BD 不经过点O ,AC 平分∠BAD ,经过点C 的直线分别交AB 、AD 的延长线于E 、F ,且2CD AB DF =⋅.证明: (Ⅰ)△ABC ∽△CDF ; (Ⅱ)EF 是○· O 的切线.23.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,()()1,0,2,0A B 是两个定点,曲线C 的参数方程为22x t y t⎧=⎨=⎩(t 为参数).(Ⅰ)讲曲线C 的参数方程化为普通方程;(Ⅱ)以()1,0A 为极点,A B为长度单位,射线AB 为极轴建立极坐标系,求曲线C 的极坐标方程 (Ⅰ)24y x = (Ⅱ)cos 2ρρθ=+24.选修4-5:不等式选讲已知实数a 、b 、c 、d 满足22223,2365a b c d a b c d +++=+++=. 证明:(Ⅰ)()2222236b c d b c d ++≤++;(Ⅱ)3122a -≤.解析:,x y z ===即x y z b c d ===2222x y z ⎛+≤++ ⎝ ①由柯西不等式可得()2222222111236x y z x y z ⎛⎛⎫++≤++++=++ ⎪ ⎝⎭⎝ 所以原式得证(Ⅱ)将(Ⅰ)中的不等式两边都用a 表示,就可以解出a 的取值范围,就是(Ⅱ)的解,得证。
昆明市2012届高中新课程高三摸底调研测试数 学 试 题(理)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
考试结束后将本试卷和答题卡一并交回。
满分150分,考试用时120分钟。
第I 卷(选择题,共60分)注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、考号在答题卡上填写清楚,并认真核准条形码上的考号、姓名,在规定的位置贴好条形码。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试卷上的答案无效。
参考公式:如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B )如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B ) 如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率P n (k )=kn k k n P P C --)1((k=0,1,2,…n )球的体积公式:334R V π=(其中R 表示球的半径)球的表面积公式S=4πR 2(其中R 表示球的半径)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{|13},{|4,}A x x B x x x Z =≤≤=≤∈,则A B =( )A .(1,3)B .[1,3]C .{1,3}D .{1,2,3}2.已知()1a i i a R i+=∈-,其中i 为虚数单位,则a 等于( )A .1B .-1C .2D .03.命题“20,10x R x ax ∃∈++<使”的否定是( )A .20,10x R x ax ∃∈++>使B .20,10x R x ax ∃∈++≥使C .2,10x R x ax ∀∈++>成立D .2,10x R x ax ∀∈++≥成立4.已知角α的终边上一点的坐标为55(sin,cos)66ππ,则角α的最小正值为( )A .56πB .23πC .53πD .116π5.在A B C ∆中,AB=1,AC=3,D 是BC 边的中点,则AD BC ⋅=( )A .4B .3C .2D .16.执行如图所示的程序框图,输出的s 的值是 ( )A .34B .45C .56D .677.设函数22,3()2,3xx x x f x x ⎧-+≥⎪=⎨<⎪⎩则不等式()4f x ≥的解集是( ) A .(],1-∞- B .[)2,+∞C .[1,2]-D .[2,3]8.双曲线22221(0,0)x y a b ab-=>>的右焦点为F ,右顶点为P ,点B (0,b ),离心率3e =,则双曲线C 是下图中( )9.某几何体的三视图如图所示,则该几何体的表面积是( )A .4+B .4+C .D .10.函数1()()|cos |[0,5]2x f x x x =-∈在上的零点个数为( )A .3B .4C .5D .611.已知{(,)||1,||1},x y x y Ω=≤≤A 是曲线122y x y x ==与围成的区域,若向区域Ω上随机投一点P ,则点P 落入区域A 的概率为( )A .13B .14C .18D .11212.设抛物线212y x =的焦点为F ,经过点P (1,0)的直线l 与抛物线交于A ,B 两点,且2BP PA =,则||||AF BF +=( )A .52B .92C .8D .172第II 卷(非选择题,共90分)注意事项:第II 卷,10小题,用黑色碳素笔将答案答在答题卡上,答在试卷上的答案无效。
云南昆明第一中学高三模拟测试数学(理)试题及答案本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
考试结束后,请将本试卷和答题卡一并交回。
满分150分。
考试用时120分钟。
注意事项: 1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚,并请认真填涂准考证号。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦擦干净后,再选涂其他答案标号,答在试卷上的答案无效。
第Ⅰ卷(选择题 共60分)本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题 1.设集合2{|21},{|10},x A x B x x A B -=<=-≥则等于A .{|1}x x ≤B .{|12}x x ≤<C .{|01}x x <≤D .{|01}x x <<2.已知复数34,12iz z z zi+=-是的共轭复数,则||为 ABCD .53.曲线2x y e x =+在点(0,1)处的切线方程为A .1y x =+B .1y x =-C .31y x =+D .1y x =-+4.设S n 为等比数列{}n a 的前n 项和,且3640,a a -=则62S S =A .—5B .—3C .3D .55.已知命题p 1:函为lg ||y x =在(,0)-∞上是减函数,2:p 函数3x y -=在(,)-∞+∞上是增函数,则在命题222222:,::()q p p q p q p p ∨∧⌝∨以及222:()q p p ∧⌝中,真命题是A .q,qB .q 1,q 2C .q 2,q 3D .q 1,q 36.某学习小组共12人,其中有五名是“三好学生”,现从该小组中任选5人参加竞赛,用ξ表示这5人中“三好学生”的人数,则下列概率中等于11122C C C C +的是A .P (1ξ=)B .P (1ξ≤)C .P (1ξ≥)D .P (2ξ≤) 7.如果执行右面的程序框图,则输出的结果是 A .16 B .21 C .22 D .298.已知函数2()||,||(1)0f x x x x f x ==-->则}等于A .{|11}x x x ><-或B .{|02}x x x ><-或C .{|22}x x x ><-或D .{|20}x x x ><或9.在数列{}n a 中,若211,2n n n a a a +==+,则n a 等于A .2(1)n n -B .21(3)n n +-C .2(1)2n n --D .21(2)2n n +-+10.已知直三棱柱ABC —A 1B 1C 1的各顶点都在球O 的球面上,且AB=AC=1,O,则这个直三棱柱的体积等于ABC .2D .11.设F 1、F 2是椭圆22221(0)x y a b a b +=>>的左、右焦点,P 为椭圆上一个点,∠F 1PF 2=60°,|F 1F 2|为|PF 1|与|PF 2|的等比中项,则该椭圆的离心率为A .12BC .13D .12.已知函数()|lg(1)|,,()(),2f x x a b f a f b a b =-≠=+若且则的取值范围是 A.[3)++∞ B.(3)++∞ C .[4,)+∞D .(4,)+∞第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分,第13题—第21题为必考题,每个试题考生都必须回答,第22—24题为选考题,考生根据要求做答,用2B 铅笔把答题卡上对应题目的题号涂黑。
1.广东省2012年高考数学考前十五天每天一练(4) 已知tan 2θ=,则22sin sin cos 2cos θθθθ+-=(D ) A . 43-B .54C .34-D .452.陕西省西工大附中2011届高三第八次适应性训练数学(文) 观察下列几个三角恒等式:①tan10tan 20tan 20tan 60tan 60tan101++= ; ②tan13tan35tan35tan 42tan 42tan131++= ; ③tan 5tan100tan100tan(15)+-tan(15)tan 51+-=;一般地,若tan ,tan ,tan αβγ都有意义,你从这三个恒等式中猜想得到的一个结论为 .【答案】90,tan tan tan tan tan tan 1αβγαββγγα++=++=当时3.陕西省咸阳市2012届高三上学期高考模拟考试(文科数学) sin 330 的值是( )A .12 B. 12- C. D. 【答案】B4.2012北京宏志中学高考模拟训练-数学理cos300= ( )(A)-12 (C)12【答案】C5.2012北京宏志中学高考模拟训练-数学理 已知2sin 3α=,则cos(2)πα-= ( )(A ) (B )19-6..山东省烟台市2012届高三五月份适应性练习 数学文(二)(2012烟台二模)22sin(250)cos 70cos 155sin 25-︒︒︒-︒的值为A .B .一12C .12D 【答案】C7.山东省烟台市2012届高三五月份适应性练习 数学文(三)已知倾斜角为α的直线的值为则平行与直线α2tan 022,y x l =+- A.54 B.34 C.43 D.32 【答案】A4.(福建省厦门市2012年高中毕业班适应性考试)已知a ∈(3,2ππ),且cos 5α=-,则tan α DA .43B .一43C .-2D .22.(2011年江苏海安高级中学高考数学热身试卷)已知tan 2α=,则s i n ()c o s ()s i n ()c o s ()παπααα++--+-= . 【答案】1贵州省五校联盟2012届高三年级第三次联考试题)10.如果33sin cos cos sin θθθθ->-,且()0,2θπ∈,那么角θ的取值范围是( )A .0,4π⎛⎫ ⎪⎝⎭B .3,24ππ⎛⎫ ⎪⎝⎭ C .5,44ππ⎛⎫ ⎪⎝⎭ D . 5,24ππ⎛⎫⎪⎝⎭C(贵州省五校联盟2012届高三第四次联考试卷) 5.已知πα<<0,21cos sin =+αα ,则α2cos 的值为 ( ) A.4- B.47 C.47± D.43- A(贵州省2012届高三年级五校第四次联考理) 13.函数sin y x x =-的最大值是 . 2(贵州省2012届高三年级五校第四次联考文) 4. 若4cos ,,0,52παα⎛⎫=∈- ⎪⎝⎭则tan 4πα⎛⎫+= ⎪⎝⎭( )A .17 B .7 C .177或D .177-或-A洋浦中学2012届高三第一次月考数学理科试题13.已知函数22()1xf x x =+,则11(1)(2)(3)()()23f f f f f ++++= .25冀州市中学2012年高三密卷(一)6. 已知角α2的顶点在原点, 始边与x 轴非负半轴重合, 终边过⎪⎪⎭⎫⎝⎛-23,21, )[πα2,02∈ 则 =αtan ( )A. 3-B. 3C. 33D. 33±B冀州中学高三文科数学联排试题 10.已知sin θ+cos θ=15,θ∈(0,π),则tan θ的值为 A . 43- B .34- C .43或43- D .43-或34-A河北省南宫中学2012届高三8月月考数学(文) 6.已知2tan =α,则ααcos sian 的值为( )A.21B.32C.52D.1C冀州中学第三次模拟考试文科数学试题13. 已知2()4f x x x =-,则(sin )f x 的最小值为 -32012年普通高考理科数学仿真试题(三) 12.定义一种运算:⎩⎨⎧≤=⊗a b b a a b a ,,,令()()45sin cos 2⊗+=x x x f ,且⎥⎦⎤⎢⎣⎡∈2,0πx ,则函数⎪⎭⎫⎝⎛-2πx f 的最大值是 A.45B.1C.—1D.45-【答案】A2012年普通高考理科数学仿真试题(四) 17.(本小题满分12分)已知函数()().1cos 2267sin 2R x x x x f ∈-+⎪⎭⎫⎝⎛-=π (I )求函数()x f 的周期及单调递增区间;>b.(II )在△ABC 中,三内角A ,B ,C 的对边分别为a,b,c,已知点⎪⎭⎫ ⎝⎛21,A 经过函数()x f 的图象,b,a,c 成等差数列,且9=⋅AC AB ,求a 的值. 【答案】9(广东省韶关市2012届第二次调研考试).已知A 是单位圆上的点,且点A 在第二象限,点B 是此圆与x 轴正半轴的交点,记AOB α∠=, 若点A 的纵坐标为35.则sin α=35_____________; tan(2)πα-=___247____________. 5(广东省深圳市2012高三二模文). tan 2012︒∈A. (0,3B. (3C. (1,3--D. (3- 【答案】B16(上海市财大附中2012届第二学期高三数学测验卷理)对任意的实数α、β,下列等式恒成立的是( ) AA ()()2sin cos sin sin αβαβαβ⋅=++-B .()()2cos sin sin cos αβαβαβ⋅=++-C .cos cos 2sinsin22αβαβαβ+-+=⋅ D .cos cos 2coscos22αβαβαβ+--=⋅17.(上海市财大附中2012届第二学期高三数学测验卷文)已知πα<<0,21cos sin =+αα ,则α2cos 的值为( ) A A .47- B .47 C .47± D .43-3.广东省中山市2012届高三期末试题数学文 已知233sin 2sin ,(,),52cos πθθθπθ=-∈且则的值等于 A .23 B .43 C .—23 D .—43AB7. 广东实验中学2011届高三考前 已知24sin 225α=-, (,0)4πα∈-,则s i n c o s αα+=A .15-B .51 C .75- D .5716. 北海市合浦县教育局教研室2011-2012学年高一下学期期中考试数学试题 已知函数R x x x x f ∈-=,cos sin 3)(,若1)(≥x f ,则x 的取值范围是 ⎭⎬⎫⎩⎨⎧∈+≤≤+z k k x k x ,232ππππ 15. 北海市合浦县教育局教研室2011-2012学年高一下学期期中考试数学试题若⎪⎩⎪⎨⎧>-≤=)0(21)0(6sin )(x x x x x f π,则=)]1([f f 21- 。
2012年云南省第一次高中毕业生复习统一检测理科数学第1题:(1)函数)32(tan 4)(π+=x x f 的最小正周期等于(A )4π (B )3π (C )2π(D )π 解:∵)32(tan 4)(π+=x x f x 2tan 4=,∴x x f 2tan 4)(=的最小正周期为2π. 故选(C ).答题分析:1.有的考生可能是错误地记成了正弦函数的周期,故得到了错误答案22T ππ==,从而错选(D ). 2.需要强调的是:如果对三角函数的图象性质有深刻地理解,那么可以知道()4ta n (23)f x x π=+与tan (2)y x =的周期相同,因此本题不必化简函数就可以直接得出答案.第2题:抛物线022=+y x 的准线方程是(A )81=x (B )81=y (C )81-=x (D )81-=y 解:∵022=+y x ,∴y x 212-=.∵y x 212-=的准线方程是81=y ,∴抛物线022=+y x 的准线方程是81=y .故选(B ).答题分析:一些考生把抛物线的开口方向判断错了,得出了错误答案.关于抛物线的四种标准方程,务必注意它们的开口方向同方程结构的关系,关于这个知识点,历年来的各种大型考试多有所涉及,可出错的考生每次都不少!第3题:已知i 是虚数单位,i z 201220121+=,i z 312-=,那么复数221z z z =在复平面内对应的点位于(A )第一象限 (B )第二象限(C )第三象限 (D )第四象限解:∵)3(5201231)1(2012222221i i i z z z +-=-+==∴221z z z =在复平面上对应的点位于第二象限.故选(B ).答题分析:一些考生可能是复数运算有失误而导致出错.第4题:在765)1()1()1(x x x +++++的展开式中,4x 的系数等于(A )22 (B )25 (C )52 (D )55 解:∵()()()567111x x x +++++展开式中含4x 项的系数是4142435671115153555C C C ⋅+⋅+⋅=++=,∴多项式()()()567111x x x +++++中,4x 的系数等于55. 故选(D ).答题分析:本题也可以先把式子变形,再求4x 的系数.当0x ≠时,()()()53567111(1)(1)(1)=x x x x x x+-++++++-,接下来再求分子的5x 项的系数的相反数即可.这样做,在解答本题上并没有多少优势,但如果题目中的项数比较多的时候,优势就比较明显了.第5题:下图是一个几何体的三视图,其中正视图是边长为2的等边三角形,侧视图是直角边长分别为1与3的直角三角形,俯视图是半径为1的半圆,则该几何体的体积等于正视图侧视图俯视图(A )π63 (B )π33 (C )π334 (D )π21解:∵在几何体的三视图中,正视图是边长为2的等边三角形,侧视图是直角边长分别为1与3的直角三角形,俯视图是半径为1的半圆,∴此几何体是底面半径等于1,高等于3的半个圆锥.∴该几何体的体积等于π63. 故选(A ).答题分析:1.一些考生到了最后关头,忘了是半个圆锥,没有把体积除以2,所以误选B.2.由三视图还原立体图形,对学生的空间想象能力要求较高,也一直是近几年新课标高考的常考题型,在教学中要重点突破! 第6题:函数322122+---=x x x y 的极大值等于(A )51(B )1- (C )1 (D )2- 解:∵322122+---=x x x y , ∴222222)322(844322()24)(12(644+--+=+--++-+-='x x x x x x x x x x y ). ∵当2-<x 或1>x 时,0>'y ,当12<<-x 时,0<'y , ∴当2-=x 时,y 取得极大值.∴y 的极大值等于51. 故选(A ).答题分析:1.一些考生对分式函数求导不够熟练,导致了错误.2.研究分式函数的性质,通法是以导数为工具.第7题:在等比数列{}n a 中,6a 与7a 的等差中项等于48,610987654128=a a a a a a a . 如果设{}n a 的前n 项和为n S ,那么=n S(A )45-n(B )34-n(C )23-n(D )12-n解:设等比数列{}n a 的公比为q ,由已知得⎩⎨⎧=+=96)1(1285164271q q a q a ,化简得 ⎩⎨⎧=+=96)1(251661q q a q a ,解得⎩⎨⎧==211q a . ∴12-=n n S . 选(D ).答题分析:本题考查基本量方法以及方程的思想.对计算能力的考查,一直是高考数学的一个着眼点,教学中要加强对计算能力的培养,学生对常见的计算问题,如解方程组、解不等式组等要训练有素.第8题:某校对高三年级学生进行体检,并将高三男生的体重)(kg 数据进行整理后分成五组,绘制成下图所示的频率分布直方图. 如果规定,高三男生的体重结果只分偏胖、偏瘦和正常三个类型,超过kg 65属于偏胖,低于kg 55属于偏瘦.已知图中从左到右第一、第三、第四、第五小组的频率分别为25.0、2.0、1.0、05.0,第二小组的频数为400. 若该校高三男生的体重没有kg 55和kg 65,则该校高三年级的男生总数和体重正常的频率分别为(A )1000,5.0 (B )800, 5.0 (C )800, 6.0(D )1000,6.0解:由已知信息得第二小组的频率等于4.005.01.02.025.01=----,设该校高三年级的男生总数为n ,则4.0400=n,解得1000=n . 体重正常的频率分别为6.005.01.025.01=---.选(D ).答题分析:对于频率分布直方图问题,读懂题意、正确识图(统计图)是解决问题的关键.第9题:已知),(21-=,)53,(=,则向量在向量方向上的投影等于(A )557-(B )34347- (C )557 (D )34347解:∵),(21-=,)53,(=,∴7-=⋅34=34347-=. ∴向量a 在向量b 方向上的投影为34347-. 选(B ). 答题分析:1. 向量a 在向量b 方向上的投影,根据定义等于cos ,a a b 〈〉.一些考生正是通过计算模长和两向量夹角的余弦值的积来获得答案,这无疑是正确的,但加大了运算量.2. 向量a 在向量b 方向上的投影等于a b b ⋅ ,由cos ,a ba ab b⋅〈〉=可得,应理解该公式并牢牢记清楚.另一方面还可结合点积的形方面进行记忆。
昆明第一中学
2012届高中新课程高三第一次摸底测试
数 学 试 题(理)
本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,考试结束后,请将本试卷和答题卡一并交回。
满分150分,考试用时150分钟。
注意事项:
1.答题前,考生务必用黑字碳素笔将自己的姓名,准考证号、考场号、座位号在答题卡上填写清楚,并请认真填涂准考证号。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动 ,用橡皮擦干净后,再选涂其他答案标号。
答在试卷上的答案无效。
参考公式:
样本数据n x x x ,,21的标准差
锥体体积公式
])()()[(12
2
22
1x x x x x x n
S n -++-+-=
Sh V 3
1=
其中x 为样本平均数 其中S 为底面面积,h 为高 柱体体积公式
球的表面积、体积公式
Sh V =
3
2
3
4,4R V R S ππ=
=
其中S 为底面面积,h 为高
其中R 为球的半径
第I 卷 选择题(共60分)
本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目 要求的。
一、选择题
1.复数11i
+在复平面上对应的点位于
( ) A .第一象限 B .第二象限
C .第三象限
D .第四象限
2.若3
()a x x
+的展开式中常数项为20,则实数a 的值是( )
A .1
B .-1
C .6
D .-6 3.某程序框图如右图所示,则输出的结果是
( )
A .120
B .57
C .26
D .11
4.一个长方体截去两个三棱锥,得到的几何体如图所示,则该几何体的三视图为
( )
5.设α是第二象限角,P (x ,4)为其终边上的一点,且1cos 5
x α=
,则t a n α=
( )
A .
43
B .
34
C .34
-
D .43
-
6.函数3
2
(1)()x a x a
f x x
+--=
是奇函数,且在(0,)
+∞上单调递增,则a 等于
( )
A .0
B .-1
C .1
D .1±
7.双曲线
222
2
1x y a
b
-=的焦点到渐近线的距离等于实轴的长,则该双曲线的离心率为
( )
A B
C .2
D 8.已知(,1),(1,1)a m b n ==- (其中,m n 为正数),若0a b ⋅= ,则11
m n
+的最小值是( )
A .2
B .
C .4
D .8
9.甲、乙两人一起去某博物馆游览,他们约定各自独立地从1号到6号馆中任选4个进行游
览,每下馆游览1小时,则最后1小时他们在同一个馆游览的概率是
( )
A .
16
B .
19
C .
136
D .
536
10.20
)a
x dx ⎰的值是
( )
A .
143
π
-
B .14
3
π-
C .
12
3
π
-
D .
12
π
-
11.若函数()2cos()(0)f x x ωϕϕπ--<<的图象关于原点对称,当0,
4x π⎛
⎤
∈ ⎥⎝
⎦
时,()f x 单
调递减且最小值是-1,那么ω=
( )
A .23
-
B .
23
C .43
D .103
12.已知函数()y f x =的周期为2,当[0,2]x ∈时,2
()(1)f x x =
-,如果
()()
l o g |g x f x x -
--则函数()y g x =的所有零点之和为
( ) A .2
B .4
C .6
D .8
第II 卷(非选择题 共90分)
本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须回答。
第
22~24题为选考题,考生根据要求做答,用2B 铅笔把答题卡上对应题目的题号涂黑。
二、填空题:本大题共4小题,每小题5分,共20分。
13.若实数x ,y 满足不等式组||220
y x x y ≥⎧⎨
--≥⎩,则2z x y =+的最大值为 。
14.在A B C ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且满足s i n c o s a B b A =,则
i n c o s B C -的最大值是 。
15.已知抛物线2
2(0)y px p =>的焦点为F ,过点F 且斜率为k 的直线l 与该抛物线分别交
于A 、B 两点(点A 在第一象限),若3AF FB = ,则k= 。
16.已知两个正三棱锥有公共底面,且内核锥的所有顶点都在同一个球面上,若这两个正三
,则这两个三棱锥的公共底面的面积与该球的表面积之比为 。
三、解答题:本大题共6小题,共70分。
解答应写出文字说明,证明过程或演算步骤。
17.(本小题满分12分)
设数列{}n a 满足121(2)n n a a n +=+≥,且21,log (1).n n n a b a ==+ (1)证明:数列{1}n a +为等比数列; (2)求数列1
1{
}n n b b +的前n 项和.n S
18.(本小题满分12分) 如图,四棱锥P —ABCD 的底面ABCD 是正方形,P D ⊥平面ABCD 。
(1)证明:A C P B ⊥; (2
)若PC -
,示平面PAB 与平面PADC 所成二面角(锐角)的余弦值。
19.(本小题满分12分) 从某学校高三年级的甲乙两个班各抽取10名同学,测量他们的身 高(单位:cm ),获得
身高数据的茎叶图如图所示。
(1)分别计算甲乙两班样本的平均数和方差,估计甲、乙两班同学的身高情况,并说明理由。
(2)现从乙班这10名同学中随机抽取三名同学,设身高在(160,190)之间的同学被抽到的人数为X ,求X 的分布列和数学期望。
20.(本小题满分12分)
椭圆
222
2
1(0)x y a b a
b
+
=>>的两个焦点和短轴的两个端点都在圆22
1x y +-上,过右焦
点作相互相垂直的两条弦AB ,CD ,设M ,N 分别为AB ,CD 的中点。
(1)求椭圆的方程;
(2)证明直线MN恒过定点,并求该定点的坐标。
21.(本小题满分12分)
已知函数
1
()
1
ax
f x
x
-
=
+
2
x
(1)若函数()0
f x x=
在处的切线与直线y x
=垂直,求a的值;
(2)若对任意0
x>,恒有()1
f x>,求a的取值范围。
请考生在第22—24三题中任选一题作答,如果多做,则按所做的第一题记分。
22.(本小题满分10分)选修4—1:几何证明选讲
如图,CD是A B C
∆的AB边上的高,D E A C
⊥于E、F为BC上一点,连结EF交CD于G。
.
C F E E
D C
∠-∠
(1)证明:A、B、F、E四点共圆;
(2)若90,
ACB
∠=︒CE=4,EA=16,BF=2,求A、B、F、E所在圆的半径。
23.(本小题满分10分)选修4—4:坐标系与参数方程
在直角坐标系xOy中,曲线C
的参数方程:
1
1
x
y
ϕ
ϕ
⎧=+
⎪
⎨
=-
⎪⎩
,在以O为极点,x轴的非
半轴为极轴的极坐标系中,直线l的极坐标方程:2cos2sin10.
ρθρθ
+-=(1)求曲线C,l的普通方程;
(2)设曲线C上的点到l的距离为d,求d的最大值。
24.(本小题满分10分)选修4—5:不等式选讲
设函数()
f x=
(1)当m=1时,求函数()
f x的定义域;
(2)若关于x的不等式()0
f x≥的解集为R,求m的取值范围。