6—5 电容 电场的能量 电介质的相对电容率
- 格式:ppt
- 大小:624.00 KB
- 文档页数:14
电容与电介质介电常数与电场能量与电场能量密度之间的关系电容是电学中一个重要的概念,它描述了电路元件对电荷的存储能力。
而电介质介电常数则是衡量电介质的极化能力,它与电场能量和电场能量密度之间存在紧密的关系。
首先,让我们回顾一下电容的概念。
电容是电路元件对电荷存储能力的度量,用单位电压下的电容量来表示。
在一个理想的理论电容器中,电容量的计算公式为C = Q/V,其中C表示电容量,Q表示电荷量,V表示电压。
这意味着当电容器的电压增加时,可以存储的电荷量也会增加。
然而,在实际的应用中,电容器常常由电介质填充,以增加电容量。
电介质介电常数是衡量电介质极化能力的物理量,用εr来表示。
理想情况下,如果电介质介电常数为1,则电介质对电场几乎没有影响。
但是,在实际情况下,绝大多数电介质都有介电常数大于1,这意味着它们能够存储更多的电荷。
因此,对于一个实际的电容器而言,其电容量的计算公式可以表示为C = εrε0A/d,其中ε0表示真空中的介电常数,A表示电容器的极板面积,d表示极板之间的距离。
由此可见,电介质介电常数的增加会导致电容量的增加。
现在,让我们思考一下电场能量与电场能量密度之间的关系。
在电磁学中,电场能量是电场对电荷进行的功的总和。
假设一个点电荷q在电场E中移动一个距离d,那么它所受到的力F等于qE,因此电场对电荷所做的功W等于F·d = qEd。
由此可见,电场能量与电荷量、电场强度和电位移之间存在紧密的联系。
而电场能量密度则是单位体积内的电场能量,用u表示。
它表示了电场能量在空间中的分布情况。
对于一个电容器而言,它的电场能量密度可以表示为u =1/2εE²,其中ε表示电介质介电常数,E表示电场强度。
这意味着电场能量密度的大小与电介质的极化能力和电场强度成正比。
综上所述,电容与电介质介电常数与电场能量和电场能量密度之间存在着密切的关系。
电介质的介电常数决定了电容器的电容量,而电场能量和电场能量密度则分别与电介质的极化能力和电场强度有关。
例谈中小学信息技术教学中的思维培养在当今信息社会中,信息技术已经成为了人们生活和工作中不可或缺的一部分。
如何在中小学阶段培养学生的信息技术思维能力,已经成为了教育界的一个重要课题。
本文将结合教学实践,探讨中小学信息技术教学中的思维培养方法。
一、培养学生的创新思维能力信息技术的发展日新月异,新技术不断涌现,因此培养学生的创新思维能力显得尤为重要。
在信息技术教学中,教师应该引导学生进行自主学习和探究,通过开展课程设计和项目实践等活动,培养学生的问题意识和解决问题的能力。
在设计网页的课程中,教师可以布置一个主题任务,要求学生利用所学的知识自主设计一个网页。
学生在完成任务的过程中,需要从各个方面考虑,如布局、配色、内容等,这样可以培养学生的创新思维能力。
信息技术教学中,逻辑思维能力的培养也是非常重要的。
信息技术涉及到许多抽象概念和逻辑关系,学生需要通过逻辑推理来解决问题。
在教学中,教师可以引导学生进行逻辑思维训练。
在编程教学中,教师可以设计一些逻辑问题,要求学生通过编写程序解决。
这样可以锻炼学生的逻辑思维能力,提高他们解决问题的能力。
在信息技术教学中,很多项目和任务需要学生进行合作完成。
培养学生的协作思维能力也是非常重要的。
在教学中,教师可以组织学生进行小组合作,让学生在合作中学会分工合作、互相协调和交流合作等能力。
在做一个多媒体作品的项目中,学生可以组成小组,每个人负责一个环节,然后进行合作完成整个作品。
这样既培养了学生的协作能力,又提高了他们的信息技术能力。
中小学信息技术教学中的思维培养是非常重要的。
教师应该通过创新思维、逻辑思维、协作思维和创造思维的培养,全面提高学生的信息技术能力。
通过教学实践的不断探索和尝试,我们可以更好地促进学生的思维发展,培养他们的信息技术思维能力。
第一章电介质基本物理知识电介质(或称绝缘介质)在电场作用下的物理现象主要有极化、电导、损耗和击穿。
在工程上所用的电介质分为气体、液体和固体三类。
目前,对这些电介质物理过程的阐述,以气体介质居多,液体和固体介质仅有一些基本理论,还有不少问题难以给出量的分析,这样就在很大程度上要依靠试验结果和工作经验来进行解释和判断。
第一节电介质的极化一、极化的含义电介质的分子结构可分为中性、弱极性和极性的,但从宏观来看都是不呈现极性的。
当把电介质放在电场中,电介质就要极化,其极化形式大体可分为两种类型:第一种类型的极化为立即瞬态过程,极化的建立及消失都以热能的形式在介质中消耗而缓慢进行,这种方式称为松弛极化。
电子和离子极化属于第一种,为完全弹性方式,其余的属于松弛极化型。
(一)电子极化电子极化存在于一切气体,液体和固体介质中,形成极化所需的时间极短,约为1015 s。
它与频率无关,受湿度影响小,具有弹性,这种极化无能量损失。
(二)原子或离子的位移极化当无电场作用时,中性分子的正、负电荷作用中心重合,将它放在电场中时,其正负电荷作用中心就分离,形成带有正负极性的偶极子。
离子式结构的电介质(如玻璃、云母等),在电场作用下,其正负离子被拉开,从而使正负电荷作用中心分离,使分子呈现极性,形成偶极子,形成正负电荷距离。
原子中的电子和原子核之间,或正离子和负离子之间,彼此都是紧密联系的。
因此在电场作用下,电子或离子所产生的位移是有限的,且随电场强度增强而增大,电场以清失,它们立即就像弹簧以样很快复原,所以通称弹性极化,其特点是无能量损耗,极化时间约为1013-s。
(三)偶极子转向极化电介质含有固有的极性分子,它们本来就是带有极性的偶极子,它的正负电荷作用中心不重合。
当无电场作用时,它们的分布是混乱的,宏观的看,电介质不呈现极性。
在电场作用下,这些偶极子顺电场方向扭转(分子间联系比较紧密的),或顺电场排列(分子间联系比较松散的)。
高电压技术各章选择判断题汇总及答案附期末测试第一章电介质的极化、电导和损耗1.单选题用于电容器的绝缘材料中,所选用的电介质的相对介电常数()。
A 应较大B 应较小C 处于中间值D 不考虑这个因素A2.单选题偶极子极化()。
A 所需时间短B 属于弹性极化 C 在频率很高时极化加强D 与温度的关系很大D3.单选题电子式极化()。
A 所需时间长B 属于弹性极化C 在频率很高时极化加强D 与温度的关系很大B4.单选题离子式极化()。
A 所需时间长B 属于弹性极化C 在频率很高时极化加强D 与温度的关系很大B5.单选题极化时间最长的是()。
A 电子式极化 B 离子式极化 C 偶极子极化 D 空间电荷极化D6.单选题极化时伴随有电荷移动的是()。
A 电子式极化 B 离子式极化C 偶极子极化D 夹层极化D7.单选题夹层极化中电荷的积聚是通过电介质的()进行的。
A 电容B 电导C 电感D 极化B8.单选题相对介电常数是表征介质在电场作用下()的物理量。
A 是否极化B 损耗C 击穿D 极化程度D9.单选题对于极性液体介质,温度较低时,随温度的升高,极化()。
A 减弱B 增强C 先减弱再增强D 不变 B10.单选题用作电容器的绝缘介质时,介质的相对介电常数应()。
A 大些B 小些C 都可以D 非常小A11.单选题用作一般电气设备的绝缘时,介质的相对介电常数应()。
A 大些B 小些C 都可以D 非常小B12.单选题表征电介质导电性能的主要物理量为()。
A 电导率B 介电常数C 电阻D 绝缘系数A13.单选题电介质的电导主要是()引起的。
A 自由电子B 自由离子C 正离子D 负离子B14.单选题金属导体的电导主要是()引起的。
A 自由电子B 自由离子C 正离子D 负离子A15.单选题通常所说的电介质的绝缘电阻一般指()。
A 表面电阻B 体绝缘电阻C 表面电导D 介质电阻B16.单选题直流电压(较低)下,介质中流过的电流随时间的变化规律为()。
习题解析6-1在坐标原点及0)点分别放置电量61 2.010Q C -=-⨯及62 1.010Q C -=⨯的点电荷,求1)P -点处的场强。
解 如图6.4所示,点电荷1Q 和2Q 在P 产生的场强分别为 1122122201102211,44Q r Q r E E r r r r πεπε== 而12123,,2,1r i j r j r r =-=-==,所以()()11111222011011662203111441 2.010 1.010422113.9 6.810Q r Q r E E E r r r r j j i j N C πεπεπε--=+=+⎛⎫-⨯-⨯-=+ ⎪ ⎪⎝⎭≈-+⨯∙总 6-2 长为15l cm =的直导线AB 上,设想均匀地分布着线密度为915.0010C m λ--=⨯⋅,的正电荷,如图6.5所示,求:(1)在导线的延长线上与B 端相距1 5.0d cm =处的P 点的场强;(2)在导线的垂直平分线上与导线中点相距2 5.0d cm =处的Q 点的场强。
解 (1)如图6.5(a )所示,以AB 中点为坐标原点,从A 到B 的方向为x 轴的正方向。
在导线AB 上坐标为x处,取一线元dx ,其上电荷为 dq dx λ= 它在P 点产生的场强大小为 2200111442dq dxdE r l d x λπεπε==⎛⎫+- ⎪⎝⎭方向沿x 轴正方向。
导线AB 上所有线元在P 点产生的电场的方向相同,因此P 点的场强大小为()1212122000112112992122111114442115.0010910 6.75105102010dq dx E r d l d l d x V m λπεπεπε------⎛⎫===- ⎪-⎛⎫⎝⎭+- ⎪⎝⎭⎛⎫=⨯⨯⨯⨯-=⨯∙ ⎪⨯⨯⎝⎭⎰方向沿x 轴正方向。
(2)如图6.5(b )所示,以AB 中点为坐标原点,从A 到B 的方向为x 轴正方向,垂直于AB 的轴为y 轴,在导线AB 上坐标为x 处,取一线元dx ,其上的电荷为 dq dx λ= 它在Q 点产生的电场的场强大小为 22220021144dq dx dE r d x λπεπε==+ 方向如图6.5(b )所示。