七年级数学整式1(2020年1月整理)
- 格式:ppt
- 大小:217.00 KB
- 文档页数:6
人教版七年级数学(上)第一章《整式》经典例题及练习一. 教学内容:整式1. 单项式的有关概念,如何确定单项式的系数和次数;2. 多项式的有关概念,如何确定多项式的系数和次数;3. 什么是整式;4. 分析实际问题中的数量关系,培养用字母表示数量关系以及解决实际问题的能力.二. 知识要点:1. 用字母表示数时,应注意以下几点:(1)加、减、乘、除、乘方等运算符号将数和表示数的字母连接而成的式子是代数式.(2)代数式中出现的乘号一般用“·”或省略不写,例如4乘a写作4a.(3)在代数式中出现除法运算时,一般按分数的写法来写,例如a除以t写作.(4)代数式中大于1的分数系数一般写成假分数,例如2. 单项式(1)如3a,xy,-6m2,-k等,它们都是数与字母的积,像这样的式子叫做单项式. 对于单项式的理解有以下几点需要注意:①单项式反映的或者是数与字母,或者是字母与字母之间的运算关系,且这种运算只能是乘法,而不能含有加减运算,如代数式(x+1)3不是单项式.②字母不能出现在分母里,如不是单项式,因为它是n与m的除法运算.③单独的一个数或一个字母也是单项式,如0,-2,a都是单项式.(2)单项式的系数:是指单项式中的数字因数,如果一个单项式只含有字母因数,它的系数就是1或-1,如m就是1·m,其系数是1;-a2b就是-1·a2b,其系数是-1.(3)单项式的次数:是指一个单项式中所有字母的指数的和. 掌握好这个概念要注意以下几点:①从本质上说,单项式的次数就是单项式中字母因数的个数,如5a3b就是5aaab,有4个字母因数,因此它的次数就是4.②确定单项式的次数时,不要漏掉“1”. 如单项式3x2yz3的次数是2+1+3=6,字母因数的指数为1时,不能认为它没有指数.③单项式的次数只与单项式中的字母因数的指数有关,而不能误加入系数的指数,如单项式-2a3b4c5的次数是字母a、b、c的指数和,即3+4+5=12,而不是2+3+4+5=14.④单独一个非零数字的次数是零.3. 多项式(1)多项式:是指几个单项式的和. 其含义有:①必须由单项式组成;②体现和的运算法则,如3a2+b-5是多项式,(2)多项式的项:是指多项式中的每个单项式. 其中不含字母的项叫做常数项. 要特别注意,多项式的项包括它前面的性质符号(正号或负号).另外,一个多项式化简后含有几项,就叫做几项式. 多项式中的某一项的次数是n,这一项就叫做n次项. 如多项式x3+2xy+x2-x+y-1是六项式,x3的次数是3,叫三次项,2xy、x2的次数都是2,都叫二次项,-x、y的次数都是1,都叫一次项,后面的-1叫常数项.(3)多项式的次数:是指多项式里次数最高的项的次数. 应当注意的是:不要与单项式的次数混淆,而误认为多项式的次数是各项次数之和,如多项式3x4+2y2+1的次数是4,而不是4+2=6,故此多项式叫做四次三项式.4. 单项式与多项式统称为整式.三. 重点难点:1. 重点:单项式和多项式的有关概念.2. 难点:如何确定单项式的次数和系数,如何确定多项式的次数.【典型例题】例1. (1)(2008年宁夏)某市对一段全长1500米的道路进行改造. 原计划每天修x米,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天修路比原计划的2倍还多35米,那么修这条路实际用了__________天.(2)(2008年全国数学竞赛广东初赛)某商店经销一批衬衣,每件进价为a元,零售价比进价高m%,后因市场变化,该商店把零售价调整为原来零售价的n%出售,那么调整后每件衬衣的零售价是()A. a(1+m%)(1-n%)元B. am%(1-n%)元C. a(1+m%)n%元D. a(1+m%·n%)元分析:(1)修这条路实际用的天数等于这条路的全长1500米除以实际每天的工作量,原计划每天修x米,实际施工时,每天比原计划的2倍还多35米,即(2x+35)米. 用1500除以(2x+35)就可以了. (2)每件衬衣进价为a元,零售价比进价高m%,那么零售价就是a(1+m%),后来零售价调整为原来的n%,也就是a(1+m%)n%.评析:用字母表示数时,要注意书写代数式的惯例(数字在前字母在后,乘号省略,如果是除法写成分数的形式,系数是代分数时写成假分数,数字和字母写在括号的前面等)例2. 找出下列代数式中的单项式,并写出各单项式的系数和次数.单独一个数字是单项式,它的次数是0.8a3x的系数是8,次数是4;-1的系数是-1,次数是0.评析:判定一个代数式是否是单项式,关键就是看式子中的数字与字母或字母与字母之间是不是纯粹的乘积关系,如果含有加、减、除的关系,那么它就不是单项式.例3. 请你用代数式表示如图所示的长方体形无盖的纸盒的容积(纸盒厚度忽略不计)和表面积,这些代数式是整式吗?如果是,请你分别指出它们是单项式还是多项式.分析:容积是长×宽×高,表面积(无盖)是五个面的面积,在分辨它们是不是整式,是单项式还是多项式时,牵牵把握住概念,根据概念判断.解:纸盒的容积为abc;表面积为ab+2bc+2ac(或ab+ac+bc+ac+bc). 它们都是整式;abc是单项式,ab+2bc+2ac(或ab+ac+bc+ac+bc)是多项式.评析:①本题是综合考查本节知识的实际问题,作用有二:一是将本节所学知识直接应用到具体问题的分析和解答中,既巩固了知识,又强化了对知识的应用意识;二是将几何图形与代数有机结合起来,有利于综合解决问题能力的提高. ②本题解答关键:长方体的体积公式和表面积公式.故只剩下-2x2a+1y2的次数是7,即2a+1+2=7,则a=2.解:2评析:本题考查对多项式的次数概念的理解. 多项式的次数是由次数最高的项的次数决定的.例5. 把代数式2a2c3和a3x2的共同点填写在下列横线上.例如:都是整式.(1)都是____________________;(2)都是____________________.分析:观察两式,共同点有:(1)都是五次式;(2)都含有字母a.解:(1)五次式;(2)都含有字母a.评析:主要观察单项式的特征.例6. 如果多项式x4-(a-1)x3+5x2-(b+3)x-1不含x3和x项,求a、b的值.分析:多项式不含x3和x项,则x3和x项的系数就是0. 根据这两项的系数等于0就可以求出a和b 的值了.解:因为多项式不含x3项,所以其系数-(a-1)=0,所以a=1.因为多项式也不含x项,所以其系数-(b+3)=0,所以b=-3.答:a的值是1,b的值是-3.评析:多项式不含某项,则某项的系数为0.【方法总结】1. “用字母表示数”是代数学的基础,这种符号化的表示方法随着学习的深入会逐渐加深数学抽象化的程度,我们要体会这种抽象化,它更接近数学的本质,也是有效地解决数学问题的工具.2. 在学习多项式的时候,要注意和单项式的概念进行比较,通过比较两者之间的相同点和不同点,掌握两个概念之间的联系与区别,突出概念的本质,帮助我们理解多项式的概念.【模拟试题】(答题时间:40分钟)一. 选择题1. 在代数式中单项式共有()A. 2个B. 4个C. 6个D. 8个*2. 下列说法不正确的是()C. 6x2-3x+1的项是6x2,-3x,1D. 2πR+2πR2是三次二项式3. 下列整式中是多项式的是()4. 下列说法正确的是()A. 单项式a的指数是零B. 单项式a的系数是零C. 24x3是7次单项式D. -1是单项式5. 组成多项式2x2-x-3的单项式是下列几组中的()A. 2x2,x,3B. 2x2,-x,-3C. 2x2,x,-3D. 2x2,-x,3*7. 下列说法正确的是()B. 单项式a的系数为0,次数为2C. 单项式-5×102m2n2的系数为-5,次数为58. 下列单项式中的次数与其他三个单项式次数不同的是()**9. (2007年华杯初赛)如果一个多项式的各项的次数都相同,则称该多项式为齐次多项式. 例如:x3+2xy2+2xyz+y3是3次齐次多项式. 若x m+2y2+3xy3z2是齐次多项式,则m等于()A. 1B. 2C. 3D. 4二. 填空题1. (2007年云南)一台电视机的原价为a元,降价4%后的价格为__________元.三. 解答题*1. 下列代数式中哪些是单项式,并指出其系数和次数.2. 说出下列多项式是几次几项式:(1)a3-ab+b3(2)3a-3a2b+b2a-1(3)3xy2-4x3y+12(4)9x4-16x2y2+25y2+4xy-1四. 综合提高题**3. 一个关于字母a、b的多项式,除常数项外,其余各项的次数都是3,这个多项式最多有几项?试写出一个符合这种要求的多项式,若a、b满足︱a+b︱+(b-1)2=0,求你写出的多项式的值.【试题答案】一. 选择题1. B2. D3. B4. D5. B6. C7. D8. B9. B二. 填空题三. 解答题2. (1)三次三项式(2)三次四项式(3)四次三项式(4)四次五项式四. 综合提高题1. 由题意可知m+2+1=8,∴m=52. (1)四次六项式,最高次项是-3x3y,最高次项系数是-3,常数项是1(2)三次三项式,最高次项是y3,最高次项系数是1,常数项是-0.53. 最多有5项(可以含有a3,b3,a2b,ab2),如a3+a2b+ab2+b3+1(答案不唯一). 因为︱a+b ︱+(b-1)2=0,所以b=1,a=-1,所以原式=-1+1-1+1+1=1。
2022-2023学年七年级上数学:整式一.选择题(共5小题)1.如图,正方形ABCD与正方形AEFG的边长分别为x,y.若xy=10,BE=,则图中阴影部分的面积为()A.5B.C.D.2.S市今年第二季度的工业总产值为8000亿元,比第一季度增长了2.5%,那么第一季度工业总产值是多少亿元?下列列式正确的是()A.8000×(1﹣2.5%)B.8000÷(1﹣2.5%)C.8000×(1+2.5%)D.8000÷(1+2.5%)3.已知并排放置的正方形ABCD和正方形BEFG如图,其中点E在直线AB上,那么△DEG 的面积S1和正方形BEFG的面积S2大小关系是()A.S1=S2B.S1=S2C.S2=2S2D.S1=S2 4.甲、乙、丙三家商店对一种定价相同的文具开展促销活动.甲商店一次性降价30%;乙商店连续两次降价15%;丙商店先降价20%后又降价10%.若小雪准备在促销活动中,购买此种文具,则下列说法中,正确的是()A.小雪到甲商店购买这种文具更合算B.小雪到乙商店购买这种文具更合算C.小雪到丙商店购买这种文具更合算D.在促销活动中,三家商店的这种文具售价相同,小雪可任选一家购买5.如图,从A地到B地,小明沿直径AB上方的半圆走到B地,小丽先沿直径AC下方半圆走到AB上的C地,再沿直径CB下方半圆走到B地,他们走过的路程相比较()A.小明的路程长B.小丽的路程长C.两人路程一样D.无法确定二.填空题(共5小题)6.多项式a2b+2ab+b+1的次数是.7.若当x=2时,ax3+bx+3的值是﹣2,则当x=﹣2时,ax3+bx+3的值是.8.对单项式“7x”可以解释为:长方形的长为x,宽为7,则此长方形的面积为7x.请你对“7x”再赋予一个含义:.9.小淇同学在元旦晚会上表演了一个节目:他准备了♥(红桃)和♠(黑桃)的扑克牌各10张,洗匀后将这些牌的牌面朝下,排成两列:一列m(m>10)张,一列(20﹣m)张,他立刻报出长的一列中的♠(黑桃)比短的一列中的♥(红桃)多了张.(结果用含有m的代数式表示)10.如下表是某面包店的价目表.小明原本拿了4个面包去结账,结账时收银员告诉小明,店内有优惠活动,优惠方式为每买5个面包,其中1个价格最低的面包就免费.因此,小明又去拿了一个,他挑选了香蒜面包.如果小明原本的结账金额为a元,则小明后来的结账金额为元.(用含a的式子表示)面包品种甜甜圈芒果面包香蒜面包切片面包奶香片奶油面包单价5元6元7.5元11元12元12元三.解答题(共5小题)11.北宋科学家沈括在《梦溪笔谈》中曾记载了宋代行军时的后勤供应情况:人负米六斗,卒自携一斗,人食日二升.其大意为,在行军过程中,民夫可以背负六斗(60升)米,士兵可以自己背一斗(10升)米,民夫(士兵)每人一天行军会消耗2升米.(1)若每个士兵雇佣4个民夫随其一同行军,则在没有其他粮食补充的情况下,背负的米支持行军的天数为天;(2)若每个士兵雇佣n个民夫随其一同行军,则在没有其他粮食补充的情况下,背负的米支持行军的天数为(用含有n的代数式表示);如果每个士兵雇佣的民夫数量没有上限,在没有其他粮食补充的情况下,背负的米支持的行军天数有没有上限?(回答“有”或者“没有”)请你说明理由.12.对于数轴上的A,B,C三点,给出如下定义:若其中一个点到另外两个点的距离恰好满足n(n是大于1的整数)倍的数量关系,则称该点是另外两个点的“n倍和谐点”.例如:数轴上点A,B,C所表示的数分别为1,2,4,此时点B是点A,C的“2倍和谐点”;(1)若点A表示数是﹣1,点C表示的数是5,点B1,B2,B3,依次表示﹣4,,7各数,其中是点A,C的“3倍和谐点”的是;(2)点A表示的数是﹣20,点C表示的数是40,点Q是数轴上一个动点.①若点Q是点A,C的“4倍和谐点”,求此时点Q表示的数;②若点Q在点A的右侧,且点Q是点A,C的“n倍和谐点”,用含有n的式子直接写出此时点Q所表示的数.13.某单位购买了30台A、B、C三种型号的空调,根据下表提供的信息,解答以下问题:空调类型A B C购买的台数(台)129每台空调的销售价(元)18003000(1)该单位购买的A型号的空调占购买全部空调的百分之几?(2)如果每台A型号空调的销售价比每台C型号空调的售价便宜10%,那么每台C型号空调的销售价是多少元?(3)在第(2)题的条件下,为了促销,现商家搞优惠活动:若购买B类空调的台数超过10台,超过部分,可以享受9折优惠.那么本次购买空调该单位一共需要支付多少元钱?14.点O为数轴的原点,点A、B在数轴上的位置如图所示,点A表示的数为5,线段AB 的长为线段OA长的1.2倍.点C在数轴上,M为线段OC的中点.(1)点B表示的数为;(2)若线段BM=5,则线段OM的长为;(3)若线段AC=a(0<a<5),求线段BM的长(用含a的式子表示).15.如图,某校的“图书码”共有7位数字,它是由6位数字代码和校验码构成,其结构分别代表“种类代码、出版社代码、书序代码和校验码”.其中校验码是用来校验图书码中前6位数字代码的正确性,它的编制是按照特定的算法得来的.以上图为例,其算法为:步骤1:计算前6位数字中偶数位数字的和a,即a=9+1+3=13;步骤2:计算前6位数字中奇数位数字的和b,即b=6+0+2=8;步骤3:计算3a与b的和c,即c=3×13+8=47;步骤4:取大于或等于c且为10的整数倍的最小数d,即d=50;步骤5:计算d与c的差就是校验码X,即X=50﹣47=3.请解答下列问题:(1)《数学故事》的图书码为978753Y,则“步骤3”中的c的值为,校验码Y 的值为.(2)如图①,某图书码中的一位数字被墨水污染了,设这位数字为m,你能用只含有m 的代数式表示上述步骤中的d吗?从而求出m的值吗?写出你的思考过程.(3)如图②,某图书码中被墨水污染的两个数字的差是4,这两个数字从左到右分别是多少?请直接写出结果.2022-2023学年七年级上数学:整式参考答案与试题解析一.选择题(共5小题)1.如图,正方形ABCD与正方形AEFG的边长分别为x,y.若xy=10,BE=,则图中阴影部分的面积为()A.5B.C.D.【分析】根据题图可判断S阴影=S△CDF+S△BEF,而后列代数式计算即可.【解答】解:根据题意得:S阴影=S△CDF+S△BEF=x(x﹣y)+y(x﹣y)=(x+y)(x﹣y),∵BE=,∴x﹣y=,∵(x+y)2﹣4xy=(x﹣y)2,xy=10,∴(x+y)2=(x﹣y)2+4xy=()2+40==()2,∴x+y=,∴S阴影=(x﹣y)(x+y)=××=.故选:B.【点评】本题考查了根据题图来求阴影面积,将阴影面积转化并灵活运用已知条件是解题的关键.2.S市今年第二季度的工业总产值为8000亿元,比第一季度增长了2.5%,那么第一季度工业总产值是多少亿元?下列列式正确的是()A.8000×(1﹣2.5%)B.8000÷(1﹣2.5%)C.8000×(1+2.5%)D.8000÷(1+2.5%)【分析】根据第二季度的工业总产值=第一季度的工业总产值×(1+2.5%),可得到答案.【解答】解:∵第二季度的工业总产值为8000亿元,比第一季度增长了2.5%,∴第一季度工业总产值是8000÷(1+2.5%).故选:D.【点评】本题考查了列代数式,解答本题的关键是明确题意,写出相应的代数式.3.已知并排放置的正方形ABCD和正方形BEFG如图,其中点E在直线AB上,那么△DEG 的面积S1和正方形BEFG的面积S2大小关系是()A.S1=S2B.S1=S2C.S2=2S2D.S1=S2【分析】连接BD,可得BD∥EG,则有S△DEG=S△BEG=S正方形BEFG.从而得出答案.【解答】解:连接BD,∵四边形ABCD、BEFG是正方形,∴∠ABD=∠BEG=45°,∴BD∥EG,∴S△DEG=S△BEG=S正方形BEFG,∴S1=S2,故选:A.【点评】本题主要考查了正方形的性质,平行线的判定与性质等知识,证明BD∥EG是解题的关键.4.甲、乙、丙三家商店对一种定价相同的文具开展促销活动.甲商店一次性降价30%;乙商店连续两次降价15%;丙商店先降价20%后又降价10%.若小雪准备在促销活动中,购买此种文具,则下列说法中,正确的是()A.小雪到甲商店购买这种文具更合算B.小雪到乙商店购买这种文具更合算C.小雪到丙商店购买这种文具更合算D.在促销活动中,三家商店的这种文具售价相同,小雪可任选一家购买【分析】首先把这种文具原来的价格看作单位“1”,根据百分数乘法的运算方法,分别求出在甲、乙、丙三家商店买这种文具各需要多少钱;然后比较大小,判断出小雪购买这种文具应该去的商店是哪个即可.【解答】解:在甲商店买这种文具需要:1×(1﹣30%)=1×70%=0.7,在乙商店买这种文具需要:1×(1﹣15%)×(1﹣15%)=1×85%×85%=0.7225,在丙商店买这种文具需要:1×(1﹣20%)×(1﹣10%)=1×80%×90%=0.72,因为0.7<0.72<0.7225,所以小雪购买这种文具应该去的商店是甲.故选:A.【点评】此题主要考查了列代数式问题,要熟练掌握,解答此题的关键是分别求出在甲、乙、丙三家商店买这种文具各需要多少钱.5.如图,从A地到B地,小明沿直径AB上方的半圆走到B地,小丽先沿直径AC下方半圆走到AB上的C地,再沿直径CB下方半圆走到B地,他们走过的路程相比较()A.小明的路程长B.小丽的路程长C.两人路程一样D.无法确定【分析】小明所走的路程长为以AB为直径的半圆弧长,小丽所走的路程长为以AC和BC为直径的两个半圆弧长的和,然后根据圆的周长公式进行计算,再比较大小即可.【解答】解:小明所走的路程长:π×AB,小丽所走的路程长:π×AC+π×BC=π×(AC+BC)=π×AB,故他们走过的路程相比较两人路程一样.故选:C.【点评】本题考查了列代数式,圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).记住圆的周长公式.二.填空题(共5小题)6.多项式a2b+2ab+b+1的次数是3.【分析】根据多项式的次数的定义(多项式中次数最高项的次数是多项式的次数)解决此题.【解答】解:a2b+2ab+b+1含四项,分别是a2b、2ab、b、1,次数分别是3、2、1、0,则这个多项式的次数是3.故答案为:3.【点评】本题主要考查多项式,熟练掌握多项式的次数的定义是解决本题的关键.7.若当x=2时,ax3+bx+3的值是﹣2,则当x=﹣2时,ax3+bx+3的值是8.【分析】将x=2代入可求得﹣8a﹣2b=5,当x=﹣2时,可得到ax3+bx+3=﹣8a﹣2b+3,从而可求得问题的答案.【解答】解:将x=2代入得:8a+2b+3=﹣2,∴8a+2b=﹣5,∴﹣8a﹣2b=5,当x=﹣2时,ax3+bx+3=﹣8a﹣2b+3=5+3=8.故答案为:8.【点评】本题主要考查的是求代数式的值,得到当x=2时,8a+2b=﹣5是解题的关键.8.对单项式“7x”可以解释为:长方形的长为x,宽为7,则此长方形的面积为7x.请你对“7x”再赋予一个含义:笔记本的单价为每本7元,买x个笔记本的总钱数(答案不唯一).【分析】根据代数式的意义即可解答.【解答】解:同一个式子可以表示不同的含义,例如对单项式“7x”可以解释为:长方形的长为x,宽为7,则此长方形的面积为7x,也可以表示更多的含义,请你给7x再赋予一个含义:笔记本的单价为每本7元,买x个笔记本的总钱数,故答案为:笔记本的单价为每本7元,买x个笔记本的总钱数(答案不唯一).【点评】本题考查了列代数式,熟练掌握代数式的意义是解题的关键.9.小淇同学在元旦晚会上表演了一个节目:他准备了♥(红桃)和♠(黑桃)的扑克牌各10张,洗匀后将这些牌的牌面朝下,排成两列:一列m(m>10)张,一列(20﹣m)张,他立刻报出长的一列中的♠(黑桃)比短的一列中的♥(红桃)多了(m﹣10)张.(结果用含有m的代数式表示)【分析】设一列m(m>10)张的黑桃有n张,则红桃有(m﹣n)张,再求出短的一列中红桃有10﹣(m﹣n)=(10﹣m+n)张,两种牌数作差即可﹒【解答】解:设一列m(m>10)张的黑桃有n张,则红桃有(m﹣n)张,短的一列中红桃有10﹣(m﹣n)=(10﹣m+n)张,:.长的一列中的(黑桃)比短的一列中的(红桃)多:n﹣(10﹣m+n)=(m﹣10)张.故答案为:(m﹣10).【点评】本题考查用代数式表示数,整式的加减法运算,掌握用代数式表示数的方法,整式的加减法运算去括号合并同类项是解题关键﹒10.如下表是某面包店的价目表.小明原本拿了4个面包去结账,结账时收银员告诉小明,店内有优惠活动,优惠方式为每买5个面包,其中1个价格最低的面包就免费.因此,小明又去拿了一个,他挑选了香蒜面包.如果小明原本的结账金额为a元,则小明后来的结账金额为a或(a+1.5)或(a+2.5)元.(用含a的式子表示)面包品种甜甜圈芒果面包香蒜面包切片面包奶香片奶油面包单价5元6元7.5元11元12元12元【分析】分小明原本拿了4个面包最低价钱是5元或6元或大于等于7.5元进行讨论即可求解.【解答】解:小明原本拿了4个面包最低价钱是5元,小明后来的结账金额为a+7.5﹣5=(a+2.5)元;或小明原本拿了4个面包最低价钱是6元,小明后来的结账金额为a+7.5﹣6=(a+1.5)元;或小明原本拿了4个面包最低价钱是大于等于7.5元,小明后来的结账金额为a元.故小明后来的结账金额为a或(a+1.5)或(a+2.5)元.故答案为:a或(a+1.5)或(a+2.5).【点评】本题考查了列代数式,关键是理解店内优惠活动,注意分类思想的应用.三.解答题(共5小题)11.北宋科学家沈括在《梦溪笔谈》中曾记载了宋代行军时的后勤供应情况:人负米六斗,卒自携一斗,人食日二升.其大意为,在行军过程中,民夫可以背负六斗(60升)米,士兵可以自己背一斗(10升)米,民夫(士兵)每人一天行军会消耗2升米.(1)若每个士兵雇佣4个民夫随其一同行军,则在没有其他粮食补充的情况下,背负的米支持行军的天数为25天;(2)若每个士兵雇佣n个民夫随其一同行军,则在没有其他粮食补充的情况下,背负的米支持行军的天数为(用含有n的代数式表示);如果每个士兵雇佣的民夫数量没有上限,在没有其他粮食补充的情况下,背负的米支持的行军天数有没有上限?有(回答“有”或者“没有”)请你说明理由.【分析】(1)用所带的粮食除以每天消耗的粮食,即得支持行军的天数;(2)每个士兵雇佣n个民夫随其一同行军,根据题意列代数式即可得答案.【解答】解:(1)每个士兵雇佣4个民夫随其行军,则士兵和民夫共携带了60×4+10=250升粮食,而250÷(2×4+2)=250÷10=25,∴最多可以支持25天的行军;故答案为:25;(2)每个士兵雇佣n个民夫随其一同行军,则在没有其他粮食补充的情况下,背负的米支持行军的天数为,有;原式不可能超过30,随着n的增加,的值越来越贴近30,因此最多可以支持29天(或者30天).故答案为:;有.【点评】本题考查列代数式.解答此题关键是读懂题意,根据题目中的数量关系列代数式.12.对于数轴上的A,B,C三点,给出如下定义:若其中一个点到另外两个点的距离恰好满足n(n是大于1的整数)倍的数量关系,则称该点是另外两个点的“n倍和谐点”.例如:数轴上点A,B,C所表示的数分别为1,2,4,此时点B是点A,C的“2倍和谐点”;(1)若点A表示数是﹣1,点C表示的数是5,点B1,B2,B3,依次表示﹣4,,7各数,其中是点A,C的“3倍和谐点”的是B1,B2;(2)点A表示的数是﹣20,点C表示的数是40,点Q是数轴上一个动点.①若点Q是点A,C的“4倍和谐点”,求此时点Q表示的数;②若点Q在点A的右侧,且点Q是点A,C的“n倍和谐点”,用含有n的式子直接写出此时点Q所表示的数.【分析】(1)根据“3倍和谐点”的定义即可求解;(2)①分三种情况:Ⅰ.如图,当点Q1在点A,C之间,且靠近点A时,4AQ1=Q1C.Ⅱ.如图,当点Q2在点A,C之间,且靠近点C时,4Q2C=AQ2.Ⅲ.如图,当点Q3在点A 左侧时,4Q3A=CQ3.Ⅳ.如图,当点Q3在点C右侧时,4CQ4=AQ4.进行讨论即可求解;②点Q在点A的右侧,有三种情况,根据“n倍和谐点”的定义即可求解.【解答】解:(1)∵[5﹣(﹣4)]÷[﹣1﹣(﹣4)]=3,∴B1是点A,C的“3倍和谐点”,∵(5﹣)÷[﹣(﹣1)]=×=3,∴B2是点A,C的“3倍和谐点”,∵[7﹣(﹣1)]÷(7﹣5)]=8÷2=4,∴B3不是点A,C的“3倍和谐点”.故答案为:B1,B2;(2)①设点Q表示的数为x,Ⅰ.如图,当点Q1在点A,C之间,且靠近点A时,4AQ1=Q1C.则4[x﹣(﹣20)]=40﹣x,解得x=﹣8.所以点Q1表示的数为﹣8.Ⅱ.如图,当点Q2在点A,C之间,且靠近点C时,4Q2C=AQ2.则4(40﹣x)=x﹣(﹣20),解得x=28.所以点Q2表示的数为28.Ⅲ.如图,当点Q3在点A左侧时,4Q3A=CQ3.则4(﹣20﹣x)=40﹣x,解得x=﹣40.所以点Q3表示的数为﹣40.Ⅳ.如图,当点Q3在点C右侧时,4CQ4=AQ4.则4(x﹣40)=x﹣(﹣20),解得x=60.所以点Q4表示的数为60.综上所述,若点Q是点A,C的“4倍和谐点”,此时点Q表示的数﹣40,﹣8,28,60.②﹣20+(或),40﹣(或),40+(或).【点评】本题考查了一元一次方程的应用,数轴及列代数式,认真理解新定义:若其中一个点到另外两个点的距离恰好满足n(n是大于1的整数)倍的数量关系,则称该点是另外两个点的“n倍和谐点”.13.某单位购买了30台A、B、C三种型号的空调,根据下表提供的信息,解答以下问题:空调类型A B C购买的台数(台)129每台空调的销售价(元)18003000(1)该单位购买的A型号的空调占购买全部空调的百分之几?(2)如果每台A型号空调的销售价比每台C型号空调的售价便宜10%,那么每台C型号空调的销售价是多少元?(3)在第(2)题的条件下,为了促销,现商家搞优惠活动:若购买B类空调的台数超过10台,超过部分,可以享受9折优惠.那么本次购买空调该单位一共需要支付多少元钱?【分析】(1)由购买了30台A、B、C三种型号的空调可求出购买A型号的空调的数量,再除以30即可;(2)根据“每台A型号空调的销售价比每台C型号空调的售价便宜10%”,可直接列式计算.(3)分别求出三种型号空调的总销售价再相加即可.【解答】解:(1)(30﹣12﹣9)÷30=30%.答:该单位购买的A型号的空调占购买全部空调的30%.(2)1800÷(1﹣10%)=2000(元).答:每台C型号空调的销售价是2000元.(3)10×3000+2×3000×90%+9×1800+9×2000=30000+5400+16200+18000=69600(元).答:本次购买空调该单位一共需要支付69600元.【点评】本题属于商品销售类应用题,第(2)问也可以利用一元一次方程去解决问题,解题的关键是正确找出题中的数量关系,属于基础题型.14.点O为数轴的原点,点A、B在数轴上的位置如图所示,点A表示的数为5,线段AB 的长为线段OA长的1.2倍.点C在数轴上,M为线段OC的中点.(1)点B表示的数为﹣1;(2)若线段BM=5,则线段OM的长为4或6;(3)若线段AC=a(0<a<5),求线段BM的长(用含a的式子表示).【分析】(1)由题意可求得AB=6,则可求得OB=1,根据题意可得结果;(2)分点M位于点B左侧和右侧两种情况可求得结果;(3)分点C位于点A左侧和右侧两种情况,表示出OM的长,再求出BM的长即可.【解答】解:(1)由题意得AB=1.2OA=1.2×5=6,∴OB=6﹣5=1,∴点B表示的数为﹣1,故答案为:﹣1;(2)当点M位于点B左侧时,点M表示的数为﹣1﹣5=﹣6,当点M位于点B右侧时,点M表示的数为﹣1+5=4,∴OM=|﹣6|=6,或OM=|4|=4,故答案为:4或6.(3)∵AC=a且0<a<5,∴点C始终在原点右侧,当点C位于点A左侧时,OC=5﹣a,∴OM=,则BM=+1=,当点C位于点A右侧时,OC=5+a,∴OM=,则BM=+1=.【点评】此题考查了数形结合与分类讨论解决问题的能力,关键是能确定数轴上的点表示的数与对满足条件的点的不同情况的全面考虑.15.如图,某校的“图书码”共有7位数字,它是由6位数字代码和校验码构成,其结构分别代表“种类代码、出版社代码、书序代码和校验码”.其中校验码是用来校验图书码中前6位数字代码的正确性,它的编制是按照特定的算法得来的.以上图为例,其算法为:步骤1:计算前6位数字中偶数位数字的和a,即a=9+1+3=13;步骤2:计算前6位数字中奇数位数字的和b,即b=6+0+2=8;步骤3:计算3a与b的和c,即c=3×13+8=47;步骤4:取大于或等于c且为10的整数倍的最小数d,即d=50;步骤5:计算d与c的差就是校验码X,即X=50﹣47=3.请解答下列问题:(1)《数学故事》的图书码为978753Y,则“步骤3”中的c的值为73,校验码Y 的值为7.(2)如图①,某图书码中的一位数字被墨水污染了,设这位数字为m,你能用只含有m 的代数式表示上述步骤中的d吗?从而求出m的值吗?写出你的思考过程.(3)如图②,某图书码中被墨水污染的两个数字的差是4,这两个数字从左到右分别是多少?请直接写出结果.【分析】(1)根据特定的算法代入计算即可求解;(2)根据特定的算法依次求出a,b,c,d,再根据d为10的整数倍即可求解;(3)根据校验码为8结合两个数字的差是4即可求解.【解答】解:(1)∵《数学故事》的图书码为978753Y,∴a=7+7+3=17,b=9+8+5=22,则“步骤3”中的c的值为3×17+22=73,校验码Y的值为80﹣73=7.故答案为:73,7;(2)依题意有a=m+1+2=m+3,b=6+0+0=6,c=3a+b=3(m+3)+6=3m+15,d=c+X=3m+15+6=3m+21,∵d为10的整数倍,∴3m的个位数字只能是9,∴m的值为3;(3)可设这两个数字从左到右分别是p,q,依题意有a=p+9+2=p+11,b=6+1+q=q+7,c=3(p+11)+(q+7)=3p+q+40,∵校验码为8,∴3p+q的个位是2,∵|p﹣q|=4,∴p=4,q=0或p=9,q=5或p=2,q=6.故这两个数字从左到右分别是4,0或9,5或2,6.【点评】本题考查了列代数式、正确理解题意,学会探究规律、利用规律是解题的关键.。
第2章《整式的加减》教案一、课标要求1、知识与技能(1)理解并掌握单项式、多项式和整式的概念,弄清它们之间的区别于联系;(2)理解同类项的概念,掌握合并同类项的方法,掌握去括号时的符号变化的规律,能正确掌握多项式的概念,进而理解整式的概念。
(3)掌握多项式的项数,次数的概念,并能熟练地说出多项式的项数和次数。
(4)会用多项式表示简单的数量关系,并根据多项式中字母的值求多项式的值。
(5)会利用合并同类项将整式化简求值。
会运用整式的加减解决简单的实际问题(6)应用整式和整式的加减运算表示实际问题中的数量关系。
2、过程与方法(1)掌握从特殊到一般,从个体到整体地观察、分析问题的方法。
尝试从不同角度探究问题,培养应用意识和创新意识。
(2)经过探索有理数运算法则和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法。
3.情感、态度与价值观使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言。
二、本章教材分析1.主要内容:1.本单元结合学生的生活经验,列举了学生熟悉的从数到式表示的实例,•从扩充运算的角度引入单项式与多项式的概念,然后再指出可以用单项式与多项式表示现实生活中具有意义的关系,使学生感受到整式的引入是来自实际生活的需要,体会数学知识与现实世界的联系。
引入整式概念之后,接着给出单项式与多项式的概念。
2.通过怎样用单项式与多项式关系引入整式。
整式的运算是非常重要的数学工具,在揭示了数形之间的内在联系,从而体现出以下4个方面的作用:(1)单项式与多项式之间的内在关系;(2)单项式与多项式的有关概念;(3)单项式与多项式的运算;(4)在实际问题中,单项式与多项式的表现形式;3.应用整式和整式的加减运算表示实际问题中的数量关系。
掌握从特殊到一般,从个体到整体地观察、分析问题的方法。
尝试从不同角度探究问题,培养应用意识和创新意识。
2.本单元在教材中的地位与作用:1、梳理整式的相关概念,归纳概念之间的区别与联系。
人教版2020年七年级数学上册2.1《整式》课后练习一、选择题1.在代数式,abc,-5,x-y,,π中,单项式有()A.6个B.5个C.4个D.3个2.若单项式的次数是8,则m的值是()A.8B.6C.5D.153.关于单项式-的说法,正确的是()A.系数是5,次数是nB.系数是-,次数是n+1C.系数是-,次数是nD.系数是-5,次数是n+14.多项式x3-x+1的次数是()A.0B.-1C.1D.35.下列代数式中,是单项式的是()A.x+B.5m-2mC.aD.6.式子-x2+2x中,第一项-x2的系数是()A.1B.-1C.0D.27.单项式-12a3b2c的系数和次数分别是()A.-12,5B.-12,6C.12,5D.12,68.在代数式①;②;③-2x3y4;④-2x3+y4;⑤;⑥x4-1中多项式的个数有()A.4个B.3个C.2个D.1个9.下列多项式中,各项系数的积是30的是()A.-x2+5x+6B.2x2+2x-5C.D.-32x+y+5z10.在式子,中,整式有()A.3个B.4个C.5个D.6个11.下列各代数式不是整式的是()A.abB.x3+2y-y3C.D.12.下列说法中,正确的是()A.-x2的系数是B.xy2的系数是C.3ab2的系数是3aD.πa2的系数是13.m,n都是正数,多项式x m+x n+3x m+n的次数是()A.2m+2nB.m或nC.m+nD.m,n中的较大数二、填空题14.是 ______ 次 ______ 项式,最高项的系数为 ______ .15.单项式-的次数是 ______ .16.把多项式5-3x2+x按字母x降幂排列是 ______ .17.当m= ______ 时,多项式x2-mxy-3y2中不含xy项.18.多项式3x|m|-(m+2)x+7是关于x的二次三项式,则m的值为 ______ .初中数学试卷第2页,共3页参考答案1.C2.C3.B4.D5.C6.B7.B8.B9.C10.B11.D12.B13.C14.三;三;-0.515.516.-3x2+x+517.18.2。
2023-2024学年七年级数学上学期2.1整式一.选择题(共4小题)1.如果2a﹣3是多项式4a2+ma﹣9的一个因式,则m的值是()A.0B.6C.12D.﹣122.张师傅下岗再就业,做起了小商品生意,第一次进货时,他以每件a元的价格购进了20件甲种小商品,每件b元的价格购进了30件乙种小商品(a>b);回来后,根据市场行情,他将这两种小商品都以每件 犈८ 元的价格出售,在这次买卖中,张师傅是()A.赚钱B.赔钱C.不赚不赔D.无法确定赚和赔3.代数式2x﹣y,﹣x, ,0.1,﹣3m2n,2n+1中,单项式的个数是()A.2B.3C.4D.54.甲、乙两超市为了促销一种价格相同的商品,甲超市连续两次降价10%,乙超市一次性降价20%,则顾客购买这种商品较合算的是在()A.甲超市B.乙超市C.甲、乙超市都行D.无法确定二.填空题(共4小题)5.若多项式x2﹣3kxy﹣3y2犈 xy﹣8不含xy项,则k的值为.6.观察下面的一列单项式:﹣2x、4x3、﹣8x5、16x7、…根据你发现的规律,第n个单项式为.7.若代数式(m﹣2)x2+5y2+3的值与字母x的取值无关,则m的值是.8.如果代数式5a+3b的值为﹣4,那么代数式2(a+b)+4(2a+b)的值为.三.解答题(共2小题)9.某服装厂加工了一批西服,成本为每套200元,原定每套以280元的价格销售,这样每天可销售200套,若每套在原价的基础上降低10元销售,则每天可多售出100套.据此回答下列问题:(1)若按原价销售,则每天可获利元.(销售利润=单件利润×销售数量)(2)若每套降低10元销售,则每天可卖出套西服,共获利元.(3)若每套西服售价降低10x元,则每套西服的售价为元,每天可以销售西服套,共可获利元.(用含x的代数式表示)10.(3m﹣4)x3﹣(2n﹣3)x2+(2m+5n)x﹣6是关于x的多项式.(1)当m、n满足什么条件时,该多项式是关于x的二次多项式;(2)当m、n满足什么条件时,该多项式是关于x的三次二项式.2023-2024学年七年级数学上学期2.1整式参考答案与试题解析一.选择题(共4小题)1.如果2a﹣3是多项式4a2+ma﹣9的一个因式,则m的值是()A.0B.6C.12D.﹣12【解答】解:∵2a﹣3是多项式4a2+ma﹣9的一个因式,∴当2a﹣3=0时,4a2+ma﹣9=0,即a 时,4a2+ma﹣9=0,∴把a 代入其中得9犈 m﹣9=0,∴m=0,故选:A.2.张师傅下岗再就业,做起了小商品生意,第一次进货时,他以每件a元的价格购进了20件甲种小商品,每件b元的价格购进了30件乙种小商品(a>b);回来后,根据市场行情,他将这两种小商品都以每件 犈८ 元的价格出售,在这次买卖中,张师傅是()A.赚钱B.赔钱C.不赚不赔D.无法确定赚和赔【解答】解:根据题意可知:总进价为20a+30b,总售价为 犈८ (20+30)=25a+25b∴25a+25b﹣(20a+30b)=5a﹣5b,∵a>b,∴5a﹣5b>0,那么售价>进价,∴他赚了.故选:A.3.代数式2x﹣y,﹣x, ,0.1,﹣3m2n,2n+1中,单项式的个数是()A.2B.3C.4D.5【解答】解:单项式有:﹣x,0.1,﹣3m2n,共3个.故选:B.4.甲、乙两超市为了促销一种价格相同的商品,甲超市连续两次降价10%,乙超市一次性降价20%,则顾客购买这种商品较合算的是在()A.甲超市B.乙超市C.甲、乙超市都行D.无法确定【解答】解:设相同商品原定价为a元,甲超市连续两次降价10%,价格为:a(1﹣10%)(1﹣10%)0.81a,乙超市一次性降价20%,价格为:a(1﹣20%)=0.81a,∵0.81a>0.8a,∴在乙超市买合算.故选:B.二.填空题(共4小题)5.若多项式x2﹣3kxy﹣3y2犈 xy﹣8不含xy项,则k的值为 .【解答】解:∵多项式x2﹣3kxy﹣3y2犈 xy﹣8不含xy项,∴﹣3k犈 0,解得:k .故答案为: .6.观察下面的一列单项式:﹣2x、4x3、﹣8x5、16x7、…根据你发现的规律,第n个单项式为(﹣1)n2n x2n﹣1.【解答】解:∵﹣2x=(﹣1)1•21•x1;4x3=(﹣1)2•22•x3;8x5=(﹣1)3•23•x5;﹣16x7=(﹣1)4•24•x7.第n个单项式为(﹣1)n•2n•x2n﹣1.故答案为:(﹣1)n2n x2n﹣1.7.若代数式(m﹣2)x2+5y2+3的值与字母x的取值无关,则m的值是2.【解答】解:∵代数式m﹣2)x2+5y2+3的值与字母x的取值无关,则m﹣2=0,解得m=2.故答案为:2.8.如果代数式5a+3b的值为﹣4,那么代数式2(a+b)+4(2a+b)的值为﹣8.【解答】解:∵5a+3b=﹣4,∴原式=2a+2b+8a+4b=10a+6b=2(5a+3b)=2×(﹣4)=﹣8.三.解答题(共2小题)9.某服装厂加工了一批西服,成本为每套200元,原定每套以280元的价格销售,这样每天可销售200套,若每套在原价的基础上降低10元销售,则每天可多售出100套.据此回答下列问题:(1)若按原价销售,则每天可获利16000元.(销售利润=单件利润×销售数量)(2)若每套降低10元销售,则每天可卖出300套西服,共获利21000元.(3)若每套西服售价降低10x元,则每套西服的售价为(280﹣10x)元,每天可以销售西服(200+100x)套,共可获利(80﹣10x)(200+100x)元.(用含x的代数式表示)【解答】解:根据题意得:依据利润=每件的获利×件数,(1)(280﹣200)×200=16000(元),(2)200+100=300(套).(270﹣200)×(200+100)=21000(元),(3)∵每套降低10x元,∴每套的销售价格为:(280﹣10x)元,∵每套降低10x元,∴每天可销售(200+100x)套西服.∵每套降低10x元,∴每套的利润为:(280﹣10x﹣200)=(80﹣10x)元,每天可销售(200+100x)套西服.每天共可以获利润为:(80﹣10x)(200+100x),故答案是:(1)16000.(2)300;21000;(3)(280﹣10x);(200+100x);(80﹣10x)(200+100x).10.(3m﹣4)x3﹣(2n﹣3)x2+(2m+5n)x﹣6是关于x的多项式.(1)当m、n满足什么条件时,该多项式是关于x的二次多项式;(2)当m、n满足什么条件时,该多项式是关于x的三次二项式.【解答】解:(1)由题意得:3m﹣4=0,且2n﹣3≠0,解得:m ,n ;(2)由题意得:2n﹣3=0,2m+5n=0,且3m﹣4≠0,解得:n ,m ‶ 闸 .。