第五章:面向对象的方法---RUP
- 格式:ppt
- 大小:156.50 KB
- 文档页数:36
第一章绪论简述软件危机与软件工程的概念以及提出软件工程概念的目的。
201804 201810(1)软件生产率、软件质量远远满足社会发展的需求,成为社会、经济发展的制约因素,把这一现象称为软件危机;(2)软件工程是应用计算机科学理论和技术以及工程管理原则和方法,按预算和进度实现满足用户要求的软件产品的工程,或以此为研究对象的学科;(3)软件工程概念的提出是倡导以工程的原理、原则和方法进行软件开发,以期解决出现的软件危机。
简述软件工程的概念与发展201404发展:60年代末—80年代初,主要围绕系统实现技术、软件质量和软件工程管理;80年代以来,主要表现为软件复用技术、软件生产管理的研究和实践。
简述计算机软件的概念,以及提出软件工程概念的目的。
201704 2016101.计算机软件一般是指计算机系统中的程序及其文档。
2.其中,程序是计算机任务的处理对象和处理规则的描述;3.文档是为了理解程序所需的阐述性资料。
4.软件工程概念的提出是倡导以工程的原理、原则和方法进行软件开发,以期解决出现的软件危机。
简述软件开发的本质及其涉及到的问题。
201904 201504本质:不同抽象层术语之间的“映射”,以及不同抽象层处理逻辑之间的“映射”。
问题:(1)如何实现这样的映射,这是技术层面上的问题;(2)如何管理这样的映射,以保障映射的有效性和正确性。
这是管理层面上的问题。
简述软件开发的本质及其基本途径。
201710 201510本质:实现问题空间的概念;处理逻辑到解空间的概念;处理逻辑之间的映射。
途径:系统建模。
简述何谓系统模型以及软件开发中所涉及的系统模型分类。
模型是待建系统的任意抽象。
该抽象是在特定意图下所确定的角度和抽象层次对物理系统的一个描述,描述其中的成分和成分之间所具有的特定语义的关系,还包括对该系统边界的描述;系统模型分为两类:概念模型和软件模型。
软件模型又可进步分为设计模型、实现模型和部署模型等。
面向对象的方法有哪些面向对象编程(Object-Oriented Programming,简称OOP)是一种编程范式,它将问题分解为对象,并通过对象之间的交互来解决问题。
在面向对象编程中,我们使用类(class)和对象(object)来组织和管理代码,从而实现代码的封装、继承和多态。
面向对象的方法有以下几种:1. 封装(Encapsulation):封装是面向对象编程的基本特征之一。
它指的是将相关的属性和行为(方法)组合在一起,形成一个对象。
封装可以隐藏对象的内部细节,只提供一些外部接口,从而提高代码的可维护性和重用性。
2. 继承(Inheritance):继承是面向对象编程的另一个重要特征。
它通过创建一个新的类(子类)来继承已有类(父类)的属性和方法。
子类可以继承父类的所有非私有成员,并且可以添加自己的成员。
继承可以实现代码的重用和扩展。
3. 多态(Polymorphism):多态是面向对象编程的核心概念之一。
它指的是同一个类的实例在不同的情况下表现出不同的行为。
多态的实现方式包括函数重载和函数重写。
多态可以提高代码的灵活性和可扩展性。
4. 抽象(Abstraction):抽象是将具体的事物抽象成一般性的概念或模板。
在面向对象编程中,抽象是通过接口(interface)和抽象类(abstract class)来实现的。
接口定义了一组方法的签名,抽象类则提供了部分或者完整的方法实现。
抽象可以帮助我们定义通用的行为,并且使得程序具有更高的可复用性。
5. 组合(Composition):组合是指通过将一个类的对象作为另一个类的成员来组合两个类的关系。
组合可以实现部分和整体之间的关系,从而提高代码的灵活性和可维护性。
6. 封装(Encapsulation):封装是将对象的属性和方法封装起来,以隐藏内部实现的细节。
通过封装,对象对外只暴露有限的接口,隐藏了实现的细节,并且可以添加必要的验证和保护机制,提高代码的可靠性和安全性。
第一章绪论1.1 软件工程概念的提出与发展1.2 软件开发的本质1.3 本章小结第二章软件需求与软件需求规约2.1 需求与需求获取2.1.1需求定义2.1.2 需求分类2.1.3 需求发现技术2.2 需求规约2.2.1 需求规约定义2.2.2 需求规约(草案)格式2.2.3 需求规约(规格说明书)的表达2.2.4 需求规约的作用2.3 本章小结第三章结构化方法3.1 结构化需求分析3.1.1 基本术语1.数据流2.数据存储3.数据源和数据谭3.1.2 系统功能模型表示数据流图(Dataflow Diagram)3.1.3 建模过程1.建立系统环境图, 确定系统语境2.自顶向下, 逐步求精, 建立系统的层次数据流图3.定义数据字典数据流条目给出所有数据流的结构定义数据存储条目给出所有数据存储的结构定义数据项条目给出所有数据项的类型定义4.描述加工(1)结构化自然语言(2)判定表(3)判定树3.1.4 应用中注意的问题(1)模型平衡问题(2)信息复杂性控制问题3.1.5 需求验证3.2 结构化设计3.2.1 总体设计1.总体设计的目标及其表示(1)Yourdon提出的模块结构图(2)层次图(3)HIPO图2.总体设计步骤(1)变换型数据流图——变换设计(2)事物型数据流图——事物设计3.模块化及启发式规则(1)模块化1)耦合①内容耦合②公共耦合③控制耦合④标记耦合⑤数据耦合2)内聚①偶然内聚②逻辑内聚③时间内聚④过程内聚⑤通信内聚⑥顺序内聚⑦功能内聚(2)启发式规则1)改进软件结构, 提高模块独立性2)力求模块规模适中3)力求深度、宽度、扇出和扇入适中4)尽力使模块的作用域在其控制域之内5)尽力降低模块接口的复杂度6)力求模块功能可以预测3.2.2 详细设计1.结构化程序设计2.详细设计工具(1)程序流程图(2)盒图(N-S图)(3)PAD图(Problem Analysis Diagram)(4)类程序设计语言IPO图、判定树和判定表等也可以作为详细设计工具3.3 本章小结第四章面向对象方法——UML 4.1 UML术语表4.1.1 表达客观事物的术语1.类与对象1)类的属性(Attribute)2)类的操作3)关于类语义的进一步表达①详细叙述类的职责(Responsibility)②通过类的注解和/或操作的注解, 以结构化文本的形式和/编程语言, 详述注释整个类的语义和/或各个方法③通过类的注解或操作的注解, 以结构化文本形式, 详述注释各个操作的前置条件和后置条件, 甚至注释整个类的不变式④详述类的状态机⑤详述类的内部结构⑥类与其他类的协作4)类在建模中的主要用途①模型化问题域中的概念(词汇)②建立系统的职责分布模型③模型化建模中使用的基本类型2.接口(Interface)(1)采用具有分栏和关键字《interface》的矩形符号来表示(2)采用小圆圈和半圆圈来表示3.协作(Collaboration)4.用况(Use Case)5.主动类(Action Class)6.构件(Component)7.制品(Artifact)8.节点(Node)4.1.2 表达关系的术语1.关联(Association)(1)关联名(Name)(2)导航(3)角色(Role)(4)可见性(5)多重性(Multiplicity)(6)限定符(Qualifier)(7)聚合(Aggregation)(8)组合(Composition)(9)关联类(10)约束①有序(ordered)②无重复对象(set)③有重复对象(bag)④列表(list)或序列(sequence)⑤只读(readonly)2.泛化(Generalization)①完整(Complete)②不完整(Incomplete)③互斥(Disjoint)④重叠(Overlapping)3.细化(Realization)4.依赖①绑定(Bind)②导出(Derive)③允许(Permit)④实例(InstanceOf)⑤实例化(Instantiate)⑥幂类型(Powertype)⑦精化(Refine)⑧使用(Use)可模型化以下各种关系(1)结构关系1)以数据驱动2)以行为驱动(2)继承关系(3)精化关系(4)依赖关系4.1.3 表达组合信息的术语——包1)访问(Access)2)引入(Import)4.2 UML模型表达格式1.类图(Class Diagram)(1)模型化待建系统的概念(词汇), 形成类图的基本元素(2)模型化待建系统的各种关系, 形成该系统的初始类图(3)模型化系统中的协作, 给出该系统的最终类图(4)模型化逻辑数据库模式2.用况图(Use Case Diagram)所包含的内容(1)主题(Subject)(2)用况(Use Case)(3)参与者(Actor)(4)关联、泛化与依赖模型化工作1)关于系统/业务语境的模型化①系统边界的确定②参与者与用况的交互③参与者的语义表达④参与者的结构化处理2)关于系统/业务需求的模型化①确定系统/业务的基本用况②用况的结构化处理③用况的语义表达3.状态图(1)状态1)名字2)进入/退出效应(Effect)①entry②exit③状态内部转移3)do动作或活动4)被延迟的事件(2)事件1)信号(Signal)事件2)调用(Call)事件3)时间事件4)变化事件(3)状态转移①源状态②转移触发器③监护(guard)条件④效应(effect)⑤目标状态实际应用中, 使用状态图的作用①创建一个系统的动态模型②创建一个场景的模型4.顺序图(1)术语解析1)消息2)对象生命线3)聚焦控制(the Focus of Control)(2)控制操作子1)选择执行操作子(Operator for Optional Execution)2)条件执行操作子(Operator for Conditional Execution)3)并发执行操作子(Operator for Parallel Execution)4)迭代执行操作子(Operator for Iterative Execution)4.3 本章小结第五章面向对象方法——RUP5.1 RUP特点1.以用况为驱动2.以体系结构为中心3.迭代增量式开发5.2 核心工作流5.2.1 需求获取1.列出候选需求2.理解系统语境(1)业务用况模型(2)业务对象模型3.捕获系统功能需求(1)活动1: 发现并描述参与者(2)活动2: 发现并描述用况(3)活动3: 确定用况的优先级(Priority)(4)活动4: 精化用况(5)活动5: 构造用户界面原型1)用户界面的逻辑设计2)物理用户界面的设计3)开发用户界面原型并演示为了执行该用况, 用户怎样使用该系统(6)活动6: 用况模型的结构化5.2.2 需求分析1.基本术语(1)分析类(Analysis Class)1)边界类(Boundary Classes)2)实体类(Entity Classes)3)控制类(Control Classes)(2)用况细化(Use Case Realization)(3)分析包(Analysis Package)2.分析模型的表达3.分析的主要活动(1)活动1: 体系结构分析(Architectural Analysis)1)任务1: 标识分析包2)任务2: 处理分析包之间的共性3)任务3: 标识服务包4)任务4: 定义分析包的依赖5)任务5: 标识重要的实体类6)任务6: 标识分析包和重要实体类的公共特性需求(2)活动2: 用况分析1)任务1: 标识分析类①标识实体类②标识边界类③标识控制类2)任务2: 描述分析(类)对象之间的交互(3)活动3: 类的分析1)任务1: 标识责任2)任务2: 标识属性①关于实体类属性的标识②关于边界类属性的标识③关于控制类属性的标识3)任务3: 标识关联和聚合①关于关联的标识②关于聚合的标识③关于泛化的标识(4)活动4: 包的分析4.小结(1)关于分析模型1)分析包2)分析类3)用况细化(2)关于分析模型视角下的体系结构描述(3)用况模型和分析模型比较(4)分析模型对以后工作的影响1)对设计中子系统的影响2)对设计类的影响3)对用况细化[设计]的影响5.2.3 设计1.设计层的术语(1)设计类(Design Class)(2)用况细化[设计](3)设计子系统(4)接口(Interface)2.设计模型、部署模型以及相关视角下的体系结构描述(1)设计模型及其视角下的体系结构描述1)子系统结构2)对体系结构有意义的设计类3)对体系结构有意义的用况细化[设计](2)部署模型及该模型视角下的体系结构描述3设计的主要活动(1)活动1: 体系结构的设计1)任务1: 标识节点和它们的网络配置2)任务2: 标识子系统和它们的接口①标识应用子系统②标识中间件和系统软件子系统③定义子系统依赖④标识子系统接口3)任务3: 标识在体系结构方面有意义的设计类和它们的接口4)任务4: 标识一般性的设计机制①标识处理透明对象分布的设计机制②标识事务管理的设计机制(2)活动2: 用况的设计1)标识参与用况细化的设计类2)标识参与用况细化的子系统和接口(3)活动3: 类的设计1)任务1: 概括描述设计类2)任务2: 标识操作3)任务3: 标识属性4)任务4: 标识关联和聚合5)任务5: 标识泛化6)任务6: 描述方法7)任务7: 描述状态(4)活动4: 子系统的设计1)任务1: 维护子系统依赖2)任务2: 维护子系统所提供的接口3)任务3: 维护子系统内容4.RUP设计小结1)RUP设计的突出特点2)关于RUP的设计方法①给出用于表达设计模型中基本成分的4个术语, 包括子系统, 设计类, 接口, 用况细化[设计]②规约了设计模型的语法, 指导模型的表达③给出了创建设计模型的过程以及相应的指导3)RUP的设计模型①设计子系统和服务子系统②设计类(其中包括一些主动类), 以及他们具有的操作、属性、关系及其实现需求。
第一章1 简述软件的发展过程。
共经历了四个阶段;第一阶段:(20世纪50年代初期到60年代初期的十余年)计算机系统开发的初期。
第二阶段:(20世纪60年代中期到70年代中期的十余年)软件产品和“软件作坊”的概念开始出现。
软件开发人员不再像早期阶段那样只因个人工作需要而开发,而是为了用户更好地使用计算机。
第三阶段:(20世纪70年代中期到80年代末期)分布式系统嵌入“智能”;硬件价格下降,软件价格急剧上升,导致了软件危机的加剧。
第四阶段:(20世纪80年代末期开始)强大的桌面系统和计算机网络迅速发展。
2 简述软件的定义和特点。
定义:软件是计算机程序、规程以及运行计算机系统可能需要的相关文档和数据。
特点:(1)是一种逻辑实体,具有抽象性;(2)软件的生产不存在明显的制造过程;(3)在软件的运行和使用的过程中,不会存在像硬件那样的机械磨损及老化问题;(4)由于对计算机系统的依赖性,对软件的通用性造成了一定的影响;(5)软件的开发方式还没有完全脱离手工开发方式,还不能完全采用组装的方式进行软件开发;(6)作为提高工作效率的逻辑产品,本身具有复杂性;(7)成本相当昂贵;(8)相当多的软件工作设计社会因素。
3 软件有哪些种类1. 按功能特征进行划分(1)系统软件。
(2)支撑软件。
(3)应用软件2. 按规模大小进行划分微型、小型、中型、大型、甚大型、、极大型4 什么是软件危机?答:是指在计算机软件的开发和维护过程中所遇到的一系列严重问题。
5 什么是软件工程?有哪些本质特性?怎样用软件工程消除软件危机?答:是指导计算机软件开发和维护的一门工程学科。
特性略。
技术措施和管理措施消除软件危机。
6 软件工程的三要素;方法、工具和过程。
7. 结合自己的亲身经历,谈谈软件工具在软件开发过程中的作用。
使软件开发更加模式化,工程化,从而提高软件开发的效率和封装性。
8. CASE 的研究和CASE 产品的开发是近年来软件工程领域的特点之一。
软件工程中的RUP方法研究随着信息技术的迅速发展,软件行业的发展日益壮大,软件开发的规模日趋庞大,这就要求软件开发者必须遵循一定的开发标准和过程。
而RUP方法,全称为Rational Unified Process,即有理统一过程,正是在这种情况下应运而生的。
本文将深入探讨RUP 方法在软件工程中的研究和应用,以期能够更好地实现软件的高效开发和良好维护。
一、RUP方法的基础理论RUP方法是基于对象技术、面向对象分析和设计、统一建模语言、软件质量保证等理论体系和开发方法的综合应用而形成的。
其主要强调了软件开发的迭代性和适应性,在软件开发的整个生命周期中,都将整个开发过程分解为一系列迭代和阶段,涵盖了需求分析、软件设计、编码、测试等各个环节,每个阶段的完成都需要严格控制和相应的文档保证。
RUP方法强调软件开发的模型应该是动态的,可以在开发过程中不断地进行变更和调整,以确保最终的软件产品能够完全符合用户的需求和期望。
二、RUP方法的发展历程RUP方法最早源于美国Rational公司,其前身是Unified Software Development Process(统一软件开发过程,USDP),后来在2003年以后逐渐转化为现在的RUP方法。
其发展历程可以分为以下几个阶段:1.第一阶段:1994-1997年,Unified Software Development Process(USDP)的诞生在这个阶段里,Rational公司的软件开发者将软件开发过程分为了三个阶段:Inception(开端)、Elaboration(详细说明)和Construction(构造)。
这一阶段的方法强调了软件开发过程中的迭代性和适应性,同时也充分考虑了软件开发中的投资风险等因素。
2.第二阶段:1998-2002年,USDP的进一步发展与推广在第二个阶段里,Rational公司进一步将USDP方法进行了完善和推广。
在USDP中加入了更多的用户需求分析、设计、编码和测试等具体工作任务,并具体将过程的内涵展开,解释了如何进行过程的执行。
第一章软件工程概述介绍软件工程概念的提出以及发展历程,并分析软件开发的本质。
软件工程概论课程介绍第二章软件过程介绍如何定义一个项目的过程,主要涉及三方面的知识:(1)要了解软件开发通常需要做哪些工作,即软件生存周期过程;(2)要了解定义过程的基准框架,即软件生存周期模型;(3)是要了解一般性的过程规划技术。
软件过程(1)-20100913软件过程(2)-20100916软件过程(3)-20100916第三章软件需求与软件需求规约介绍软件需求的定义、需求的分类、常用的需求发现技术,以及需求规约。
软件需求-20100923第四章结构化分析介绍结构化需求分析、需求验证及实例研究。
结构化分析方法-0927第五章结构化设计结构化设计:总体设计的目标及其表示、总体设计方法、设计评价准则与启发式规则、设计优化、详细设计、软件设计规格说明书、实例研究。
结构构化设计方法-总体设计0930结构化设计-详细设计和软件设计规约1011第六章面向对象方法-UML面向对象方法发展以及UML(Unified Modeling Language)的提出、表达客观事物的术语、表达关系的术语、组织信息的通用机制--包、模型表示工具。
面向对象介绍面向对象方法UML(1)面向对象方法UML(2)面向对象方法UML(3)第七章面向对象分析、设计和编程技术介绍面向对象分析、设计和编程技术。
面向对象分析模型规约面向对象设计(1)面向对象设计(2)面向对象编程第八章面向对象方法-RUPRUP(Unified Software Development Process)的作用和特点、核心工作流。
RUP-1-1207RUP-2-1210RUP-3-1214第九章软件测试软件测试目标与软件测试过程模型、软件测试技术、软件测试步骤、静态分析技术-程序正确性证明。
软件测试(1)软件测试(2)软件测试-扩展报告第十章软件工程管理软件工程管理活动;软件规模、成本和进度估算;能力成熟度模型CMM;ISO9000标准。
rup模型相关概念及模型的理解【引言】软件开发过程中,为了能够高效地管理项目,提高开发效率,软件工程领域出现了很多开发模型。
其中,RUP(Rational Unified Process)模型是一种广泛应用的面向对象软件开发过程。
本文将介绍RUP模型的相关概念和对模型的理解。
【概念解析】1. RUP模型:RUP模型是一种基于迭代和增量开发的软件开发过程,它强调可迭代的开发和建立稳定的软件架构。
RUP模型以用例为核心,通过将软件开发过程划分为一系列迭代的阶段,每个阶段都包括需求分析、设计、编码、测试等活动,最终交付一个可执行的软件。
2. 用例:RUP模型以用例为中心,用例是描述系统功能的一种技术工具。
每个用例都是一个具体的场景,描述了系统和用户之间的交互过程。
用例有助于识别系统的功能需求,帮助开发团队理解用户的期望和系统的行为。
3. 迭代开发:RUP模型采用迭代的方式进行软件开发。
每个迭代都是对系统一部分功能的开发,通过多次迭代逐步完善系统。
迭代开发可以使开发团队及时获得用户反馈,并在后续迭代中进行相应的调整和修改。
4. 阶段:RUP模型将软件开发过程划分为几个阶段,每个阶段都有特定的目标和活动。
常见的阶段包括:需求分析、系统设计、详细设计、编码、测试和部署等。
每个阶段的输出成果定义了下一阶段的输入。
5. 建模:RUP模型强调对系统进行建模,通过建立模型可以帮助开发团队更好地理解系统的结构和功能。
常用的建模技术包括用例图、类图、活动图等,这些模型可以帮助开发团队与用户和其他利益相关者进行有效的沟通。
【模型理解】RUP模型是一种迭代、增量的软件开发过程模型,相比于传统的瀑布模型具有以下优点:1. 灵活性:RUP模型通过多次迭代,能够及时响应用户的需求变化。
迭代过程中,开发团队可以根据用户反馈进行调整和修改,使系统更符合用户的期望。
2. 高效性:RUP模型将软件开发过程划分为一系列迭代的阶段,每个阶段都有明确的目标和活动。