高电压1
- 格式:pdf
- 大小:1007.16 KB
- 文档页数:1
绪论高电压技术是一门重要的专业技术基础课;随着电力行业的发展,高压输电问题越来越得到人们的重视;高电压、高场强下存在着一些特殊的物理现象;高电压试验在高电压工程中起着重要的作用。
气体的绝缘特性与介质的电气强度研究气体放电的目的:了解气体在高电压(强电场)作用下逐步由电介质演变成导体的物理过程掌握气体介质的电气强度及其提高方法高压电气设备中的绝缘介质有气体、液体、固体以及其它复合介质。
气体放电是对气体中流通电流的各种形式统称。
由于空气中存在来自空间的辐射,气体会发生微弱的电离而产生少量的带电质点。
正常状态下气体的电导很小,空气还是性能优良的绝缘体;在出现大量带电质点的情况下,气体才会丧失绝缘性能。
自由行程长度单位行程中的碰撞次数Z的倒数λ即为该粒子的平均自由行程长度。
()λ-=xexP令x=λ,可见粒子实际自由行程长度大于或等于平均自由行程长度的概率是36.8%。
带电粒子的迁移率k=v/E它表示该带电粒子单位场强(1V/m)下沿电场方向的漂移速度。
电子的质量比离子小得多,电子的平均自由行程长度比离子大得多热运动中,粒子从浓度较大的区域运动到浓度较小的区域,从而使分布均匀化,这种过程称为扩散。
电子的热运动速度大、自由行程长度大,所以其扩散速度比离子快得多。
产生带电粒子的物理过程称为电离,是气体放电的首要前提。
光电离i W h ≥νc λν=气体中发生电离的分子数与总分子数的比值m 称为该气体的电离度。
碰撞电离附着:当电子与气体分子碰撞时,不但有可能引起碰撞电离而产生出正离子和新电子,而且也可能会发生电子与中性分子相结合形成负离子的情况。
电子亲合能:使基态的气体原子获得一个电子形成负离子时所放出的能量,其值越大则越易形成负离子。
电负性:一个无量纲的数,其值越大表明原子在分子中吸引电子的能力越大带电粒子的消失1到达电极时,消失于电极上而形成外电路中的电流2带电粒子因扩散而逸出气体放电空间3带电粒子的复合复合可能发生在电子和正离子之间,称为电子复合,其结果是产生一个中性分子;复合也可能发生在正离子和负离子之间,称为离子复合,其结果是产生两个中性分子。
介质极化种类:电子式极化(电子轨道发生变形,并相对正电荷的原子核产生位移,使作用中心不在重合);离子式极化(正负离子相对位移形成的极化);偶极式极化(在无外电场的作用下,偶极子正负中心不重合,其转向形成极化);空间电荷式极化(又叫夹层式极化;在两种不同介质的夹层界面上出现的电荷积累过程)有损极化:偶极式极化,空间电荷式极化介质损耗:导电损耗;游离损耗;极化损耗大气对气体间隙击穿电压的影响及措施:因素:(1)相对密度不同时对击穿电压的影响(随密度升高而增大)(2)湿度不同时对击穿电压的影响(随之增大)(3)高海拔的影响(随之降低)。
措施:1、改善电场分布(1)改变电极形状;(2)利用空间电荷对电场的畸变作用;(3)极不均匀电场中屏障的采用2、削弱游离过程的措施:(1)高气压的采用;(2)强电负性气体的应用;(3)高真空的应用影响液体电介质击穿电压的因素及改善措施:因素:液体电介质自身的品质;温度;压力;电压作用时间;电场均匀程度。
措施:过滤;防潮;脱气;采用固体电介质。
影响固体电介质击穿电压的因素及改善措施:因素:电压作用时间;电压种类;电压作用的积累效应;受潮。
措施:改进制造工艺;改进绝缘设计;改善运行条件。
气体中带电质点的产生和消失有哪些方式:产生:碰撞游离;光游离,热游离;表面游离。
消失:带电质点的复合;扩展;附着。
流注理论与汤逊理论(低气压,短间隙,均匀电场)的不同:1、汤逊理论计算的放电时间较长2、汤逊理论的击穿电压与阴极材料有关,而流注理论则无关;3、根据汤逊理论,气体放电应在整个间隙中均匀连续的发展,而大气中击穿时会出现有分支的明亮通道。
伏秒特性曲线及其意义:同一波形、不同幅值的冲击电压下,间隙上出现的最大电压值和放电时间的关系曲线。
意义:在于保护设备与被保护设备的绝缘配合依据,使得被保护设备得到可靠保护。
自持放电的条件:(1)电压达到某一数值;(2)没有外界游离因数的影响也能放电湿度对均匀和极不均匀电场的影响:均匀电场中空气间隙的击穿电压随空气湿度的增加而略有增加,可忽略;极不均匀的电场中,空气间隙的击穿电压随空气湿度的增加而明显增加,由于湿度增加,更多水分子吸收附加电子形成较多的负离子,运动速度减慢,游离能力降低,从而使击穿电压升高。
一、选择题1.流注理论未考虑 的现象。
A .碰撞游离B .表面游离C .光游离D .电荷畸变电场1.由于光辐射而产生游离的形式称为( )。
A.碰撞游离 B.光游离 C.热游离D.表面游离2.解释电压较高、距离较长的间隙中的气体放电过程可用( )。
A.流注理论 B.汤逊理论 C.巴申定律D.小桥理论1.在大气条件下,流注理论认为放电发展的维持是靠( ) A .碰撞游离的电子 B .光游离的光子 C .热游离的离子D .表面游离的电子2.先导通道的形成是以 的出现为特征。
A .碰撞游离B .表面游离C .热游离D .光游离 3.电晕放电是一种 。
A .自持放电B .非自持放电C .电弧放电D .均匀场中放电3.先导通道的形成是以______ _______的出现为特征。
( )A .碰撞游离B .表面游离C .热游离D .光游离 2. 某气体间隙的击穿电压U F 与PS 的关系曲线如图1所示。
当cm kpa PS ⋅⨯=76010131053时,U F 达最小值。
当cm kpa PS ⋅⨯⨯=76010131033时,击穿电压为U 0,若其它条件不变,仅将间隙距离增大到4/3倍,则其击穿电压与U 0相比,将()A. 增高B. 降低C. 不变D. 不确定6、在棒-板间隙上加一电压,棒为正极性时的击穿电压比棒为负极性时的间隙击穿 电压( )A 高B 低 C不变D不确定6、在棒-板间隙上加一电压,棒为负极性时的击穿电压比棒为正极性时的间隙击穿 电压( )A 高B 低 C不变D不确定2.以下四种气体间隙的距离均为10cm ,在直流电压作用下,击穿电压最低的是( ) A.棒—板间隙,棒为正极 B.棒—板间隙,棒为负极 C.针—针间隙D.球—球间隙(球径50cm)2.极不均匀电场中的极性效应表明( ) A .负极性的击穿电压和起晕电压都高B .正极性的击穿电压和起晕电压都高C .负极性的击穿电压低和起晕电压高D .正极性的击穿电压低和起晕电压高 2.气隙下操作冲击击穿电压最小值( ) A .比雷电冲击击穿电压高 B .比工频交流击穿电压高C .的临界波前时间随间距增大而增大D .的临界波前时间随间距增大而减小9、影响气隙击穿机理的最大因素是( ) A 气体的相对密度B极间距离C相对密度与极间距离的积 D 不确定10.与标准大气条件相比,当实际温度下降气压升高时,均匀电场气隙的击穿电压( ) A .不变 B.降低C .升高D.取决于湿度的变化4.气体内的各种粒子因高温而动能增加,发生相互碰撞而产生游离的形式称为 。
绪论高电压技术是一门重要的专业技术基础课;随着电力行业的发展,高压输电问题越来越得到人们的重视;高电压、高场强下存在着一些特殊的物理现象;高电压试验在高电压工程中起着重要的作用。
气体的绝缘特性与介质的电气强度研究气体放电的目的:了解气体在高电压(强电场)作用下逐步由电介质演变成导体的物理过程掌握气体介质的电气强度及其提高方法高压电气设备中的绝缘介质有气体、液体、固体以及其它复合介质。
气体放电是对气体中流通电流的各种形式统称。
由于空气中存在来自空间的辐射,气体会发生微弱的电离而产生少量的带电质点。
正常状态下气体的电导很小,空气还是性能优良的绝缘体;在出现大量带电质点的情况下,气体才会丧失绝缘性能。
自由行程长度单位行程中的碰撞次数Z的倒数λ即为该粒子的平均自由行程长度。
()λ-=xexP令x=λ,可见粒子实际自由行程长度大于或等于平均自由行程长度的概率是36.8%。
带电粒子的迁移率k=v/E它表示该带电粒子单位场强(1V/m)下沿电场方向的漂移速度。
电子的质量比离子小得多,电子的平均自由行程长度比离子大得多热运动中,粒子从浓度较大的区域运动到浓度较小的区域,从而使分布均匀化,这种过程称为扩散。
电子的热运动速度大、自由行程长度大,所以其扩散速度比离子快得多。
产生带电粒子的物理过程称为电离,是气体放电的首要前提。
光电离i W h ≥νc λν=气体中发生电离的分子数与总分子数的比值m 称为该气体的电离度。
碰撞电离附着:当电子与气体分子碰撞时,不但有可能引起碰撞电离而产生出正离子和新电子,而且也可能会发生电子与中性分子相结合形成负离子的情况。
电子亲合能:使基态的气体原子获得一个电子形成负离子时所放出的能量,其值越大则越易形成负离子。
电负性:一个无量纲的数,其值越大表明原子在分子中吸引电子的能力越大带电粒子的消失1到达电极时,消失于电极上而形成外电路中的电流2带电粒子因扩散而逸出气体放电空间3带电粒子的复合复合可能发生在电子和正离子之间,称为电子复合,其结果是产生一个中性分子;复合也可能发生在正离子和负离子之间,称为离子复合,其结果是产生两个中性分子。
电介质的作用:绝缘电介质的状态:气,固,液极化:当外电场作用于电介质时,会在电介质沿电场方向的两端形成等量异号电荷,就像偶极子一样,对外呈现极性。
电子式极化:由于电子发生相对位移形成的极化特点:时间短、与频率无关、无能量损耗、温度影响小离子式极化:离子位移造成的计划特点:时间短,与频率无关,无能量损耗,温度升高极化程度增大。
偶极子式极化:偶极子转向造成的极化。
特点:时间长,频率越高计划减弱,有能量损耗受温度影响大。
空间电荷极化:电介质中自由离子移动特点:时间很长、在低频时完成、有能量损耗夹层极化:夹层介质分界面上出现电荷积累的过程电介质的损耗在工程上的意义:1、选用绝缘介质时,必须注意材料的tg ,tg 越大,介质的损耗也越大,交流下发热也越严重。
这不仅使介质容易劣化,严重时可能还导致热击穿。
2,绝缘受潮湿tg 会增大,绝缘中存在气隙或大量气泡时在高电压下tg 也会显著增大,因此通过测量tg 和tg —U的关系曲线,可发现绝缘是否受潮或存在分层、开裂等缺陷。
测量tg 式绝缘预防性试验中的一个基本项目。
3使用电器设备时必须注意他们对频率温度和电压的要求,超出规定的范围是,不仅对电气设备本身的绝缘不利,还可能给其他工作带来不良影响。
电介质电导在工程上的含义:1电介质电导的倒数即为介质的绝缘电阻,电气设备的绝缘电阻包括绝缘电阻和表面绝缘电阻两部分,通常说的绝缘电阻,被指体绝缘电阻,通过测量绝缘电阻可判断绝缘是否受潮或有其他劣化现象2多层戒指串联是在直流电压下各层的稳态电压分布与各层介质的电导成反比,故对直流设备应注意电导率的合理配合3电介质的电导对电气设备的运行有重要影响,电导产生的能量损耗使设备发热,为限制设备的温度升高,有时必须降低设备工作电流,在一定条件下,电导损耗还可能导致介质发生热击穿。
电介质导电靠的是介质内部少量的自由离子电介质的电导是离子性电导金属导电靠的是金属内部大量的自由电子金属的电导是电子性电导大气条件下电源功率较大时表现为电弧放电形式电源功率较小时表现为火花放电形式如果电场较不均匀击穿前还会出现电晕放电气隙中带电质点来源于两个方面:1气体分子本身发生游离2处于气体中的金属阴极表面发生游离气体分子游离形式:碰撞、光、热游离气体中的主要游离方式是碰撞游离气体中金属表面的游离分为:1正离子撞击阴极表面2短波光照射3强场放射4热电子放射带点质点消失(去游离)三个途径:1与两电极的电量中和2扩散3复合:气体的相对密度d:极间距离汤姆逊理论:d较小时气体间隙的击穿主要由电子的碰撞游离和正离子撞击阴极表面造成的表面游离引起的。