高电压技术1(1)
- 格式:ppt
- 大小:7.64 MB
- 文档页数:164
介质极化种类:电子式极化(电子轨道发生变形,并相对正电荷的原子核产生位移,使作用中心不在重合);离子式极化(正负离子相对位移形成的极化);偶极式极化(在无外电场的作用下,偶极子正负中心不重合,其转向形成极化);空间电荷式极化(又叫夹层式极化;在两种不同介质的夹层界面上出现的电荷积累过程)有损极化:偶极式极化,空间电荷式极化介质损耗:导电损耗;游离损耗;极化损耗大气对气体间隙击穿电压的影响及措施:因素:(1)相对密度不同时对击穿电压的影响(随密度升高而增大)(2)湿度不同时对击穿电压的影响(随之增大)(3)高海拔的影响(随之降低)。
措施:1、改善电场分布(1)改变电极形状;(2)利用空间电荷对电场的畸变作用;(3)极不均匀电场中屏障的采用2、削弱游离过程的措施:(1)高气压的采用;(2)强电负性气体的应用;(3)高真空的应用影响液体电介质击穿电压的因素及改善措施:因素:液体电介质自身的品质;温度;压力;电压作用时间;电场均匀程度。
措施:过滤;防潮;脱气;采用固体电介质。
影响固体电介质击穿电压的因素及改善措施:因素:电压作用时间;电压种类;电压作用的积累效应;受潮。
措施:改进制造工艺;改进绝缘设计;改善运行条件。
气体中带电质点的产生和消失有哪些方式:产生:碰撞游离;光游离,热游离;表面游离。
消失:带电质点的复合;扩展;附着。
流注理论与汤逊理论(低气压,短间隙,均匀电场)的不同:1、汤逊理论计算的放电时间较长2、汤逊理论的击穿电压与阴极材料有关,而流注理论则无关;3、根据汤逊理论,气体放电应在整个间隙中均匀连续的发展,而大气中击穿时会出现有分支的明亮通道。
伏秒特性曲线及其意义:同一波形、不同幅值的冲击电压下,间隙上出现的最大电压值和放电时间的关系曲线。
意义:在于保护设备与被保护设备的绝缘配合依据,使得被保护设备得到可靠保护。
自持放电的条件:(1)电压达到某一数值;(2)没有外界游离因数的影响也能放电湿度对均匀和极不均匀电场的影响:均匀电场中空气间隙的击穿电压随空气湿度的增加而略有增加,可忽略;极不均匀的电场中,空气间隙的击穿电压随空气湿度的增加而明显增加,由于湿度增加,更多水分子吸收附加电子形成较多的负离子,运动速度减慢,游离能力降低,从而使击穿电压升高。
《高电压技术》第3版常美生主编第一章电介质的极化、电导和损耗概述⏹电介质:指具有很高电阻率(通常为106~1019Ω·m)的材料。
⏹电介质的作用:在电气设备中主要起绝缘作用,即把不同电位的导体分隔开,使之在电气上不相连接。
⏹电介质的分类:按状态可分为气体、液体和固体三类。
其中气体电介质是电气设备外绝缘(电气设备壳体外的绝缘)的主要绝缘材料;液体、固体电介质则主要用于电气设备的内绝缘(封装在电气设备外壳内的绝缘)。
⏹极化、电导和损耗:在外加电压相对较低(不超过最大运行电压)时,电介质内部所发生的物理过程。
这些过程发展比较缓慢、稳定,所以一直被用来检测绝缘的状态。
此外,这些过程对电介质的绝缘性能也会产生重要的影响。
⏹击穿:在外加电压相对较高(超过最大运行电压)时,电介质可能会丧失其绝缘性能转变为导体,即发生击穿现象。
第一节电介质的极化一、电介质的极性及分类⏹分子键:电介质内分子间的结合力。
⏹化学键:分子内相邻原子间的结合力。
根据原子结合成分子的方式的不同,电介质分子的化学键分为离子键和共价键两类。
原子的电负性是指原子获得电子的能力。
电负性相差很大的原子相遇,电负性小的原子的价电子被电负性大的原子夺去,得到电子的原子形成负离子,失去电子的原子形成正离子,正、负离子通过静电引力结合成分子,这种化学键就称为离子键。
电负性相等或相差不大的两个或多个原子相互作用时,原子间则通过共用电子对结合成分子,这种化学键就称为共价键。
离子键中,正、负离子形成一个很大的键矩,因此它是一种强极性键。
共价键中,电负性相同的原子组成的共价键为非极性共价键,电负性不同的原子组成的共价键为极性共价键。
由非极性共价键构成的分子是非极性分子。
由极性共价键构成的分子,如果分子由一个极性共价键组成,则为极性分子;如果分子由两个或多个极性共价键组成,结构对称者为非极性分子,结构不对称者为极性分子。
分子由离子键构成的电介质称为离子结构的电介质。
高电压技术1、极化的概念:当有外电场作用时,正负电荷受电场力作用,其相对位置发生变化,尽管内部正负电荷仍相互抵消,但正负电荷相对位置发生了变化,电介质的表面出现负电荷,这种现象称为电介质的极化。
2、极化的形式:电子式极化,离子式极化,偶极子式极化,夹层式极化3、电导损耗的概念:电介质在电压作用下有能量损耗:一种是电导引起的损耗,另一种是由有损极化引起的损耗。
4、按照能量来源不同游离可分为:碰撞游离,光游离,热游离,表面游离5、气体中带电质点的消失:带电质点受电场力的作用流入电极;带电质点的扩散;带电质点的复合。
6、电晕放电:稍不均匀电场中放电的特点与均匀电场中相似,在间隙击穿前能看不到有什么放电的迹象。
极不均匀电场中则不同,间隙击穿前在高场强区会出现蓝紫色的晕光,并发出“嘶嘶”的响声,称为电晕放电。
7、极性效应:对于电极形状不对称的极不均匀电场间隙,如棒-板间隙,棒的极性不同时,间隙的起晕电压和击穿电压各不相同,这种现象称为极性效应。
8、伏秒特性:一般用同一波形下,间隙上出现的电压最大值和间隙击穿时间的关系来表示间隙的冲击绝缘特性,此曲线称为间隙的伏秒特性。
9、提高气体间隙击穿电压的方法:一方面是改善电场分布,使之尽量均匀;另一方面是利用其他方法来削弱气体中的游离过程。
10、提高支柱绝缘子沿面闪络电压的方法:增高支柱绝缘子,即加大极间距离;装设均压环。
11、闪络概念:当带电体电位超过一定值时,常常在固体介质和空气的交界面上出现放电现象,这种沿着固体介质表面的气体发生的放电称为沿面放电,当其发展为贯穿性空气击穿时,称为沿面闪络,简称闪络。
12、操作冲击电压:电力系统在操作或发生事故时,因状态发生突然变化引起电感—电容回路的震荡产生过电压,称为操作冲击电压。
13、提高液体电解质击穿电压的方法:1提高及保持油的品质(过滤、防潮、祛气)2采用固体电解质降低杂质的影响(覆盖层、绝缘层、屏障)14、固体电介质的击穿机理:电击穿,热击穿,电化学击穿15、绝缘缺陷分为:集中性缺陷,分布性缺陷;绝缘试验:绝缘特性试验,绝缘耐压试验16、消除电场或减小电场干扰的措施:加设屏蔽,采用移相电源,倒相法17、电老化:电介质在电场的长时间作用下会逐渐发生某些物理、化学变化,从而引起电介质物理、化学和电等方面的性能劣化、,这种现象称为电老化。
《高电压工程》(专科)复习题-学生一、填空题:1、所谓“过电压”是指电力系统中出现的对绝缘有危险的电压升高和电位差升高。
2、电力系统在发生雷击或进行操作时,输电线路的都可能产生以行波的过电压波,该波过程的本质是能量沿着导线传播的过程,即在导线周围逐步建立起电场和磁场的过程,也就是在导线周围空间储存电磁能的过程。
3、波阻抗Z是电压波与电流波之间的比例常数,它反映了波在传播过程中遵循储存在单位长度线路周围媒质中的电场能量和磁场能量一定相等的规律,所以Z是一个非常重要的参数。
4、电压波的符号取决于它的极性,而与电荷的运动方向无关。
5、过电压波在线路开路末端处的电压加倍,电流变零,这种电压加倍升高对线路的绝缘是很危险的。
6、过电压波在线路末端短路接地处的电流加倍,电压变零,该现象表明这时的全部能量都转化为磁场能量储存起来。
7、在波过程的分析中,可将入射波和波阻抗为Z的线路,用一个集中参数的等值电路来代替,其中电源电势等于电压入射波的两倍,该电源内阻等于线路波阻抗Z 。
这就是应用广泛的彼得逊法则。
8、彼得逊法则只适用于入射波必须是一条分布参数线路传播过来。
其次,只适用于节点A之后的任何一条线路末端产生的反射尚未回到A点之前的情况。
9、电力系统绝缘配合的根本任务是正确处理过电压和绝缘这一矛盾。
以达到任务安全,经济供电的目的。
10、变压器绕组中的波过程是以一系列振荡形式的驻波的方法来探讨的。
分析其过电压可能达到的幅值和波形是设计变压器绝缘结构的基础。
11、旋转电机绕组中的波过程与输电线路相似,该过程因大量折、反射而变得极其复杂,在工程分析中,常采用取平均值的方法的宏观处理方法分析之。
12、雷电放电是一种超长气隙的火花放电。
“云—地”间的线状雷的放电经过先导电,后放电回击等阶段完成的。
13、雷击于低接地电阻(≤30Ω)的物体时所流过雷击点的电流为雷电流,它的幅值I用来表示(即雷电的强度指标)。
14、在防雷计算中,可按不同的要求,采取双指数法、斜角法、斜角平顶法、半余弦法等不同的计算波形。