难溶电解质的标准溶度积常数表
- 格式:doc
- 大小:81.50 KB
- 文档页数:2
电导法测定PbSO 4的溶度积张玉 吴玲一、实验目的(1)掌握电导法测定难溶盐溶解度的原理和方法; (2)掌握电导率仪的使用方法; (3)注意有毒物质的排放。
二、基本原理难溶电解质在水中会建立一种特殊的动态平衡。
尽管难溶电解质无法溶解, 但仍有一部分阴阳离子进入溶液, 当这两个过程的速率相等时, 难溶电解质的溶解就达到平衡状态, 这样的平衡状态叫沉淀溶解平衡, 其平衡常数叫溶度积。
在一定温度下, 一种难溶电解质的饱和溶液中形成一种多相离子平衡, 可表示为:AmBn( s) ↔ nAm+ ( aq) + mBn- ( aq) K sp= αn (Am+ ) αm ( Bn- )K sp 称为溶度积常数, 简称溶度积。
若能测出难溶电解质的饱和溶液中相应离子浓度, 就可计算出溶度积。
难溶盐的饱和溶液浓度很低,可以把浓度当做活度处理,即c ≈α,所以:K sp= cn (Am+ ) cm ( Bn- )难溶盐PbSO 4在其饱和溶液中存在如下溶解平衡:PbSO 4(s )↔Pb 2+(aq )+ SO 42-(aq )其溶度积为:K sp= c (Pb 2+ ) c (SO 42-)=c (PbSO 4)本实验采用电导法测定PbSO 4的溶度积,惠斯顿电桥G K G ALL A G cell ⨯=⨯=⇒⨯=κκ 由电导率仪测出:O H pbso pbso 244κκκ-=溶液由离子独立移动定律,查表计算:)]21()21([2)(24244-∞+∞∞+=≈so pb pbso m m m pbso λλλλ44)(3pbso pbsom m ol C λκ=⋅- 或 441000)(3pbso pbso dm mol C λκ⋅=⋅-所以:K sp=c 2(mol.m -3)因温度对溶液的电导有影响,本实验在恒温下测定。
电导测定不仅可以用来测定硫酸铅、硫酸钡、氯化银、碘酸银等难溶盐的溶解度,还可以测定弱电解质的电离度和电离常数,盐的水解度等。
难溶电解质的溶度积溶度积严格地说,在水中绝对不溶的物质是不存在的。
通常将溶解度小于0.01 g/L的物质称为难溶电解质。
例如,在一定温度下,将过量AgCl固体投入水中,Ag+和Cl-离子在水分子的作用下会不断离开固体表面而进入溶液,形成水合离子,这是AgCl的溶解过程。
同时,已溶解的Ag+和 Cl-离子又会因固体表面的异号电荷离子的吸引而回到固体表面,这就是AgCl的沉淀过程。
当沉淀与溶解两过程达到平衡时,此时的状态称为沉淀溶解平衡。
溶解AgCl(s) ==== Ag+ + Cl-(未溶解固体) 沉淀 (已溶解的水合离子)根据平衡原理,其平衡常数可表示为但因c(AgCl)为常数,a(Ag+) = c(Ag+), a(Cl-) = c(Cl-)故上式可写成∴ a(Ag+) ´ a(Cl-) = c(Ag+) ´ c(Cl-) = K Ө = Ksp Ө即为多相离子平衡的平衡常数,称为溶度积常数(可简称溶度积)。
对于一般的难溶电解质AmBn的沉淀溶解平衡AmBn(s) ==== mAn+ + nBm-Ksp=c^m(An+)×c^n(Bm-)上式的意义是:在一定温度下,难溶电解质饱和溶液中各离子浓度幂的乘积为一常数。
严格地说,应该用溶解平衡时各离子活度幂的乘积来表示。
但由于难溶电解质的溶解度很小,溶液的浓度很稀。
一般计算中,可用浓度代替活度。
Ksp的大小反映了难溶电解质溶解能力的大小。
Ksp越小,则该难溶电解质的溶解度越小。
Ksp的物理意义;(1)Ksp的大小只与此时温度有关,而与难溶电解质的质量无关;(2)表达式中的浓度是沉淀溶解达平衡时离子的浓度,此时的溶液是饱和或准饱和溶液;(3)由Ksp的大小可以比较同种类型难溶电解质的溶解度的大小;不同类型的难溶电解质不能用Ksp比较溶解度的大小。
编辑本段溶解度和溶度积的相互换算Ksp与S均可判断溶解度大小,二者有无关系?根据溶度积常数关系式,可以进行溶度积和溶解度之间的计算。
第三章第四节难溶电解质的溶解平衡—难溶电解质的溶度积常数【学习目标】1.正确理解和掌握溶度积K sp的概念,熟知溶度积常数的应用2.能应用溶度积常数K sp进行相关的计算。
【学习重、难点】能应用溶度积常数K sp进行相关的计算。
【知识梳理】一、难溶电解质的溶度积常数(K sp)1.概念:一定温度下,难溶电解质在溶液中达到沉淀溶解平衡状态时,各离子浓度保持不变,该沉淀溶解平衡的平衡常数称之为溶度积常数,简称,用表示。
2.表达式:对于沉淀溶解平衡M m A n mM n+(aq)+nA m-(aq),参照电离平衡原理得平衡常数:K sp =3.影响因素:(1)K sp只与难溶电解质的性质和有关,而与沉淀的量和溶液中的离子浓度无关。
并且溶液中的离子浓度的变化能使平衡移动,并不改变K sp。
(2)对于大部分溶解平衡,升高温度,平衡向移动,K sp,Ca(OH)2除外。
4.意义:K sp反映了难溶电解质在水中的溶解能力,当化学式所表示的阴、阳离子个数比相同时,K sp越大的难溶电解质在水中的溶解能力相对越强,溶解度。
但对化学式所表示的组成中阴、阳离子个数比不相同的电解质,则不能直接由它们的溶度积来比较溶解能力的大小,必须通过具体计算确定。
下表是几种难溶电解质的溶度积以及溶解能力的比较:沉淀溶解平衡K sp(18~25℃)溶解能力比较AgCl(s)Cl-(aq)+Ag+(aq) 1.8×10-10mol2. L-2AgCl> AgBr > AgI AgBr(s)Br-(aq)+Ag+(aq) 5.0×10-13mol2.L-2AgI(s)I-(aq)+Ag+(aq)8.3×10-17mol2.L-2Mg(OH)2(s)Mg 2+(aq)+2OH-(aq)1.8×10-11mol3.L-3Mg(OH)2> Cu(OH)2Cu(OH)2(s)Cu 2+(aq)+2OH-(aq)2.2×10-20mol3.L-35.应用—溶度积规则:比较K sp与溶液中有关离子浓度幂的乘积(离子积Q c)判断难溶电解质在给定条件下沉淀能否生成或溶解。
溶度积定义对于物质 AnBm(s)=n Am+(aq)+ mBn-(aq), 溶度积(Ksp)=(C(Am+) )^n ( C(mBn-))^m溶度积的应用很广泛。
在定性分析中,利用金属硫化物、氢氧化物、碳酸盐等溶度积的差异分离金属离子。
若往氯化铅饱和溶液中加入氯化钾时,溶液中Cl-浓度增大,Pb2+和Cl-的浓度系数次方之积较氯化铅的溶度积大,这时将有部分离子发生Pb2++2Cl- --→PbCl2的反应,将过剩的PbCl2沉淀出来,直至两种离子的浓度系数次方之积等于氯化铅的溶度积为止。
因此,为使溶解度小的物质完全沉淀,需要加入含有共同离子的电解质。
人教版化学选修4化学反应原理第三章沉淀的溶解平衡涉及溶度积的计算溶解度与溶度积的关系溶解度和溶度积的互相换算:两者都可以用来表示难溶电解质的溶解性。
溶度积是微溶解的固相与溶液中相应离子达到平衡时的离子浓度的乘积,只与温度有关。
溶解度不仅与温度有关,还与系统的组成,PH的改变,配合物的生成等因素有关。
只有同一类型的难溶电解质才能通过溶度积比较其溶解度(mol/l)的相对大小。
大多数实际溶解度S比由c计算得到的要大。
溶度积规则与离子积的关系离子积IP(ion product):任一条件下离子浓度幂的乘积。
Ksp表示难溶电解质的饱和溶液中离子浓度幂的乘积,仅是IP的一个特例。
数值分析1. IP=Ksp 表示溶液是饱和的。
这时溶液中的沉淀与溶解达到动态平衡,既无沉淀析出又无沉淀溶解。
2. IP<Ksp 表示溶液是不饱和的。
溶液无沉淀析出,若加入难溶电解质,则会继续溶解。
3. IP>Ksp 表示溶液为过饱和。
溶液会有沉淀析出常用溶度积常数。
第三章第四节难溶电解质的溶解平衡—难溶电解质的溶度积常数【学习目标】1.正确理解和掌握溶度积K sp的概念,熟知溶度积常数的应用2.能应用溶度积常数K sp进行相关的计算。
【学习重、难点】能应用溶度积常数K sp进行相关的计算。
【知识梳理】一、难溶电解质的溶度积常数(K sp)1.概念:一定温度下,难溶电解质在溶液中达到沉淀溶解平衡状态时,各离子浓度保持不变,该沉淀溶解平衡的平衡常数称之为溶度积常数,简称,用表示。
2.表达式:对于沉淀溶解平衡M m A n mM n+(aq)+nA m-(aq),参照电离平衡原理得平衡常数:K sp =3.影响因素:(1)K sp只与难溶电解质的性质和有关,而与沉淀的量和溶液中的离子浓度无关。
并且溶液中的离子浓度的变化能使平衡移动,并不改变K sp。
(2)对于大部分溶解平衡,升高温度,平衡向移动,K sp,Ca(OH)2除外。
4.意义:K sp反映了难溶电解质在水中的溶解能力,当化学式所表示的阴、阳离子个数比相同时,K sp越大的难溶电解质在水中的溶解能力相对越强,溶解度。
但对化学式所表示的组成中阴、阳离子个数比不相同的电解质,则不能直接由它们的溶度积来比较溶解能力的大小,必须通过具体计算确定。
下表是几种难溶电解质的溶度积以及溶解能力的比较:沉淀溶解平衡K sp(18~25℃)溶解能力比较AgCl(s)Cl-(aq)+Ag+(aq) 1.8×10-10mol2. L-2AgCl> AgBr > AgI AgBr(s)Br-(aq)+Ag+(aq) 5.0×10-13mol2.L-2AgI(s)I-(aq)+Ag+(aq)8.3×10-17mol2.L-2Mg(OH)2(s)Mg 2+(aq)+2OH-(aq)1.8×10-11mol3.L-3Mg(OH)2> Cu(OH)2Cu(OH)2(s)Cu 2+(aq)+2OH-(aq)2.2×10-20mol3.L-35.应用—溶度积规则:比较K sp与溶液中有关离子浓度幂的乘积(离子积Q c)判断难溶电解质在给定条件下沉淀能否生成或溶解。
溶度积自然界没有绝对不溶解的物质,许多通常认为不溶于水的物质也有微弱溶解于水的倾向,例如难溶盐氯化银在水中存在沉淀与溶解平衡。
在一定温度下,Ag+浓度和Cl-浓度的乘积为一定值。
如果对一般难溶盐强电解质在水中同样存在A mB n=mA++nB-在一定温度下,则K ap=[A+]m [B-]n式中Ksp为常数,它反映了物质的溶解能力,故称溶度积常数,简称溶度积。
其意义:在难溶强电解质饱和溶液中,组成该物质的各离子浓度的系数次方之积,在一定温度下为该物质固有的常数。
所谓难溶强电解质,可以是盐,亦可以是碱。
严格说,Kap应是难溶电解质在其饱和溶液中离子活度的系数次方之积,称为活度积。
因难溶电解质其溶度积很小,离子浓度近似地等于活度。
任何难溶电解质,不管它的溶解度多么小,在其饱和溶液中总有与其达成平衡的离子。
任何沉淀反应,无论它进行得多么完全,溶液中仍依然存在组成它的离子,而且其离子浓度系数次方之积必为常数。
只不过随难溶电解质的溶解能力的差异,Ksp 值有所不同。
溶度积可由该难溶电解质的溶解度求得。
例如,设氯化铅在水中的溶解度为s(mol·L-1),该盐在饱和溶液中完全电离(s)Pb2+(aq)+2Cl-(aq)PbClPb2+的浓度为s,Cl-的浓度为2s,故Ksp=〔Pb2+〕〔Cl-〕2=s(2s)2=4s3(mol3·L-3)溶度积的应用很广泛。
在定性分析中,利用金属硫化物、氢氧化物、碳酸盐等溶度积的差异分离金属离子。
若往氯化铅饱和溶液中加入氯化钾时,溶液中Cl-浓度增大,Pb2+和Cl-的浓度系数次方之积较氯化铅的溶度积大,这时将有部分离子发生Pb2++2Cl---→PbCl2的反应,将过剩的PbCl2沉淀出来,直至两种离子的浓度系数次方之积等于氯化铅的溶度积为止。
因此,为使溶解度小的物质完全沉淀,需要加入含有共同离子的电解质。
一些常见的难溶电解质的Ksp值见下表。
难溶电解质的溶度积常数25℃。