(整理)MinitabDOE操作说明全因子实验范例.
- 格式:doc
- 大小:17.60 MB
- 文档页数:16
Minitab DOE操作說明:範例:全因子實驗設計法3因子2水準實驗設計:因子—A.時間 ,B.溫度 ,C.催化劑種類Step 1:決定實驗設計開啟Minitab R14版1.選擇Stat > DOE > Factorial > Create Factorial Design2.點擊因所要討論的因子有三個 , 由表中可以作二種選擇:選擇Ⅲ作4次實驗選擇Full作8次實驗一個三因子2水準的設計共有23 (或8)種可能的組合 , 一個包含所有可能組合的設計 , 即稱之為全因子設計(Full Factorial Design) ,好處是可避免交絡(Confounding)的情況 ,也就是所有因子的效應無法與其它的效應明確分辨出來 ; 然而 ,使用較少的組合設計稱之為部份因子設計(Fractional Factorial Design)此範例決定是全因子設計 , 因在化學工廠內 , 要控制這些因子(時間/壓力/催化劑種類)並不耗費時間及成本 , 且實驗可在非尖峰時間進行 , 避免打斷生產線的進度 , 如果這實驗所需成本很高或困難執行 , 你可能需做不同決定。
3.點擊回到主對話框中4.選擇5.點擊,選取Full factorial6.在Number of replicates選項中選2 ,按Step 2:因子命名與因子水準的設定因子水準的設定可以是文字或數值若因子為連續性→使用數值水準設定 ,可為量測的任意值(ex.反應時間)若因子為類別變數→使用文字水準設定 ,為有限的可能值(ex.催化劑種類)就一個2水準的因子設計 , 因子水準設定為兩個值 , 建議數值儘可能分開:1.點擊Factors按鈕2.輸入因子名稱及水準 , 完成後按Create Factorial Design主對話框1.按Options選項鈕2.在Base for random data generator的欄位 , 輸入9 ,可控制隨機化的結果 ,讓每次3.確定有選取Store design in worksheet的選項後 ,並按4.回到Create Factorial Design主對話框按,就會產生設計的內容並儲存在工作表單Step 4:瀏覽設計的內容(直交表形成)若要切換工作表單以RanOrder/StdOrder 以及Coded/Uncoded 的呈現 ,可由功能表Stat →DOE →Display Design 來選擇另外若要修改因子名稱或設定 , 有兩種方式:(1)可由功能表Stat →DOE →Modify Design 來選擇(2)直接修改資料視窗中相對的因子列Step 5:資料收集與輸入1.在資料視窗中C8的變數名稱位置輸入Yield2.可將此實驗工作表列印出來並收集數據結果Step 6:篩選實驗目的是利用效應圖來選取對於提高產能較大效應的因子配置一個模型(Fit a model)1.在功能表點選Stat→DOE→Factorial→Analyze Factorial Design2.在3.點取4.繪製Normal(常態機率圖)及Pareto(柏拉圖) ,協助找到顯著因子5.按OK 鍵 ,回到Analyze Factorial Design 主對話框 ,再按主對話框OK 鍵 ,即會將分析 結果及繪圖在視窗中 效應圖(Effect Plots)Normal(常態機率圖) Pareto(柏拉圖) 確認重要的效應在圖中偏離直線較遠的點(紅色)為顯著因子 , 即為依圖中影響效應程度大小排列並數值因使用為全因子設計 ,故包含3個單一之主效應、3個二次的(two-way)交互作用及1個三次的(three-way)交互作用Step 7:配置一個較簡單的模型接下來 ,要由全因子模型所找到的重要因子再重新設定一個較簡單的模型 ,也就是去除不顯著之因子 ,評估適合度、圖示解析及殘差分析1.Start→DOE→Factorial→Analyze Factorial Design2.選取Terms選項鈕3.設定內容將原本在Selected Terms欄位中的不顯著因子移到Available Terms欄位中4.按OK鍵 ,回到Analyze Factorial Design主對話框5.點取Graphs選項鈕 ,取消勾選Normal與Pareto圖6.勾選Four in one相關分析圖 ,按OK鍵回主對話框7.按Analyze Factorial Design的主對話框分析的結果會列在程序視窗中 ,主效應是否選取適當??設定的模型是否恰當??Step 8:評估調整後的模型而殘差分析圖的結果也是令人滿意的Step 9:結論之描述因子圖(Factorial Plots)以繪製主效應圖(Main Effect Plot)及交互作用圖(Interaction Plot)可以用目視的方法來決定效應分析1.點選功能表Stat→DOE→2.勾選Main Effects Plot ,再按下Setup3.在Response輸入Yield4.將顯著因子B(Pressure)及C(Catalyst)自Available欄位中2.勾選Interaction Plot ,再按下,重複3與4步驟檢視繪圖內容在繪圖視窗中會個別列出主效應圖及交互作用圖--主效應圖(Main Effects Plot)分析壓力圖催化劑圖(Catalyst Plot)→比較催化劑在兩種類別的差異(1)由圖中顯示 ,差異性比較:催化劑主效應>壓力主效應 ,也就是說催化劑斜率的絕對值 大於壓力斜率的絕對值 ,由於Yield 為望大值(越大越好) ,故壓力在4大氣壓較1大氣 壓有較高的良率 ; 催化劑的種類使用A 較B 有較高的良率(2)若因子之間沒有交互作用存在 ,由主效應圖即可找到使良率較高的最佳組合 ,此範例 有BC 交互作用顯著差異存在 ,故接下來再由交互作用圖來分析--交互作用圖(Interaction Plot)分析交互作用圖可看出因子間水準設定互相造成之衝擊性 ,有加乘或抵消作用(1)由圖中顯示 ,不論壓力值在1大氣壓或4大氣壓 ,使用A 催化劑的Yield 皆大於B 催化 劑 ;但是以A 催化劑而言 ,壓力設定在4大氣壓比1大氣壓有明顯Yield 變化 (2)綜合以上分析 ,使Yield 最大的最佳組合為壓力4大氣壓與A 催化劑。
MiniTab DOE操作说明MiniTab DOE操作说明1、简介1.1 MiniTab DOE是什么?MiniTab DOE(Design of Experiments)是一种统计工具,可以帮助进行实验设计和数据分析。
它通过精心设计的实验,可以帮助研究人员确定影响目标过程或产品的变量,从而获得准确和可靠的结果。
1.2 为什么使用MiniTab DOE?MiniTab DOE具有以下优点:- 提供全面的实验设计选项,包括正交、鲁棒、Taguchi等方法。
- 能够标识影响目标变量的主要因素和交互作用。
- 可以通过优化实验设计来减少试验数量并最大化实验效果。
- 提供可视化工具和统计分析,能够迅速发现实验结果和趋势。
2、实验设计步骤2.1 确定目标在进行实验之前,需要明确目标并定义所要研究的变量。
这些变量可以是输入因素、输出响应或其他与实验相关的参数。
2.2 选择实验设计根据目标和实验要求,选择适当的实验设计方法。
MiniTab DOE提供了多种实验设计选项,如全因子设计、分数因子设计、响应曲面设计等。
2.3 构建实验设计使用MiniTab DOE工具构建实验设计方案。
根据选定的实验设计方法,输入因素和其水平,确定试验数量和试验顺序。
2.4 进行实验按照实验设计方案进行实验并记录数据。
确保实验过程的准确性和一致性。
2.5 数据分析使用MiniTab DOE工具对实验数据进行分析。
通过统计方法和图表分析,识别主要因素和交互作用,并评估其对目标变量的影响。
2.6 优化实验设计根据数据分析结果,在保证实验效果的同时,尽可能减少试验数量。
根据实验结果调整实验设计并再次进行实验。
3、实例分析3.1 实验目标:研究不同参数对产品质量的影响。
3.2 实验设计:使用全因子设计,选择3个影响因素,每个因素有2个水平。
3.3 实验过程:按照实验设计方案进行实验,并记录数据。
3.4 数据分析:使用MiniTab DOE工具进行数据分析,识别主要因素和交互作用。
Minitab DOE操作說明:
範例:
全因子實驗設計法
3因子2水準實驗設計:
因子—A.時間 ,B.溫度 ,C.催化劑種類
Step 1:決定實驗設計
開啟Minitab R14版
1.選擇Stat > DOE > Factorial > Create Factorial Design
2.點擊
因所要討論的因子有三個 , 由表中可以作二種選擇:
選擇Ⅲ作4次實驗
選擇Full作8次實驗
一個三因子2水準的設計共有23 (或8)種可能的組合 , 一個包含所有可能組合的設計 , 即稱之為全因子設計(Full Factorial Design) ,好處是可避免交絡(Confounding)的情況 ,也就是所有因子的效應無法與其它的效應明確分辨出來 ; 然而 ,使用較少的組合設計稱
之為部份因子設計(Fractional Factorial Design)
此範例決定是全因子設計 , 因在化學工廠內 , 要控制這些因子(時間/壓力/催化劑種類) 並不耗費時間及成本 , 且實驗可在非尖峰時間進行 , 避免打斷生產線的進度 , 如果這
實驗所需成本很高或困難執行 , 你可能需做不同決定。
3.點擊回到主對話框中
4.選擇
5.點擊,選取Full factorial
6.在Number of replicates選項中選2 ,按
Step 2:因子命名與因子水準的設定
因子水準的設定可以是文字或數值
若因子為連續性→使用數值水準設定 ,可為量測的任意值(ex.反應時間) 若因子為類別變數→使用文字水準設定 ,為有限的可能值(ex.催化劑種類)
, 建議數值儘可能分開:
1.點擊按鈕
2.輸入因子名稱及水準 , 完成後按OK回到Create Factorial Design主對話框
1.按Options選項鈕
2.在Base for random data generator的欄位 , 輸入9 ,可控制隨機化的結果 ,讓每次
3.確定有選取Store design in worksheet的選項後 ,並按
4.回到Create Factorial Design主對話框按,就會產生設計的內容並儲存在工作表單
Step 4:瀏覽設計的內容(直交表形成)
若要切換工作表單以RanOrder/StdOrder 以及Coded/Uncoded 的呈現 , 可由功能表Stat →DOE →Display Design 來選擇
另外若要修改因子名稱或設定 , 有兩種方式: (1)可由功能表Stat →DOE →Modify Design 來選擇 (2)直接修改資料視窗中相對的因子列
Step 5:資料收集與輸入
1.在資料視窗中C8的變數名稱位置輸入Yield
2.可將此實驗工作表列印出來並收集數據結果
Step 6:篩選實驗
目的是利用效應圖來選取對於提高產能較大效應的因子
配置一個模型(Fit a model)
1.在功能表點選Stat→DOE→Factorial→Analyze Factorial Design
2.在
3.點取
4.繪製Normal(常態機率圖)及Pareto(柏拉圖) ,協助找到顯著因子
5.按OK鍵 ,回到Analyze Factorial Design主對話框 ,再按主對話框OK鍵 ,即會將分析 效應圖(Effect Plots)
Normal(常態機率圖) Pareto(柏拉圖)
31
個三次的(three-way)交互作用
Step 7:配置一個較簡單的模型
接下來 ,要由全因子模型所找到的重要因子再重新設定一個較簡單的模型 ,也就是去除不顯著之因子 ,評估適合度、圖示解析及殘差分析
1.點選功能表選單Start→DOE→Factorial→Analyze Factorial Design
2.選取Terms選項鈕
3.設定內容
4.按Analyze Factorial Design主對話框
5. ,取消勾選Normal與Pareto圖
6.勾選Four in one相關分析圖 ,按OK鍵回主對話框
7.按Analyze Factorial Design的主對話框
分析的結果會列在程序視窗中 ,
主效應是否選取適當??
設定的模型是否恰當??
Step 8:評估調整後的模型
而殘差分析圖的結果也是令人滿意的
Step 9:結論之描述
因子圖(Factorial Plots)
以繪製主效應圖(Main Effect Plot)及交互作用圖(Interaction Plot)可以用目視的方法來決定效應分析
1.點選功能表Stat→DOE→
2.勾選Main Effects Plot ,再按下Setup
3.在Response輸入Yield
4.將顯著因子B(Pressure)及C(Catalyst)自Available
欄位中
2.勾選Interaction Plot ,再按下
Setup ,重複3與4步驟
檢視繪圖內容
在繪圖視窗中會個別列出主效應圖及交互作用圖
--主效應圖(Main Effects Plot)
分析
壓力圖(Pressure Plot)→比較壓力在高及低水準設定的差異
催化劑圖(Catalyst Plot)→比較催化劑在兩種類別的差異
(1)
(2)由圖中顯示 ,差異性比較:催化劑主效應>壓力主效應 ,也就是說催化劑斜率的絕對值
大於壓力斜率的絕對值 ,由於Yield 為望大值(越大越好) ,故壓力在4大氣壓較1大氣 壓有較高的良率 ; 催化劑的種類使用A 較B 有較高的良率
(3)若因子之間沒有交互作用存在 ,由主效應圖即可找到使良率較高的最佳組合 ,此範例 有BC 交互作用顯著差異存在 ,故接下來再由交互作用圖來分析
--交互作用圖(Interaction Plot)
分析
交互作用圖可看出因子間水準設定互相造成之衝擊性 ,有加乘或抵消作用
(1)由圖中顯示 ,不論壓力值在1大氣壓或4大氣壓 ,使用A 催化劑的Yield 皆大於B 催化
劑 ;但是以A 催化劑而言 ,壓力設定在4大氣壓比1大氣壓有明顯Yield 變化
(2)綜合以上分析 ,使Yield 最大的最佳組合為壓力4大氣壓與A 催化劑。