几何公理系统与中学几何PPT
- 格式:ppt
- 大小:2.94 MB
- 文档页数:15
中学几何公理体系_公理化方法与中学几何公理化方法与中学几何一、公理化方法的意义和作用所谓数学公理化方法,就是从尽可能少的无定义的原始概念(基本概念)和一组不证自明的命题(基本公理)出发,利用纯逻辑推理法则,把一r一J数学建立成为演绎系统的一种方法。
这里所说的基本概念,是不加定义的,是真正基本的,它不能用比其更简单、更原始的概念来确定它的含义,只能用描述的方法来确定其范围,如点、线、面等等。
公理是对基本概念间的相互关系和基本性质所做的一种I }}述和规定,不是随意可以选定的。
一个良好的公理系统,设置公理应当满足三个条件:相容性、独立性和完备性。
一般认为,公理化的历史发展,大致可分为三个阶段:公理化方法的产生、公理化方法的完善和公理化方法的形式化。
从其发展史去考察,公理化方法的作用,至少概括出如下三点:①这种方法具有分析、总结数学知识的作用。
②公理化方法把一门数学的基础分析得清清楚楚,这就有利于比较各门数学的实质性异同,并能促使和推动新理论的创立。
③数学公理化方法在科学方法论上有示范作用。
二、中学几何中的公理化方法中学几何教材大体上是按照下面的逻辑结构、采用演绎方式展开的基于学生的认识规律和接受能力等方面的考虑,各章节教材在具体展开时增添了便于理解教材的实例。
从总体上看,教材体现出公理化方法的基本思想,其结构框图如下:(见下页) 甚本元案和甚本圈形中学几何课本中提到:y,线、面或丁古干个点、线、面组合在一起,就成为几何图中学数学教材中的公理系统中学数学知识有一定的系统,原则上应按公理化思想方法展开.特别是平面几何、立体几何内容,应明确地列出公理组.在一般的中学数学教材中,大体_n是按照下面的逻辑结构,采用演绎方法展开的: 原始概念的描述) 定义的叙述公理的叙述命题定理--一推论公式各章节教材在具体展开时,为便于学生接受,一般都增添了便于理解教材内容的实例,采用如下的块状结构: 感性材料实例、背景设置公理、定义、概念引进并证明定理、公式从逻辑结构和具体内容看,总体上体现了公理化的基本思想,但就其公理系统而论,由于考虑到中学生接受能力和教材的精简,因而对公理独立性的要求不是那么严格,而且公理系统也不完备,有时还要借助于直观.例如,平面几何教材,从它的逻辑结构和具体内容看,基本上沿用了欧氏的不完善的公理系统.首先选定一批基本元素和一批关系(包括基本关系)作为基本概念,采用扩大公理体系,然后以此为出发点,用形式逻辑方法定.义有关概念,推导一系列定理,把有关的几何知识贯穿起来.其中公理之间是相容(不矛盾)的,但所选取的公理既过剩又不足,是不独立和不完备的.20世纪末我国的平面几何教材中共引进几何公理16条,等量公理5条,不等量公理6条。
几何公理体系是指一组基本的几何公理,它们是几何学中最基本的规则和假设。
这些公理是几何学中所有其他定理和推论的基础,因此被认为是几何学的基础。
几何公理体系有多种形式,其中最著名的可能是欧几里得几何公理体系。
它包括五个基本的公理,以及一些其他的推论和定理。
这些公理是:
1.结合公理:给定直线上的两点,存在一条且仅存在一条通过这
两点的直线。
2.顺序公理:在同一条直线上,如果两点A和B被另一点C所分
隔,那么A、C两点间的距离小于C、B两点间的距离。
3.合同公理:给定两个三角形,如果它们的两边及夹角相等,则
这两个三角形是全等的。
4.平行公理:通过直线外的一点,有且仅有一条直线与已知直线
平行。
5.连续公理:所有给定的点都在同一直线上。
这些公理是几何学的基础,所有的其他几何定理和推论都可以从这些公理推导出来。
欧几里得几何公理体系是第一个系统地使用公理化方法的科学体系,对后来的数学和其他学科产生了深远的影响。
几何公理和公理系统1.几何公理公理是作为几何基础而本身不加证明的命题,是建立一种理论体系的少数思想规定.在几何演绎体系里,每条定理都要根据已知定理加以证明,而这些作为根据的定理又要根据另外的已知定理加以证明,如此步步追寻起来,过程是无止境的,必须适时而止.因此,需要选取一些不加证明的原始命题作为证明一切定理的基础,这就是公理.数学区别于其他学科的主要特征之一是它的推理论证的演绎性质.为了建立某种理论或得出某个结论,天文学家必须借助观察,化学家必须借助于实验,但数学却不行.三角形内角之和等于180°不是通过测量得出和证明的,它的真实性是经事先假定为真实的命题,按逻辑的原则推证出来的.几何的其他命题也是如此.公理是怎样选定的呢?有的是从历史上延续下来的,它们是人们经过反复实践从客观世界总结出来的规律,是人们公认的,如“两点确定惟一直线”这条公理;有的就是为了建立某种理论体系的需要,作为出发点而被规定下来的,它们不甚直观显然,甚至暂时不被人们接受,如罗巴切夫斯基几何中的平行公理.公理总是直接或间接地来源于实践,绝非科学家随心所欲的空想.譬如罗氏平行公理的出现,它首先是以欧氏几何的某些事实(概念、理论、方法)作为基础,受试证欧氏第五公设的启示;其次是受科学认识论的支配,克服认为公理是先验的唯心主义思想,承认公理的正确性必须靠实践来验证;再次是生产力和科学技术的不断革命所决定的,这些都为罗氏平行公理的出现做了必要的准备.这就是为什么到19世纪才产生罗氏几何的原因.理论的产生以实践为基础,但随着实践的发展和水平的提高,它也往往走在实践的前头,“虚数”和“非欧几何”等等都是这样.判断一个理论或公理是否正确,不是依据主观上觉得如何而定,而是依据客观上社会实践的结果如何而定.只有实践才是检验真理的惟一标准.2.几何公理系统用公理化方法建立一门几何学演绎体系时,最根本的是确立该几何学的公理体系.作为一门集合学基础的原始概念和全部公理称该几何学的公理系统,满足公理系统的几何图形的集合称为几何空间.例1欧几里得几何学中的几种不同的公理系统.(1)希尔伯特(D.Hilbert,公元1862年~1943年,德国人)给出的公理系统.希尔伯特公理系统纲要:几何基础五组公理计20条,其中连续公理组和平行公理组与希尔伯特给出的顺序不同,根据需要这里把他们的顺序作了对调.其中平行公理是:欧氏平行公理平面上通过已知直线外一点最多有一条直线与已知直线不相交.(2)欧几里得《几何原本》和学几何中的公理系统.(3)别列标金著《初等几何教程》(上卷马忠林译,下卷赵慈庚等译,高等教育出版社)中的公理系统.(4)科士青著《几何学基础》(苏步青译,商务印书馆)中的公理系统.该公理系统以运动公理组代替希尔伯特公理系统中的合同公理组,原始概念采用“运动”,用运动关系定义“合同”关系.(5)伯克霍夫(G.Birkhoff,1884年~1944年,美国人)在1932年提出以“距离”和“角度”作为原始概念的公理系统.其欧氏平面几何的公理系统大意如下:原始元素为“点”“直线”;原始关系为“距离”:两点A、B的距离是一个非负的实数,记做d(A,B);“角度”:三个不同的有序点A、O、B的角度是一个实数,记做,其值域为≤≤公理1(刻度尺公理)任意直线上的点与实数一一对应,任意两点A、B所对应的数、之差的绝对值称为A、B两点间的距离,即d(A,B)=公理2通过两已知点有且只有一条直线公理3(量角器公理)通过一点O的射线l、m…与实数α一一对应,≤α≤.若异于O的点A、B,分别在l、m上,则l、m 所对应的数、之差就是,即变动.公理4(相似公理)若与,对于某一常数k>0,有,,且夹角,则必有,,.这个公理系统不再需要顺序、合同、连续、平行等公理.相似形的存在是与平行公理等价的.例2罗巴切夫斯基(1793年~1856年,俄国人)几何的公理系统.罗氏几何是非欧几何之一,产生于19世纪30年代,主要是围绕着对欧几里得第五公设的研究和证明中逐步形成的.我们在下一章及第五章里将详细地叙述罗氏几何的基本内容.这里仅给出罗氏平面几何的公理系统,其纲要如下罗巴切夫斯基平行公理在平面上,过直线外一点至少有两条直线与已知直线不相交.以上纲要表与欧氏平面几何的希尔伯特公理系统纲要表相比较,绝对公理系统部分完全相同,所演绎出来的全部内容为两种几何所共有,称为绝对几何,所差的是平行公理不同.在罗氏几何产生后不久,又产生了一另一种非欧几何,即黎曼(B.Riemann,1826年~1866年,德国人)几何.它不是完全建立在绝对公理系统之上的,需对合同公理等加以改造,其平行公理是:黎曼平行公理在平面上,过直线外一点不存在直线与已知直线不相交(即平面上任何两条直线都相交).由于欧氏、罗氏、黎氏三条平行公理的差异很大,根据它们所推出的几何命题也有很大的差异,例如欧氏平面上,三角形内角之和等于180°.罗氏平面上,三角形内角之和小于180°.黎氏平面上,三角形内角之和大于180°.。
解析几何的公理体系与几何推导解析几何是数学中的一个重要分支,它研究的是点、直线、平面及其相关的几何图形之间的位置、形状和运动关系。
在解析几何中,公理体系是推导几何学定理的基础,而几何推导则是通过逻辑推理和运用公理来证明几何学定理的过程。
本文将从公理体系和几何推导两个方面来解析几何的核心内容。
首先,我们来了解解析几何的公理体系。
公理是几何学中的基本假设,它们是不需要证明的前提条件。
解析几何的公理体系可以由以下几条基本公理构成:1. 点的存在性公理:空间中至少存在一个点。
2. 直线的存在性公理:空间中至少存在一条直线。
3. 平面的存在性公理:空间中至少存在一个平面。
4. 公共元素公理:如果两个不同点在一条直线上,那么它们确定这条直线。
5. 同一元素公理:每条直线上都存在无穷多个点。
6. 两点确定一条直线公理:若两点在平面上,那么它们可以唯一确定一条直线。
7. 共面公理:一条直线和一个点在同一平面上,那么经过这个点并且与给定直线垂直的直线都在该平面上。
这些公理构成了解析几何的基础,它们提供了用于描述点、直线和平面的基本规则。
接下来,我们来讨论几何推导的过程。
几何推导是通过逻辑推理和运用公理来证明几何学定理的过程。
在几何推导中,我们使用已知事实(公理、定义、定理)和逻辑运算(演绎推理、归纳推理)来推导出目标结论。
几何推导的步骤一般包括以下几个部分:1. 确定已知条件:首先,我们需要将已知的条件以及所给的几何图形明确列出。
2. 应用公理和定义:利用解析几何的公理和定义,我们可以从已知条件得出一些结论。
这些结论将成为之后推导的基础。
3. 运用几何定理:通过逻辑推理和运用几何定理,我们可以进一步推导出更多的结论。
这些定理可以是之前已经证明过的,也可以是待证目标的中间结果。
4. 逻辑推理:运用逻辑的规则,如假言推理、拒取推理、消解法等,对已有的结论进行推导,逐步达到目标结论。
5. 证明目标结论:经过一系列的推导和逻辑推理,我们可以得出结论。