2016届高考专题三次函数高考题及模拟题
- 格式:docx
- 大小:1.08 MB
- 文档页数:12
2016年普通高等学校招生全国统一考试(全国Ⅲ卷)文科数学第Ⅰ卷一、选择题:本大题共12个小题;每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2016·全国Ⅲ,文,1)设集合A ={0,2,4,6,8,10},B ={4,8},则∁A B 等于( ) A .{4,8} B .{0,2, 6} C .{0,2,6,10}D .{0,2,4,6,8,10}2.(2016·全国Ⅲ,文,2)若z =4+3i ,则z |z |等于( )A .1B .-1 C.45+35i D.45-35i3.(2016·全国Ⅲ,文,3)已知向量BA →=⎝⎛⎭⎫12,32,BC →=⎝⎛⎭⎫32,12,则∠ABC 等于( )A .30°B .45°C .60°D .120°4.(2016·全国Ⅲ,文,4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15 ℃,B 点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是( )A .各月的平均最低气温都在0 ℃以上B .七月的平均温差比一月的平均温差大C .三月和十一月的平均最高气温基本相同D .平均最高气温高于20 ℃的月份有5个5.(2016·全国Ⅲ,文,5)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M ,I ,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( )A.815B.18C.115D.1306.(2016·全国Ⅲ,文,6)若tan θ=-13,则cos 2θ=( )A .-45B .-15 C.15 D.457.(2016·全国Ⅲ,文,7)已知a =243,b =323,c =2513,则( ) A .b <a <c B .a <b <c C .b <c <a D .c <a <b8.(2016·全国Ⅲ,文,8)执行下面的程序框图,如果输入的a =4,b =6,那么输出的n 等于( )A .3B .4C .5D .69.(2016·全国Ⅲ,文,9)在△ABC 中,B =π4,BC 边上的高等于13BC ,则sin A 等于( )A.310B.1010C.55D.3101010.(2016·全国Ⅲ,文,10)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A .18+36 5B .54+18 5C .90D .8111.(2016·全国Ⅲ,文,11)在封闭的直三棱柱ABC-A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( ) A .4π B.9π2 C .6π D.32π312.(2016·全国Ⅲ,文,12)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) A.13 B.12 C.23 D.34第Ⅱ卷二、填空题:(本大题共4小题,每小题5分)13.(2016·全国Ⅲ,文,13)设x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y +1≥0,x -2y -1≤0,x ≤1,则z =2x +3y -5的最小值为________.14.(2016·全国Ⅲ,文,14)函数y =sin x -3cos x 的图象可由函数y =2sin x 的图象至少向右平移________个单位长度得到.15.(2016·全国Ⅲ,文,15)已知直线l :x -3y +6=0与圆x 2+y 2=12交于A 、B 两点,过A 、B 分别作l 的垂线与x 轴交于C 、D 两点,则|CD |=________. 16.(2016·全国Ⅲ,文,16)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则曲线y =f (x )在点(1,2)处的切线方程是________.三、解答题(解答应写出文字说明,证明过程或演算步骤.)17.(2016·全国Ⅲ,文,17)(本小题满分12分)已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0. (1)求a 2,a 3; (2)求{a n }的通项公式.18.(2016·全国Ⅲ,文,18)(本小题满分12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码17分别对应年份2008-2014.(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (2)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 附注:参考数据:∑i =17y i =9.32,∑i =17t i y i =40.17,∑i =17(y i -y )2=0.55,7≈2.646.参考公式:相关系数r =∑i =1n(t i -t )(y i -y )∑i =1n(t i -t )2∑i =1n(y i -y )2,回归方程y ^=a ^+b ^t 中斜率和截距的最小二乘估计公式分别为:b ^=∑i =1n(t i -t )(y i -y )∑i =1n(t i -t )2,a ^=y -b ^t .19.(2016·全国Ⅲ,文,19)(本小题满分12分)如图,四棱锥P-ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明:MN ∥平面P AB ; (2)求四面体NBCM 的体积.20.(2016·全国Ⅲ,文,20)(本小题满分12分)已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点. (1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程. 21.(2016·全国Ⅲ,文,21)(本小题满分12分)设函数f (x )=ln x -x +1. (1)讨论f (x )的单调性;(2)证明:当x ∈(1,+∞)时,1<x -1ln x <x ;(3)设c >1,证明:当x ∈(0,1)时,1+(c -1)x >c x .22.(2016·全国Ⅲ,文,22)(本小题满分10分)选修41:几何证明选讲 如图,⊙O 中AB 的中点为P ,弦PC ,PD 分别交AB 于E ,F 两点.(1)若∠PFB =2∠PCD ,求∠PCD 的大小;(2)若EC 的垂直平分线与FD 的垂直平分线交于点G ,证明OG ⊥CD . 23.(2016·全国Ⅲ,文,23)(本小题满分10分)选修44:坐标系与参数方程在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α,(α为参数),以坐标原点为极点,以x 轴正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝⎛⎭⎫θ+π4=2 2. (1)写出C 1的普通方程和C 2的直角坐标方程;(2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标. 24.(2016·全国Ⅲ,文,24)(本小题满分10分)选修45:不等式选讲 已知函数f (x )=|2x -a |+a .(1)当a =2时,求不等式f (x )≤6的解集;(2)设函数g (x )=|2x -1|.当x ∈R 时,f (x )+g (x )≥3,求a 的取值范围.答案解析1.解析 A ={0,2,4,6,8,10},B ={4,8},∴∁A B ={0,2,6,10}. 答案 C2.解析 z =4+3i ,|z |=5,z|z |=45-35i. 答案 D3.解析 |BA →|=1,|BC →|=1,cos ∠ABC =BA →·BC →|BA →|·|BC →|=32.答案 A4.解析 由题意知,平均最高气温高于20 ℃的六月,七月,八月,故选D. 答案 D5.解析 第一位是M ,I ,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,所以总的基本事件的个数为15,密码正确只有一种,概率为115,故选C.答案 C6.解析 tan θ=-13,则cos 2θ=cos 2θ-sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=45.答案 D7.解析 a =243=316,b =323=39,c =2513=325,所以b <a <c . 答案 A8.解析 第一次循环a =6-4=2,b =6-2=4,a =4+2=6,s =6,n =1; 第二次循环a =4-6=-2,b =4-(-2)=6,a =6-2=4,s =10,n =2; 第三次循环a =6-4=2,b =6-2=4,a =4+2=6,s =16,n =3;第四次循环a =4-6=-2,b =4-(-2)=6,a =6-2=4,s =20,n =4,满足题意,结束循环. 答案 B9.解析 设BC 边上的高AD 交BC 于点D ,由题意B =π4,BD =13BC ,DC =23BC ,tan ∠BAD=1,tan ∠CAD =2,tan A =1+21-1×2=-3,所以sin A =31010.答案 D10.解析 由题意知,几何体为平行六面体,边长分别为3,3,45,几何体的表面积S =3×6×2+3×3×2+3×45×2=54+18 5. 答案 B11.解析 由题意知,底面三角形的内切圆直径为4.三棱柱的高为3,所以球的最大直径为3,V 的最大值为9π2.答案 B12.解析 设M (-c ,m ),则E ⎝ ⎛⎭⎪⎫0,am a -c ,OE 的中点为D ,则D ⎝ ⎛⎭⎪⎫0,am 2(a -c ),又B ,D ,M三点共线,所以m 2(a -c )=m a +c ,a =3c ,e =13.答案 A13.解析 可行域为一个三角形ABC 及其内部,其中A (1,0),B (-1,-1),C (1,3),直线z =2x +3y -5过点B 时取最小值-10. 答案 -1014.解析 y =sin x -3cos x =2sin ⎝⎛⎭⎫x -π3,由y =2sin x 的图象至少向右平移π3个单位长度得到. 答案 π315.解析 设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x -3y +6=0,x 2+y 2=12,得y 2-33y +6=0,则y 1+y 2=33,又y 2=23,∴y 1=3, ∴A (-3,3),B (0,23). 过A ,B 作l 的垂线方程分别为y -3=-3(x +3),y -23=-3x ,令y =0,则x C =-2,x D =2,∴|CD |=2-(-2)=4. 答案 416.解析 设x >0,则-x <0,f (-x )=e x -1+x ,因为f (x )为偶函数,所以f (x )=e x -1+x ,f ′(x )=e x -1+1,f ′(1)=2,y -2=2(x -1),即y =2x . 答案 y =2x17.解 (1)由题意得a 2=12,a 3=14.(2)由a 2n -(2a n +1-1)a n -2a n +1=0得 2a n +1(a n +1)=a n (a n +1).因为{a n }的各项都为正数,所以a n +1a n =12.故{a n }是首项为1,公比为12的等比数列,因此a n =12n -1.18.解 (1)由折线图中数据和附注中参考数据得 t =4,∑i =17(t i -t )2=28,∑i =17(y i -y )2=0.55.∑i =17 (t i -t )(y i -y )=∑i =17t i y i -t ∑i =17y i =40.17-4×9.32=2.89,r ≈ 2.890.55×2×2.646≈0.99. 因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合y 与t 的关系.(2)由y =9.327≈1.331及(1)得b ^=∑i =17(t i -t )(y i -y )∑i =17(t i -t )2=2.8928≈0.103, a ^=y -b ^t ≈1.331-0.103×4≈0.92. 所以y 关于t 的回归方程为y ^=0.92+0.10t .将2016年对应的t =9代入回归方程得y ^=0.92+0.10×9=1.82. 所以预测2016年我国生活垃圾无害化处理量将约为1.82亿吨.19.(1)证明 由已知得AM =23AD =2.如图,取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綊AM ,所以四边形AMNT 为平行四边形,于是MN ∥AT . 因为AT ⊂平面P AB ,MN ⊄平面P AB ,所以MN ∥平面P AB .(2)解 因为P A ⊥平面ABCD ,N 为PC 的中点,所以N 到平面ABCD 的距离为12P A .取BC 的中点E ,连接AE .由AB =AC =3得AE ⊥BC ,AE =AB 2-BE 2= 5.由AM ∥BC 得M 到BC 的距离为5,故S △BCM =12×4×5=2 5.所以四面体N-BCM 的体积V N-BCM =13×S △BCM ×P A 2=453.20.(1)证明 由题意知,F ⎝⎛⎭⎫12,0,设l 1:y =a ,l 2:y =b ,则ab ≠0,且A ⎝⎛⎭⎫a 22,a ,B ⎝⎛⎭⎫b22,b ,P ⎝⎛⎭⎫-12,a ,Q ⎝⎛⎭⎫-12,b ,R ⎝ ⎛⎭⎪⎫-12,a +b 2. 记过A ,B 两点的直线为l ,则l 的方程为2x -(a +b )y +ab =0. 由于F 在线段AB 上,故1+ab =0. 记AR 的斜率为k 1,FQ 的斜率为k 2,则 k 1=a -b 1+a 2=a -b a 2-ab =1a =-ab a =-b =b -0-12-12=k 2. 所以AR ∥FQ .(2)解 设过AB 的直线为l ,设l 与x 轴的交点为D (x 1,0),则S △ABF =12|b -a ||FD |=12|b -a |⎪⎪⎪⎪x 1-12,S △PQF =|a -b |2.由题意可得|b -a |⎪⎪⎪⎪x 1-12=|a -b |2,所以x 1=1,x 1=0(舍去),设满足条件的AB 的中点为E (x ,y ). 当AB 与x 轴不垂直时,由k AB =k DE 可得2a +b =yx -1(x ≠1).而a +b 2=y ,所以y 2=x -1(x ≠1).当AB 与x 轴垂直时,E 与D 重合,此时E 点坐标为(1,0)满足y 2=x -1. 所以,所求轨迹方程为y 2=x -1.21.(1)解 由题设,f (x )的定义域为(0,+∞),f ′(x )=1x -1,令f ′(x )=0解得x =1.当0<x <1时,f ′(x )>0,f (x )单调递增;当x >1时,f ′(x )<0,f (x )单调递减. (2)证明 由(1)知f (x )在x =1处取得最大值,最大值为f (1)=0. 所以当x ≠1时,ln x <x -1.故当x ∈(1,+∞)时,ln x <x -1,ln 1x <1x -1,即1<x -1ln x <x .(3)证明 由题设c >1,设g (x )=1+(c -1)x -c x , 则g ′(x )=c -1-c x ln c ,令g ′(x )=0.解得x 0=ln c -1ln cln c .当x <x 0时,g ′(x )>0,g (x )单调递增; 当x >x 0时,g ′(x )<0,g (x )单调递减.由(2)知1<c -1ln c <c ,故0<x 0<1.又g (0)=g (1)=0,故当0<x <1时,g (x )>0.所以当x ∈(0,1)时,1+(c -1)x >c x .22.解 (1)连接PB ,BC ,则∠BFD =∠PBA +∠BPD ,∠PCD =∠PCB +∠BCD .因为AP =BP ,所以∠PBA =∠PCB ,又∠BPD =∠BCD . 所以∠BFD =∠PCD .又∠PFB +∠BFD =180°,∠PFB =2∠PCD , 所以3∠PCD =180°, 因此∠PCD =60°.11 (2)证明 因为∠PCD =∠BFD ,所以∠EFD +∠PCD =180°,由此知C ,D ,F ,E 四点共圆,其圆心既在CE 的垂直平分线上,又在DF 的垂直平分线上,故G 就是过C ,D ,F ,E 四点的圆的圆心.所以G 在CD 的垂直平分线上.又O 也在CD 的垂直平分线上,因此OG ⊥CD .23.解 (1)C 1的普通方程为x 23+y 2=1.C 2的直角坐标方程为x +y -4=0. (2)由题意,可设点P 的直角坐标为(3cos α,sin α).因为C 2是直线,所以|PQ |的最小值即为P 到C 2的距离d (α)的最小值.d (α)=|3cos α+sin α-4|2=2⎪⎪⎪⎪sin ⎝⎛⎭⎫α+π3-2. 当且仅当α=2k π+π6(k ∈Z )时,d (α)取得最小值,最小值为2,此时P 的直角坐标为⎝⎛⎭⎫32,12. 24.解 (1)当a =2时,f (x )=|2x -2|+2.解不等式|2x -2|+2≤6得-1≤x ≤3.因此f (x )≤6的解集为{x |-1≤x ≤3}.(2)当x ∈R 时,f (x )+g (x )=|2x -a |+a +|1-2x |≥|2x -a +1-2x |+a =|1-a |+a .当x =12时等号成立, 所以当x ∈R 时,f (x )+g (x )≥3等价于|1-a |+a ≥3.当a ≤1时,①等价于1-a +a ≥3,无解.当a >1时,①等价于a -1+a ≥3,解得a ≥2.所以a 的取值范围是[2,+∞).。
2016浙江精彩题选——函数【一、选择填空题】1.(2016温州一模13).已知4()ln()f x x a x=+-,若对任意的R m ∈,均存在00x >使得0()f x m =,则实数a 的取值范围是 [4,)+∞ .分析:题目之意就是函数值域为R ,是一道一轮复习时的训练好题2.(2016浙江六校联考15).设a ,b ,c ∈R ,对任意满足1≤x 的实数x ,都有12≤++c bx ax ,则c b a ++的最大可能值为___3___.解法二:取极端情况,可知2()21f x x =-3. (2016金丽衢第二次联考)设f(x)=4x+l +a ·2x +b (a ,b ∈R ),若对于∀x ∈[0,1],|f(x)|≤12都 成立,则b= 172. 令2x t =,2()4g t t at b =++法一:2114221116222112162a b a b a b ⎧-≤++≤⎪⎪⎪-≤++≤⎨⎪⎪-≤-≤⎪⎩可行域只有一个点A法二:2211|4|||2448at b t at b t ++≤⇔++≤取特殊情况可得22213117()()3448288at b g t t t t t =++=--=-+,即1717,b ,482b == 法三:4.(2016绍兴期末8)对于函数()f x ,若存在0x Z ∈,满足01|()|4f x ≤,则称0x 为函数()f x 的一根“近零点”。
已知函数2()(0)f x ax bx c a =++>有四个不同的“近零点”,则a 的最大值为( D )A .2B .1C .12 D .14解:法一:取极端情况,离原点最近的四个整数:1(0)41(1)41(1)41(2)4f f f f ⎧=-⎪⎪⎪=-⎪⎨⎪-=⎪⎪⎪=⎩,2111()444f x x x =--法二:任取四个连续整数,则14(3)()(2)(1)|(3)||()||(2)||(1)|414a f m f m f m f m f m f m f m f m =++-+-+≤++++++≤⨯=5.(2016绍兴期末15)已知函数2|1|y x =-的图像与函数2(2)2y kx k x =-++的图像恰有两个不同的公共点,则实数k 的取值范围是 014k ork ork ≤=≥ 注:本题是函数与方程零点的极佳训练题。
2016 年普通高等学校招生全国统一考试理科数学一.选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的 .(1)设集合 S= S x P(x2)(x3)0 ,T x x 0,则 S I T=(A) [2 ,3](B) (-, 2]U [3,+)(C) [3,+ )(D) (0, 2] U[3,+ )(2)若 z=1+2i ,则4izz1(A)1(B)-1(C) i(D)-iuuv( 1uuuv(3,1),(3)已知向量BA, 2 ) , BC则 ABC=2222(A)30 0(B)450(C) 60 0(D)120 0(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为150C, B 点表示四月的平均最低气温约为50C。
下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上(B)七月的平均温差比一月的平均温差大(C)三月和十一月的平均最高气温基本相同(D)平均气温高于 200C 的月份有 5 个(5)若tan3,则 cos22sin 26444816(B)(C) 1(A)25(D)2525 431(6)已知a23, b44, c253,则(A )b a c( B)a b c (C) b c a (D) c a b(7)执行下图的程序框图,如果输入的a=4, b=6,那么输出的n=(A ) 3(B ) 4(C) 5(D ) 6(8)在 △ABC 中,B = πBC1cos A =,边上的高等于则43 BC ,( A )3 10( B )101010( C ) -10 ( D ) - 3 1010 10 (9) 如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A ) 18 36 5(B ) 54 18 5(C ) 90 (D ) 81(10) 在封闭的直三棱柱 ABC-A 1B 1C 1 内有一个体积为 V 的球,若AB BC , AB=6 ,BC=8, AA 1 =3,则 V 的最大值是(A ) 4π ( B )9( C ) 6π(D )3223x 2 y 2 1(a b 0) 的左焦点, A , B 分别为 C 的左,右顶点 .P 为(11)已知 O 为坐标原点, F 是椭圆 C :b 2 a 2C 上一点,且 PF ⊥ x 轴 .过点 A 的直线 l 与线段 PF 交于点 M ,与 y 轴交于点 E.若直线 BM 经过 OE 的中点,则C 的离心率为(A )1( B )1( C )2( D )33 2 3 4(12)定义 “规范 01 数列 ”{a n } 如下: { a n } 共有 2m 项,其中 m 项为 0,m 项为 1,且对任意 k 2m , a 1 , a 2, L , a k 中 0 的个数不少于 1 的个数 .若 m=4,则不同的“规范 01 数列”共有 (A ) 18 个( B ) 16 个(C ) 14 个(D ) 12 个二、填空题:本大题共 3 小题,每小题 5 分(13)若 x , y 满足约束条件 错误 ! 未找到引用源。
2016高考全国III 卷数学(1)设集合{0,2,4,6,8,10},{4,8}A B ==,则A B ð=(A){48},(B){026},,(C){02610},,,(D){0246810},,,,,(2)若43i z =+,则||z z =(A)1(B)1-(C)43+i 55(D)43i 55-(3)已知向量BA →=(12,2),BC →=(2,12),则∠ABC =(A)30°(B)45°(C)60°(D)120°(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15℃,B 点表示四月的平均最低气温约为5℃.下面叙述不正确的是(A)各月的平均最低气温都在0℃以上(B)七月的平均温差比一月的平均温差大(C)三月和十一月的平均最高气温基本相同(D)平均最高气温高于20℃的月份有5个(5)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是(A)815(B)18(C)115(D)130(6)若tanθ=13,则cos2θ=(A)45-(B)15-(C)15(D)45(7)已知4213332,3,25a b c===,则(A)b<a<c(B)a<b<c(C)b<c<a(D)c<a<b (8)执行右面的程序框图,如果输入的a=4,b=6,那么输出的n=(A)3(B)4(C)5(D)6(9)在ABC中,B=1,,sin43BC BC Aπ=边上的高等于则(A)310(B)1010(C)55(D)31010(10)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A)18+(B)54+(C)90(D)81(11)在封闭的直三棱柱ABC-A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是(A)4π(B)9π2(C)6π(D)32π3(12)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为(A)13(B)12(C)23(D)34(13)设x ,y 满足约束条件210,210,1,x y x y x -+≥⎧⎪--≤⎨⎪≤⎩则z =2x +3y –5的最小值为______.(14)函数y =sin x –cos x 的图像可由函数y =2sin x 的图像至少向右平移______个单位长度得到.(15)已知直线l:60x +=与圆x2+y2=12交于A、B 两点,过A、B 分别作l 的垂线与x 轴交于C、D 两点,则|CD|=.(16)已知f (x )为偶函数,当0x ≤时,1()x f x e x --=-,则曲线y =f (x )在点(1,2)处的切线方程式_____________________________.(17)(本小题满分12分)已知各项都为正数的数列{}n a 满足11a =,211(21)20n n n n a a a a ++---=.(I)求23,a a ;(II)求{}n a 的通项公式.(18)(本小题满分12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1–7分别对应年份2008–2014.(Ⅰ)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明;(Ⅱ)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:719.32i i y==∑,7140.17i i i t y ==∑0.55=,≈2.646.参考公式:()()n i i t t y y r --=∑回归方程y a bt =+中斜率和截距的最小二乘估计公式分别为:121()((n i i i n i i t t y y b tt ==--=-∑∑ ,=.a y bt - (19)(本小题满分12分)如图,四棱锥P-ABCD 中,PA⊥地面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M 为线段AD 上一点,AM=2MD,N 为PC 的中点.(I)证明MN∥平面PAB;(II)求四面体N-BCM的体积.(20)(本小题满分12分)已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(Ⅰ)若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ;(Ⅱ)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.(21)(本小题满分12分)设函数()ln 1f x x x =-+.(I)讨论()f x 的单调性;(II)证明当(1,)x ∈+∞时,11ln x x x-<<;(III)设1c >,证明当(0,1)x ∈时,1(1)x c x c +->.(22)(本小题满分10分)选修4—1:几何证明选讲如图,⊙O 中的中点为P ,弦PC ,PD 分别交AB 于E ,F 两点。
2016年普通高等学校招生全国统一考试理科数学一. 选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S= S x P(x 2)(x 3) 0 ,T x x 0 ,则S I T=(A) [2 ,3] (B) (- ,2] U [3,+ )(C) [3,+ )(D) (0,2] U [3,+ )(2)若z=1+2i ,则 4izz1(A)1 (B) -1 (C) i (D)-i(3)已知向量u uvBA1 2( , )2 2,u u u vBC3 1( , ),2 2则ABC=(A)30 0(B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为150C,B 点表示四月的平均最低气温约为50C。
下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同(D) 平均气温高于200C 的月份有 5 个(5)若tan 34,则 2cos 2sin 2(A) 6425(B)4825(C) 1 (D)16254 3 1(6)已知 3a 2 ,4b 4 ,3c 25 ,则(A )b a c (B)a b c(C)b c a(D)c a b(7)执行下图的程序框图,如果输入的a=4,b=6,那么输出的n=(A )3(B)4(C)5(D)61(8)在△ABC 中,πB = ,BC 边上的高等于4 13BC ,则cos A =(A)31010(B)1010(C)10- (D)10-3 1010(9) 如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18 36 5(B)54 18 5(C)90(D)81(10) 在封闭的直三棱柱ABC -A1B1C1 内有一个体积为V 的球,若AB BC,AB=6,BC=8,AA 1=3,则V 的最大值是(A )4π(B)92 ( C )6π(D)32 3(11)已知O 为坐标原点, F 是椭圆C:2 2x y2 2 1(a b 0)a b的左焦点,A,B 分别为 C 的左,右顶点.P 为C 上一点,且PF⊥x 轴.过点A 的直线l 与线段PF 交于点M,与y 轴交于点 E.若直线BM 经过OE 的中点,则C 的离心率为(A )13(B)12(C)23(D)34(12)定义“规范01 数列”{a n} 如下:{a n} 共有2m 项,其中m 项为0,m 项为1,且对任意k 2m,a a a 1, 2, , k中0 的个数不少于 1 的个数.若m=4,则不同的“规范01 数列”共有(A )18 个(B)16 个(C)14 个(D)12 个二、填空题:本大题共 3 小题,每小题 5 分(13)若x,y 满足约束条件错误!未找到引用源。
2016年重庆市高考数学三模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.设全集U=R,集合M={x|y=},N={y|y=3﹣2x},则图中阴影部分表示的集合是()A.{x|<x≤3} B.{x|<x<3}C.{x|≤x<2}D.{x|<x<2}2.已知复数z=1+,则1+z+z2+…+z2016为()A.1+i B.1﹣i C.i D.13.(1﹣3x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,求|a0|+|a1|+|a2|+|a3|+|a4|+|a5|=()A.1024 B.243 C.32 D.244.若某程序框图如图所示,则输出的n的值是()A.43 B.44 C.45 D.465.给出下列四个结论:①“若am2<bm2,则a<b”的逆命题是真命题;②若x,y∈R,则“x≥2或y≥2”是“x2+y2≥4”的充分不必要条件;③函数y=log a(x+1)+1(a>0且a≠0)的图象必过点(0,1);④已知ξ服从正态分布N(0,σ2),且P(﹣2≤ξ≤0)=0.4,则P(ξ>2)=0.2.其中正确的结论是()A.①②B.①③C.②③D.③④6.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则其侧视图的面积是()A.B.C.1 D.7.已知实数x,y满足:,z=|2x﹣2y﹣1|,则z的取值范围是()A.[,5]B.[0,5]C.[0,5)D.[,5)8.某中学学生社团活动迅猛发展,高一新生中的五名同学打算参加“清净了文学社”、“科技社”、“十年国学社”、“围棋苑”四个社团.若每个社团至少有一名同学参加,每名同学至少参加一个社团且只能参加一个社团,且同学甲不参加“围棋苑”,则不同的参加方法的种数为()A.72 B.108 C.180 D.2169.若sin2α=,sin(β﹣α)=,且α∈[,π],β∈[π,],则α+β的值是()A. B. C.或D.或10.设直线x=t与函数f(x)=x2,g(x)=lnx的图象分别交于点M,N,则当|MN|达到最小时t的值为()A.1 B.C.D.11.已知双曲线的左右焦点分别为F1,F2,点O为坐标原点,点P在双曲线右支上,△PF1F2内切圆的圆心为Q,圆Q与x轴相切于点A,过F2作直线PQ的垂线,垂足为B,则|OA|与|OB|的长度依次为()A.a,a B.a,C.D.12.设D是函数y=f(x)定义域内的一个区间,若存在x0∈D,使f(x0)=﹣x0,则称x0是f(x)的一个“次不动点”,也称f(x)在区间D上存在次不动点.若函数f(x)=ax2﹣3x﹣a+在区间[1,4]上存在次不动点,则实数a的取值范围是()A.(﹣∞,0)B.(0,)C.[,+∞)D.(﹣∞,]二、填空题:本大题共4小题,每小题5分,共20分.把答案填写在答题线上.13.已知向量⊥,||=3,则•=.14.设等差数列{a n}的前n项和为S n,若,则=.15.从某居民区随机抽取10个家庭,获得第i个家庭的月收入x i(单位:千元)与月储蓄y i(单位:千元)的数据资料,算得=80,y i=20,x i y i=184,=720.家庭的月储蓄y对月收入x的线性回归方程为y=bx+a,若该居民区某家庭的月储蓄为2千元,预测该家庭的月收入为千元.(附:线性回归方程y=bx+a中,b=,a=﹣b)16.已知P点为圆O1与圆O2公共点,圆O1:(x﹣a)2+(y﹣b)2=b2+1,圆O2:(x﹣c)2+(y﹣d)2=d2+1,若ac=8,=,则点P与直线l:3x﹣4y﹣25=0上任意一点M之间的距离的最小值为.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.在△ABC中,角A,B,C的对边分别为a,b,c,已知=,A+3C=B,(1)求cosC的值;(2)若b=3,求△ABC的面积.18.市积极倡导学生参与绿色环保活动,其中代号为“环保卫士﹣﹣12369”的绿色环保活动小组对2014年1月﹣2014年12月(一月)内空气质量指数API进行监测,如表是在这一100为t)的关系为:,在这一年内随机抽取一天,估计该天经济损失P∈若本次抽取的样本数据有30天是在供暖季节,其中有8天为重度污染,完成2参考公式:.19.在四棱锥P﹣ABCD中,AD⊥平面PDC,PD⊥DC,底面ABCD是梯形,AB∥DC,AB=AD=PD=1,CD=2(1)求证:平面PBC⊥平面PBD;(2)设Q为棱PC上一点,=λ,试确定λ的值使得二面角Q﹣BD﹣P为60°.20.在平面直角坐标系xOy中,已知椭圆C: +=1(a>b>0)的离心率e=,直线l:x﹣my﹣1=0(m∈R)过椭圆C的右焦点F,且交椭圆C于A,B两点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)过点A作垂直于y轴的直线l1,设直线l1与定直线l2:x=4交于点P,试探索当m变化时,直线BP是否过定点?21.已知函数f(x)=e x,g(x)=mx+n.(1)设h(x)=f(x)﹣g(x).①若函数h(x)在x=0处的切线过点(1,0),求m+n的值;②当n=0时,若函数h(x)在(﹣1,+∞)上没有零点,求m的取值范围;(2)设函数r(x)=+,且n=4m(m>0),求证:当x≥0时,r(x)≥1.[选修4-1:几何证明选讲]22.如图,AB是⊙O的直径,C,F为⊙O上的点,CA是∠BAF的角平分线,过点C作CD⊥AF交AF的延长线于D点,CM⊥AB,垂足为点M.(1)求证:DC是⊙O的切线;(2)求证:AM•MB=DF•DA.[选修4-4:坐标系与参数方程]23.在直角坐标系xoy中,直线l的参数方程为(t为参数).在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C 的方程为ρsin2θ=4cosθ.(Ⅰ)求曲线C的直角坐标方程;(Ⅱ)设曲线C与直线l交于点A、B,若点P的坐标为(1,1),求|PA|+|PB|的值.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣4|+|x+5|.(Ⅰ)试求使等式f(x)=|2x+1|成立的x的取值范围;(Ⅱ)若关于x的不等式f(x)<a的解集不是空集,求实数a的取值范围.2016年重庆市高考数学三模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.设全集U=R,集合M={x|y=},N={y|y=3﹣2x},则图中阴影部分表示的集合是()A.{x|<x≤3} B.{x|<x<3}C.{x|≤x<2}D.{x|<x<2}【考点】Venn图表达集合的关系及运算.【分析】首先化简集合A和B,然后根据V enn图求出结果.【解答】解:∵M={x|y=}={x|x≤}N={y|y=3﹣2x}={y|y<3}图中的阴影部分表示集合N去掉集合M∴图中阴影部分表示的集合{x|<x<3}故选:B.2.已知复数z=1+,则1+z+z2+…+z2016为()A.1+i B.1﹣i C.i D.1【考点】复数代数形式的混合运算.【分析】化简复数,然后利用复数单位的幂运算求解即可.【解答】解:复数z=1+=1+=i.1+z+z2+…+z2016=1+i+i2+…+i2016=1.故选:D.3.(1﹣3x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,求|a0|+|a1|+|a2|+|a3|+|a4|+|a5|=()A.1024 B.243 C.32 D.24【考点】二项式系数的性质.【分析】由于|a0|+|a1|+|a2|+|a3|+|a4|+|a5|正好等于(1+3x)5的各项系数和,故在(1+3x)5的展开式中,令x=1,即可求得|a0|+|a1|+|a2|+|a3|+|a4|+|a5|的值.【解答】解:由题意(1﹣3x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5可得,|a0|+|a1|+|a2|+|a3|+|a4|+|a5|正好等于(1+3x)5的各项系数和,故在(1+3x)5的展开式中,令x=1可得|a0|+|a1|+|a2|+|a3|+|a4|+|a5|=45=1024,故选:A.4.若某程序框图如图所示,则输出的n的值是()A.43 B.44 C.45 D.46【考点】程序框图.【分析】框图首先给循环变量n赋值1,给累加变量p赋值1,然后执行运算n=n+1,p=p+2n ﹣1,然后判断p>2016是否成立,不成立循环执行n=n+1,p=p+2n﹣1,成立时算法结束,输出n的值.且由框图可知,程序执行的是求等差数列的前n项和问题.当前n项和大于2016时,输出n的值.【解答】解:框图首先给循环变量n赋值1,给累加变量p赋值1,执行n=1+1=2,p=1+(2×2﹣1)=1+3=4;判断4>2016不成立,执行n=2+1=3,p=1+3+(2×3﹣1)=1+3+5=9;判断9>2016不成立,执行n=3+1=4,p=1+3+5+(2×4﹣1)=1+3+5+7=16;…由上可知,程序运行的是求首项为1,公差为2的等差数列的前n项和,由p=>2016,且n∈N*,得n=45.故选:C.5.给出下列四个结论:①“若am2<bm2,则a<b”的逆命题是真命题;②若x,y∈R,则“x≥2或y≥2”是“x2+y2≥4”的充分不必要条件;③函数y=log a(x+1)+1(a>0且a≠0)的图象必过点(0,1);④已知ξ服从正态分布N(0,σ2),且P(﹣2≤ξ≤0)=0.4,则P(ξ>2)=0.2.其中正确的结论是()A.①②B.①③C.②③D.③④【考点】命题的真假判断与应用.【分析】逐一分析四个结论的真假,综合讨论结果,可得答案.【解答】解:①“若am2<bm2,则a<b”的逆命题是“若a<b,则am2<bm2”,当m=0时不成立,故为假命题,故错误;②若x,y∈R,当“x≥2或y≥2”时,“x2+y2≥4”成立,当“x2+y2≥4”时,“x≥2或y≥2”不一定成立,故“x≥2或y≥2”是“x2+y2≥4”的充分不必要条件,故正确;③当x=0时,y=log a(x+1)+1=1恒成立,故函数y=log a(x+1)+1(a>0且a≠0)的图象必过点(0,1),故正确;④已知ξ服从正态分布N(0,σ2),且P(﹣2≤ξ≤0)=0.4,则P(ξ>2)=0.1,故错误;故选:C6.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则其侧视图的面积是()A.B.C.1 D.【考点】由三视图求面积、体积.【分析】由三视图知几何体的直观图是半个圆锥,再根据其中正视图是腰长为2的等腰三角形,我们易得圆锥的底面直径为2,母线为为2,故圆锥的底面半径为1,高为,进而可得其侧视图的面积.【解答】解:由三视图知几何体的直观图是半个圆锥,又∵正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,∴半圆锥的底面半径为1,高为,即半圆锥的侧视图是一个两直角边长分别为1和的直角三角形,故侧视图的面积是,故选:B.7.已知实数x,y满足:,z=|2x﹣2y﹣1|,则z的取值范围是()A.[,5]B.[0,5]C.[0,5)D.[,5)【考点】简单线性规划.【分析】由约束条件作出可行域如图,令u=2x﹣2y﹣1,由线性规划知识求出u的最值,取绝对值求得z=|u|的取值范围.【解答】解:由约束条件作可行域如图,联立,解得,∴A(2,﹣1),联立,解得,∴.令u=2x﹣2y﹣1,则,由图可知,当经过点A(2,﹣1)时,直线在y轴上的截距最小,u最大,最大值为u=2×2﹣2×(﹣1)﹣1=5;当经过点时,直线在y轴上的截距最大,u最小,最小值为u=.∴,∴z=|u|∈[0,5).故选:C.8.某中学学生社团活动迅猛发展,高一新生中的五名同学打算参加“清净了文学社”、“科技社”、“十年国学社”、“围棋苑”四个社团.若每个社团至少有一名同学参加,每名同学至少参加一个社团且只能参加一个社团,且同学甲不参加“围棋苑”,则不同的参加方法的种数为()A.72 B.108 C.180 D.216【考点】计数原理的应用.【分析】根据题意,分析可得,必有2人参加同一个社团,分2步讨论,首先分析甲,因为甲不参加“围棋苑”,则其有3种情况,再分析其他4人,此时分甲单独参加一个社团与甲与另外1人参加同一个社团,2种情况讨论,由加法原理,可得第二步的情况数目,进而由乘法原理,计算可得答案.【解答】解:根据题意,分析可得,必有2人参加同一个社团,首先分析甲,甲不参加“围棋苑”,则其有3种情况,再分析其他4人,若甲与另外1人参加同一个社团,则有A44=24种情况,若甲是1个人参加一个社团,则有C42•A33=36种情况,则除甲外的4人有24+36=60种情况;故不同的参加方法的种数为3×60=180种;故选C.9.若sin2α=,sin(β﹣α)=,且α∈[,π],β∈[π,],则α+β的值是()A. B. C.或D.或【考点】两角和与差的正弦函数;二倍角的正弦.【分析】依题意,可求得α∈[,],2α∈[,π],进一步可知β﹣α∈[,π],于是可求得cos(β﹣α)与cos2α的值,再利用两角和的余弦及余弦函数的单调性即可求得答案.【解答】解:∵α∈[,π],β∈[π,],∴2α∈[,2π],又sin2α=>0,∴2α∈[,π],cos2α=﹣=﹣;又sin(β﹣α)=,β﹣α∈[,π],∴cos(β﹣α)=﹣=﹣,∴cos(α+β)=cos[2α+(β﹣α)]=cos2αcos(β﹣α)﹣sin2αsin(β﹣α)=﹣×(﹣)﹣×=.又α∈[,],β∈[π,],∴(α+β)∈[,2π],∴α+β=,故选:A.10.设直线x=t与函数f(x)=x2,g(x)=lnx的图象分别交于点M,N,则当|MN|达到最小时t的值为()A.1 B.C.D.【考点】导数在最大值、最小值问题中的应用.【分析】将两个函数作差,得到函数y=f(x)﹣g(x),再求此函数的最小值对应的自变量x的值.【解答】解:设函数y=f(x)﹣g(x)=x2﹣lnx,求导数得=当时,y′<0,函数在上为单调减函数,当时,y′>0,函数在上为单调增函数所以当时,所设函数的最小值为所求t的值为故选D11.已知双曲线的左右焦点分别为F1,F2,点O为坐标原点,点P在双曲线右支上,△PF1F2内切圆的圆心为Q,圆Q与x轴相切于点A,过F2作直线PQ的垂线,垂足为B,则|OA|与|OB|的长度依次为()A.a,a B.a,C.D.【考点】双曲线的简单性质.【分析】利用切线长定理,结合双曲线的定义,把|PF1|﹣|PF2|=2a,转化为|AF1|﹣|AF2|=2a,从而求得点A的横坐标.再在三角形PCF2中,由题意得,它是一个等腰三角形,从而在△F1CF2中,利用中位线定理得出OB,从而解决问题.【解答】解:根据题意得F1(﹣c,0),F2(c,0),设△PF1F2的内切圆分别与PF1,PF2切于点A1,B1,与F1F2切于点A,则|PA1|=|PB1|,|F1A1|=|F1A|,|F2B1|=|F2A|,又点P在双曲线右支上,∴|PF1|﹣|PF2|=2a,∴|F1A|﹣|F2A|=2a,而|F1A|+|F2A|=2c,设A点坐标为(x,0),则由|F1A|﹣|F2A|=2a,得(x+c)﹣(c﹣x)=2a,解得x=a,∵|OA|=a,∴在△F1CF2中,OB=CF1=(PF1﹣PC)=(PF1﹣PF2)==a,∴|OA|与|OB|的长度依次为a,a.故选:A.12.设D是函数y=f(x)定义域内的一个区间,若存在x0∈D,使f(x0)=﹣x0,则称x0是f(x)的一个“次不动点”,也称f(x)在区间D上存在次不动点.若函数f(x)=ax2﹣3x﹣a+在区间[1,4]上存在次不动点,则实数a的取值范围是()A.(﹣∞,0)B.(0,)C.[,+∞)D.(﹣∞,]【考点】二次函数的性质.【分析】根据“f(x)在区间D上有次不动点”当且仅当“F(x)=f(x)+x在区间D上有零点”,依题意,存在x∈[1,4],使F(x)=f(x)+x=ax2﹣2x﹣a+=0,讨论将a分离出来,利用导数研究出等式另一侧函数的取值范围即可求出a的范围.【解答】解:依题意,存在x∈[1,4],使F(x)=f(x)+x=ax2﹣2x﹣a+=0,当x=1时,使F(1)=≠0;当x≠1时,解得a=,∴a′==0,得x=2或x=,(<1,舍去),∴当x=2时,a最大==,所以常数a的取值范围是(﹣∞,],故选:D.二、填空题:本大题共4小题,每小题5分,共20分.把答案填写在答题线上.13.已知向量⊥,||=3,则•=9.【考点】平面向量数量积的运算.【分析】由已知结合平面向量是数量积运算求得答案.【解答】解:由⊥,得•=0,即•()=0,∵||=3,∴.故答案为:9.14.设等差数列{a n}的前n项和为S n,若,则=9.【考点】等差数列的性质;定积分的简单应用.【分析】先利用定积分求得,再根据等差数列的等差中项的性质可知S9=9a5,S5=5a3,根据a5=5a3,进而可得则的值.【解答】解:∵=(x2+x)|02=5,∵{a n}为等差数列,S9=a1+a2+…+a9=9a5,S5=a1+a2+…+a5=5a3,∴故答案为9.15.从某居民区随机抽取10个家庭,获得第i个家庭的月收入x i(单位:千元)与月储蓄y i(单位:千元)的数据资料,算得=80,y i=20,x i y i=184,=720.家庭的月储蓄y对月收入x的线性回归方程为y=bx+a,若该居民区某家庭的月储蓄为2千元,预测该家庭的月收入为8千元.(附:线性回归方程y=bx+a中,b=,a=﹣b)【考点】线性回归方程.【分析】利用已知条件求出,样本中心坐标,利用参考公式求出b,a,然后求出线性回归方程y=bx+a,通过x=2,利用回归直线方程,推测该家庭的月储蓄.【解答】解:(1)由题意知,n=10,==8,=y i=2,b===0.3,a=﹣b=2﹣0.3×8=﹣0.4,∴线性回归方程为y=0.3x﹣0.4,当y=2时,x=8,故答案为:8.16.已知P点为圆O1与圆O2公共点,圆O1:(x﹣a)2+(y﹣b)2=b2+1,圆O2:(x﹣c)2+(y﹣d)2=d2+1,若ac=8,=,则点P与直线l:3x﹣4y﹣25=0上任意一点M之间的距离的最小值为2.【考点】直线与圆的位置关系.【分析】把两个圆的方程相减与圆O1联立可得x2+y2=9,令4y﹣3x=t,则y=,代入可得25x2+6tx+t2﹣144=0,由△≥0,可得﹣15≤t≤15,再利用P到直线l的距离为=,即可求出点P与直线l上任意一点M之间的距离的最小值.【解答】解:∵ac=8,=,∴=,故两圆的圆心O1(a,b)、圆心O2(c,d)、原点O三点共线,不妨设==k,则c=,b=ka,d=kc=.把圆O1:(x﹣a)2+(y﹣b)2=b2+1,圆O2:(x﹣c)2+(y﹣d)2=d2+1相减,可得公共弦的方程为(2c﹣2a)x+(2d﹣2b)y=c2﹣a2,即(﹣2a)x+(﹣2•ka)y=﹣a2,即2(﹣a)x+2k(﹣a)y=(+a)(﹣a),当a≠±2时,﹣a≠0,公共弦的方程为:2x+2ky=+a,即:2ax+2kay=a2+8,即:2ax+2by=a2+8.O1:(x﹣a)2+(y﹣b)2=b2+1,即x2+y2=2ax+2by﹣a2+1,再把公共弦的方程代入圆O1的方程可得x2+y2=9 ①.令4y﹣3x=t,代入①可得25x2+6tx+t2﹣144=0.再根据此方程的判别式△=36t2﹣100(t2﹣144)≥0,求得﹣15≤t≤15.点P到直线l:3x﹣4y﹣25=0的距离为==,故当4y﹣3x=t=﹣15时,点P到直线l:3x﹣4y﹣25=0的距离取得最小值为2.当a=±2时,由条件可得a=c,b=d,此时,两圆重合,不合题意.故答案为:2.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.在△ABC中,角A,B,C的对边分别为a,b,c,已知=,A+3C=B,(1)求cosC的值;(2)若b=3,求△ABC的面积.【考点】余弦定理;正弦定理.【分析】(1)把A+3C=B代入A+B+C=π得B=+C,可得sinB=cosC>0,由条件和正弦定理化简后,利用平方关系求出cosC的值;(2)由条件求出边c的值,由(1)和平方关系求出cosB和sinC的值,利用两角和的正弦公式求出sinA的值,代入三角形的面积公式求解即可.【解答】解:(1)由题意得A+3C=B,则A=B﹣3C,代入A+B+C=π得,B=+C,所以sinB=cosC>0,∵,∴由正弦定理得,,则,①又sin2C+cos2C=1,②由①②得,cos2C=,则cosC=;(2)∵,b=3,∴c=,由(1)知sinB=cosC=,且B=+C,∴cosB=﹣=﹣,同理可得sinC=,则sinA=sin(B+C)=sinBcosC+cosBsinC=×+(﹣)×=∴△ABC的面积S===.18.市积极倡导学生参与绿色环保活动,其中代号为“环保卫士﹣﹣12369”的绿色环保活动小组对2014年1月﹣2014年12月(一月)内空气质量指数API进行监测,如表是在这一100(Ⅰ)若市某企业每天由空气污染造成的经济损失(单位:元)与空气质量指数(记为t)的关系为:,在这一年内随机抽取一天,估计该天经济损失P∈若本次抽取的样本数据有30天是在供暖季节,其中有8天为重度污染,完成2参考公式:.【考点】独立性检验.【分析】(Ⅰ)由200<4t﹣400≤600,得150<t≤250,频数为39,即可求出概率;(Ⅱ)根据所给的数据,列出列联表,根据所给的观测值的公式,代入数据做出观测值,同临界值进行比较,即可得出结论.【解答】解:(Ⅰ)设“在本年内随机抽取一天,该天经济损失P∈=….K2的观测值K2=≈4.575>3.841…所以有95%的把握认为A市本年度空气重度污染与供暖有关.…19.在四棱锥P﹣ABCD中,AD⊥平面PDC,PD⊥DC,底面ABCD是梯形,AB∥DC,AB=AD=PD=1,CD=2(1)求证:平面PBC⊥平面PBD;(2)设Q为棱PC上一点,=λ,试确定λ的值使得二面角Q﹣BD﹣P为60°.【考点】二面角的平面角及求法;平面与平面垂直的判定.【分析】(1)在梯形ABCD中,过点作B作BH⊥CD于H,通过面面垂直的判定定理即得结论;(2)过点Q作QM∥BC交PB于点M,过点M作MN⊥BD于点N,连QN.则∠QNM是二面角Q﹣BD﹣P的平面角,在Rt三角形MNQ中利用tan∠MNQ=计算即可.【解答】(1)证明:∵AD⊥平面PDC,PD⊂平面PCD,DC⊂平面PDC,图1所示.∴AD⊥PD,AD⊥DC,在梯形ABCD中,过点作B作BH⊥CD于H,在△BCH中,BH=CH=1,∴∠BCH=45°,又在△DAB中,AD=AB=1,∴∠ADB=45°,∴∠BDC=45°,∴∠DBC=90°,∴BC⊥BD.∵PD⊥AD,PD⊥DC,AD∩DC=D.AD⊂平面ABCD,DC⊂平面ABCD,∴PD⊥平面ABCD,∵BC⊂平面ABCD,∴PD⊥BC,∵BD∩PD=D,BD⊂平面PBD,PD⊂平面PBD.∴BC⊥平面PBD,∵BC⊂平面PBC,∴平面PBC⊥平面PBD;(2)解:过点Q作QM∥BC交PB于点M,过点M作MN⊥BD于点N,连QN.由(1)可知BC⊥平面PDB,∴QM⊥平面PDB,∴QM⊥BD,∵QM∩MN=M,∴BD⊥平面MNQ,∴BD⊥QN,图2所示.∴∠QNM是二面角Q﹣BD﹣P的平面角,∴∠QNM=60°,∵,∴,∵QM∥BC,∴,∴QM=λBC,由(1)知,∴,又∵PD=1,MN∥PD,∴,∴MN===1﹣λ,∵tan∠MNQ=,∴,∴.20.在平面直角坐标系xOy中,已知椭圆C: +=1(a>b>0)的离心率e=,直线l:x﹣my﹣1=0(m∈R)过椭圆C的右焦点F,且交椭圆C于A,B两点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)过点A作垂直于y轴的直线l1,设直线l1与定直线l2:x=4交于点P,试探索当m变化时,直线BP是否过定点?【考点】椭圆的简单性质.【分析】(Ⅰ)由椭圆C: +=1(a>b>0)的离心率e=,直线l:x﹣my﹣1=0(m ∈R)过椭圆C的右焦点F,列出方程组,求出a,b,由此能求出椭圆C的标准方程.(Ⅱ)令m=0,则A(1,),B(1,﹣)或A(1,﹣),B(1,),从而得到满足题意的定点只能是(,0),设为D点,再证明P、B、D三点共线.由此得到BP恒过定点(,0).【解答】解:(Ⅰ)∵椭圆C: +=1(a>b>0)的离心率e=,直线l:x﹣my﹣1=0(m∈R)过椭圆C的右焦点F,∴由题设,得,解得a=2,c=1,∴b2=a2﹣c2=3,∴椭圆C的标准方程为=1.(Ⅱ)令m=0,则A(1,),B(1,﹣)或A(1,﹣),B(1,),当A(1,),B(1,﹣)时,P(4,),直线BP:y=x﹣,当A(1,﹣),B(1,)时,P(4,﹣),直线BP:y=﹣x+,∴满足题意的定点只能是(,0),设为D点,下面证明P、B、D三点共线.设A(x1,y1),B(x2,y2),∵PA垂直于y轴,∴点P的纵坐标为y1,从而只要证明P(4,y1)在直线BD上,由,得(4+3m2)y2+6my﹣9=0,∵△=144(1+m2)>0,∴,,①∵k DB﹣k DP=﹣=﹣==,①式代入上式,得k DB﹣k DP=0,∴k DB=k DP,∴点P(4,y1)恒在直线BD上,从而P、B、D三点共线,即BP恒过定点(,0).21.已知函数f(x)=e x,g(x)=mx+n.(1)设h(x)=f(x)﹣g(x).①若函数h(x)在x=0处的切线过点(1,0),求m+n的值;②当n=0时,若函数h(x)在(﹣1,+∞)上没有零点,求m的取值范围;(2)设函数r(x)=+,且n=4m(m>0),求证:当x≥0时,r(x)≥1.【考点】利用导数研究曲线上某点切线方程.【分析】(1)求出函数的导数,利用导数的几何意义即可得到结论.(2)求出r(x)的表达式,求函数的导数,利用导数研究函数的单调性即可.【解答】解:(1)①h(x)=f(x)﹣g(x)=e x﹣mx﹣n.则h(0)=1﹣n,函数的导数f′(x)=e x﹣m,则f′(0)=1﹣m,则函数在x=0处的切线方程为y﹣(1﹣n)=(1﹣m)x,∵切线过点(1,0),∴﹣(1﹣n)=1﹣m,即m+n=2.②当n=0时,h(x)=f(x)﹣g(x)=e x﹣mx.若函数h(x)在(﹣1,+∞)上没有零点,即e x ﹣mx=0在(﹣1,+∞)上无解, 若x=0,则方程无解,满足条件,若x ≠0,则方程等价为m=,设g (x )=,则函数的导数g ′(x )=,若﹣1<x <0,则g ′(x )<0,此时函数单调递减,则g (x )<g (﹣1)=﹣e ﹣1, 若x >0,由g ′(x )>0得x >1,由g ′(x )<0,得0<x <1,即当x=1时,函数取得极小值,同时也是最小值,此时g (x )≥g (1)=e ,综上g (x )≥e 或g (x )<﹣e ﹣1,若方程m=无解,则﹣e ﹣1≤m <e .(2)∵n=4m (m >0),∴函数r (x )=+=+=+,则函数的导数r ′(x )=﹣+=,设h (x )=16e x ﹣(x +4)2,则h ′(x )=16e x ﹣2(x +4)=16e x ﹣2x ﹣8, [h ′(x )]′=16e x ﹣2,当x ≥0时,[h ′(x )]′=16e x ﹣2>0,则h ′(x )为增函数,即h ′(x )>h ′(0)=16﹣8=8>0,即h (x )为增函数,∴h (x )≥h (0)=16﹣16=0, 即r ′(x )≥0,即函数r (x )在[0,+∞)上单调递增,故r (x )≥r (0)=,故当x ≥0时,r (x )≥1成立.[选修4-1:几何证明选讲]22.如图,AB是⊙O的直径,C,F为⊙O上的点,CA是∠BAF的角平分线,过点C作CD⊥AF交AF的延长线于D点,CM⊥AB,垂足为点M.(1)求证:DC是⊙O的切线;(2)求证:AM•MB=DF•DA.【考点】与圆有关的比例线段;圆的切线的判定定理的证明;圆的切线的性质定理的证明.【分析】(1)证明DC是⊙O的切线,就是要证明CD⊥OC,根据CD⊥AF,我们只要证明OC∥AD;(2)首先,我们可以利用射影定理得到CM2=AM•MB,再利用切割线定理得到DC2=DF•DA,根据证明的结论,只要证明DC=CM.【解答】证明:(1)连接OC,∵OA=OC∴∠OAC=∠OCA,∵CA是∠BAF的角平分线,∴∠OAC=∠FAC∴∠FAC=∠OCA,∴OC∥AD.…∵CD⊥AF,∴CD⊥OC,即DC是⊙O的切线.…(2)连接BC,在Rt△ACB中,CM⊥AB,∴CM2=AM•MB.又∵DC是⊙O的切线,∴DC2=DF•DA.∵∠MAC=∠DAC,∠D=∠AMC,AC=AC∴△AMC≌△ADC,∴DC=CM,∴AM•MB=DF•DA…[选修4-4:坐标系与参数方程]23.在直角坐标系xoy中,直线l的参数方程为(t为参数).在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C 的方程为ρsin2θ=4cosθ.(Ⅰ)求曲线C的直角坐标方程;(Ⅱ)设曲线C与直线l交于点A、B,若点P的坐标为(1,1),求|PA|+|PB|的值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(Ⅰ)曲线C的方程为ρsin2θ=4cosθ,即ρ2sin2θ=4ρcosθ.把代入上述方程即可化为直角坐标方程.(Ⅱ)直线l经过点P(1,1)(t=0时),把直线l的参数方程代入抛物线方程可得:t2+6t﹣6=0,利用|PA|+|PB|=|t1|+|t2|=|t1﹣t2|=即可得出.【解答】解:(Ⅰ)曲线C的方程为ρsin2θ=4cosθ,即ρ2sin2θ=4ρcosθ.化为直角坐标方程:y2=4x.(Ⅱ)直线l经过点P(1,1)(t=0时),把直线l的参数方程(t为参数),代入抛物线方程可得:t2+6t﹣6=0,∴|PA|+|PB|=|t1|+|t2|=|t1﹣t2|==4.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣4|+|x+5|.(Ⅰ)试求使等式f(x)=|2x+1|成立的x的取值范围;(Ⅱ)若关于x的不等式f(x)<a的解集不是空集,求实数a的取值范围.【考点】绝对值不等式的解法.【分析】(Ⅰ)f(x)=|x﹣4|+|x+5|和f(x)=|2x+1|,根据绝对值不等式,对|x﹣4|+|x+5|放缩,注意等号成立的条件,(Ⅱ)把关于x的不等式f(x)<a的解集不是空集,转化为关于x的不等式f(x)<a的解集非空,求函数f(x)的最小值.【解答】解:(Ⅰ)因为f(x)=|x﹣4|+|x+5|≥|(x﹣4)+(x+5)|=|2x+1|,当且仅当(x﹣4)(x+5)≥0,即x≤﹣5或x≥4时取等号.所以若f(x)=|2x+1|成立,则x的取值范围是(﹣∞,﹣5]∪[4,+∞).(Ⅱ)因为f(x)=|x﹣4|+|x+5|≥|(x﹣4)﹣(x+5)|=9,所以若关于x的不等式f(x)<a的解集非空,则a>f(x)min=9,即a的取值范围是(9,+∞).2016年7月29日。
2016年普通高等学校招生全国统一考试理科数学一. 选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S= S x P(x 2)(x 3) 0 ,T x x 0 ,则S I T=(A) [2 ,3] (B) (- ,2] U [3,+ )(C) [3,+ )(D) (0,2] U [3,+ )(2)若z=1+2i ,则 4izz1(A)1 (B) -1 (C) i (D)-i(3)已知向量u uvBA1 2( , )2 2,u u u vBC3 1( , ),2 2则ABC=(A)30 0(B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为150C,B 点表示四月的平均最低气温约为50C。
下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同(D) 平均气温高于200C 的月份有 5 个(5)若tan 34,则 2cos 2sin 2(A) 6425(B)4825(C) 1 (D)16254 3 1(6)已知 3a 2 ,4b 4 ,3c 25 ,则(A )b a c (B)a b c(C)b c a(D)c a b(7)执行下图的程序框图,如果输入的a=4,b=6,那么输出的n=(A )3(B)4(C)5(D)61(8)在△ABC 中,πB = ,BC 边上的高等于4 13BC ,则cos A =(A)31010(B)1010(C)10- (D)10-3 1010(9) 如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18 36 5(B)54 18 5(C)90(D)81(10) 在封闭的直三棱柱ABC -A1B1C1 内有一个体积为V 的球,若AB BC,AB=6,BC=8,AA 1=3,则V 的最大值是(A )4π(B)92 ( C )6π(D)32 3(11)已知O 为坐标原点, F 是椭圆C:2 2x y2 2 1(a b 0)a b的左焦点,A,B 分别为 C 的左,右顶点.P 为C 上一点,且PF⊥x 轴.过点A 的直线l 与线段PF 交于点M,与y 轴交于点 E.若直线BM 经过OE 的中点,则C 的离心率为(A )13(B)12(C)23(D)34(12)定义“规范01 数列”{a n} 如下:{a n} 共有2m 项,其中m 项为0,m 项为1,且对任意k 2m,a a a 1, 2, , k中0 的个数不少于 1 的个数.若m=4,则不同的“规范01 数列”共有(A )18 个(B)16 个(C)14 个(D)12 个二、填空题:本大题共 3 小题,每小题 5 分(13)若x,y 满足约束条件错误!未找到引用源。
2016年山西省高考数学三模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={x|1<x2≤5x},B={x|﹣2<x<2},则A∪B=()A.(1,2)B.(﹣2,2)C.(﹣1,5)D.(﹣2,5)2.复数+的共轭复数为()A.5+i B.﹣5+i C.5﹣i D.﹣5﹣i3.如图是某班50位学生期中考试化学成绩的频率分布直方图,其中成绩分组区间是[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],则成绩在[70,90)内的频数为()A.27 B.30 C.32 D.364.P(x1,y1)、Q(x2,y2)分别为抛物线y2=4x上不同的两点,F为焦点,若|QF|=2|PF|,则()A.x2=2x1+1 B.x2=2x1C.y2=2y1+1 D.y2=2y15.执行如图所示的程序框图,则输出的S等于()A.B.C.D.6.将函数y=cos(3x+)的图象向左平移个单位后,得到的图象可能为()A. B.C.D.7.函数f(x)=e x﹣x在区间[﹣1,1]上的值域为()A.[1,e﹣1]B.C.D.[0,e﹣1]8.已知S n为等差数列{a n}的前n项和,给出下列两个命题:命题p:若S3,S9都大于9,则S6大于11命题q:若S6不小于12,则S3,S9中至少有1个不小于9.那么,下列命题为真命题的是()A.¬p B.(¬p)∧(¬q)C.p∧q D.p∧(¬q)9.在矩形ABCD中,|AB|=3,|AC|=5,=,=,若=x+y,则x+y的值为()A.2 B.4 C.5 D.710.设a>0,且x,y满足约束条件,若z=x+y的最大值为7,则的最大值为()A.B.C.D.11.某几何体是组合体,其三视图如图所示,则该几何体的体积为()A. +8πB. +8πC.16+8πD. +16π12.记min{a,b}表示a,b中较小的数,比如min{3,﹣1}=﹣1.设函数f(x)=|min{x2,log x}|(x>0),若f(x1)=f(x2)=f(x3)(x1,x2,x3互不相等),则x1x2x3的取值范围为()A. B.C. D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.一个蜂巢有1只蜜蜂,第1天,它飞出去找回了5个伙伴;第2天,6只蜜蜂飞出去,各自找回了5个伙伴…如果这个找伙伴的过程继续下去,第5天所有的蜜蜂都归巢后,蜂巢中一共有_______只蜜蜂.14.已知函数f(x)=为奇函数,则g(﹣2)=_______.15.若双曲线mx2+y2=1(m<﹣1)的离心率恰好是实轴长与虚轴长的等比中项,则m=_______.16.长方体ABCD﹣A1B1C1D1的8个顶点都在球O的表面上,E为AB的中点,CE=3,cos ∠ACE=,且四边形ABB1A1为正方形,则球O的直径为_______.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在△ABC中,角A,B,C的对边分别是a,b,c,C=60°,c=b.(1)求角A,B的大小;(2)若D为边AC上一点,且a=4,△BCD的面积为,求BD的长.18.已知某中学高三文科班学生的数学与地理的水平测试成绩抽样统计如下表:XA B C人数YA 14 40 10B a 36 bC 28 8 34若抽取学生n人,成绩分为A(优秀)、B(良好)、C(及格)三个等级,设x,y分别表示数学成绩与地理成绩,例如:表中地理成绩为A等级的共有14+40+(1)设在该样本中,数学成绩优秀率是30%,求a,b的值;(2)已知a≥8,b≥6,求数学成绩为A等级的人数比C等级的人数多的概率.19.如图,在四棱柱ABCD﹣A1B1C1D1中,AC⊥B1D,BB1⊥底面ABCD,E为线段AD 上的任意一点(不包括A、D两点),平面CEC1与平面BB1D交于FG.(1)证明:AC⊥BD;(2)证明:FG∥平面AA1B1B.20.已知椭圆C: +=1(a>b>0)的离心率为,且椭圆C与圆M:x2+(y﹣3)2=4的公共弦长为4(1)求椭圆C的方程;(2)已知O为坐标原点,过椭圆C的右顶点A作直线l与圆x2+y2=相切并交椭圆C于另一点,求•的值.21.已知函数f(x)=(ax2﹣lnx)(x﹣lnx)(a∈R).(1)当a=6时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若f(x)>0恒成立,求实数a的取值范围.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲]22.如图,在⊙O的直径AB的延长线上取点P,作⊙O的切线PN,N为切点,在AB上找一点M,使PN=PM,连接NM并延长交⊙O于点C.(1)求证:OC⊥AB;(2)若⊙O的半径为,OM=MP,求MN的长.[选修4-4:坐标系与参数方程]23.以坐标原点O为极点,O轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ=2(sinθ+cosθ+).(1)写出曲线C的参数方程;(2)在曲线C上任取一点P,过点P作x轴,y轴的垂线,垂足分别为A,B,求矩形OAPB 的面积的最大值.[选修4-5:不等式选讲]24.已知不等式<|1+|﹣|1﹣|<对x∈(0,+∞)恒成立.(1)求实数a的取值范围;(2)不等式|x﹣1|+|x+1|≤a的解集为A,不等式4≤2x≤8的解集为B,试判断A∩B是否一定为空集?请证明你的结论.2016年山西省高考数学三模试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={x|1<x2≤5x},B={x|﹣2<x<2},则A∪B=()A.(1,2)B.(﹣2,2)C.(﹣1,5)D.(﹣2,5)【考点】并集及其运算.【分析】化简集合A,求出A∪B即可.【解答】解:集合A={x|1<x2≤5x}={x|1<x≤5},B={x|﹣2<x<2},∴A∪B={x|﹣2<x≤5}=(﹣2,5].故选:D.2.复数+的共轭复数为()A.5+i B.﹣5+i C.5﹣i D.﹣5﹣i【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、共轭复数的定义即可得出.【解答】解: +=+=2+2i+3﹣i=5+i的共轭复数为5﹣i.故选:C.3.如图是某班50位学生期中考试化学成绩的频率分布直方图,其中成绩分组区间是[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],则成绩在[70,90)内的频数为()A.27 B.30 C.32 D.36【考点】频率分布直方图.【分析】由频率分布直方图先求出成绩在[70,90)内的频率,由此能求出成绩在[70,90)内的频数.【解答】解:由频率分布直方图得成绩在[70,90)内的频率为:+++×∴成绩在[70,90)内的频数为:50×故选:D.4.P(x1,y1)、Q(x2,y2)分别为抛物线y2=4x上不同的两点,F为焦点,若|QF|=2|PF|,则()A.x2=2x1+1 B.x2=2x1C.y2=2y1+1 D.y2=2y1【考点】抛物线的简单性质.【分析】根据抛物线的性质将|PF|,|QF|转化为到准线的距离,得出答案.【解答】解:抛物线的准线方程为x=﹣1,∴|PF|=x1+1,|QF|=x2+1.∵|QF|=2|PF|,∴x2+1=2(x1+1),即x2=2x1+1.故选:A.5.执行如图所示的程序框图,则输出的S等于()A.B.C.D.【考点】程序框图.【分析】根据程序框图的流程,依次写出每次循环得到的S,i的值,当S=时,满足条件S<1,退出循环,输出S的值为.【解答】解:模拟执行程序,可得S=600,i=1执行循环体,S=600,i=2不满足条件S<1,执行循环体,S=300,i=3不满足条件S<1,执行循环体,S=100,i=4不满足条件S<1,执行循环体,S=25,i=5不满足条件S<1,执行循环体,S=5,i=6不满足条件S<1,执行循环体,S=,i=7满足条件S<1,退出循环,输出S的值为.故选:C.6.将函数y=cos(3x+)的图象向左平移个单位后,得到的图象可能为()A. B.C.D.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】由函数y=Asin(ωx+φ)的图象变换可得向左平移个单位后,得到的函数解析式为:y=﹣sin3x,利用正弦函数的图象和性质即可得解.【解答】解:将函数y=cos(3x+)的图象向左平移个单位后,得到的函数解析式为:y=cos[3(x+)+]=﹣sin3x,此函数过原点,为奇函数,排除C,D;原点在此函数的单调递减区间上,故排除B.故选:A.7.函数f(x)=e x﹣x在区间[﹣1,1]上的值域为()A.[1,e﹣1]B.C.D.[0,e﹣1]【考点】函数的值域.【分析】求函数的导数,判断函数的单调性和极值,最值,结合函数的最值即可求出函数的值域.【解答】解:函数的导数f′(x)=e x﹣1,由f′(x)>0得e x﹣1>0,即e x>1,得0<x≤1,此时函数递增,由f′(x)<0得e x﹣1<0,即e x<1,得﹣1≤x<0,此时函数递减,即当x=0时,函数取得极小值同时也是最小值f(0)=1,∵f(1)=e﹣1,f(﹣1)=+1<e﹣1,∴函数的最大值为f(1)=e﹣1,即函数的值域为[1,e﹣1],故选:A.8.已知S n为等差数列{a n}的前n项和,给出下列两个命题:命题p:若S3,S9都大于9,则S6大于11命题q:若S6不小于12,则S3,S9中至少有1个不小于9.那么,下列命题为真命题的是()A.¬p B.(¬p)∧(¬q)C.p∧q D.p∧(¬q)【考点】复合命题的真假.【分析】由等差数列的前n项和的性质可得:S3,S6﹣S3,S9﹣S6成等差数列,即可判断出命题p,q的真假.【解答】解:对于命题p:由等差数列的前n项和的性质可得:S3,S6﹣S3,S9﹣S6成等差数列,∴2(S6﹣S3)=S3+S9﹣S6,∴3S6=3S3+S9≥3×9+9,∴S6≥12,因此命题p正确;命题q:由上面可知:3S3+S9=3S6≥3×12=36,因此S3,S9中至少有1个不小于9,是真命题.那么,下列命题为真命题的是p∧q.故选:C.9.在矩形ABCD中,|AB|=3,|AC|=5,=,=,若=x+y,则x+y的值为()A.2 B.4 C.5 D.7【考点】平面向量的基本定理及其意义.【分析】由已知利用勾股定理可得|AD|,从而可得=3,==4,由向量的加法可得=+=3+4,利用平面向量的基本定理及其意义即可得解x,y的值,进而得解.【解答】解:∵在矩形ABCD中,|AB|=3,|AC|=5,∴利用勾股定理可得:|AD|=4,∵=,=,∴=3,==4,∴=+=3+4,∴x=3,y=4,可得:x+y=7.故选:D.10.设a>0,且x,y满足约束条件,若z=x+y的最大值为7,则的最大值为()A.B.C.D.【考点】简单线性规划的应用;简单线性规划.【分析】作出题中不等式组表示的平面区域,利用z=x+y的最大值为7,推出直线x+y=7与x+4y﹣16=0的交点A必在可行域的边缘顶点,得到a,利用所求的表达式的几何意义,可得的最大值.【解答】解:作出不等式组约束条件表示的平面区域,直线x+y=7与x+4y﹣16=0的交点A必在可行域的边缘顶点.解得,即A(4,3)在3ax﹣y﹣9=0上,可得12a﹣3﹣9=0,解得a=1.的几何意义是可行域的点与(﹣3,0)连线的斜率,由可行域可知(﹣3,0)与B连线的斜率最大,由可得B(﹣1,),的最大值为:=.故选:D.11.某几何体是组合体,其三视图如图所示,则该几何体的体积为()A. +8πB. +8πC.16+8πD. +16π【考点】由三视图求面积、体积.【分析】由三视图知该几何体是一个组合体:下面是半个圆柱、上面两个四棱锥,由三视图求出几何元素的长度、并判断出位置关系,由柱体、锥体的体积公式求出几何体的体积.【解答】解:根据三视图可知几何体是一个组合体:下面是半个圆柱、上面两个四棱锥,且两个四棱锥的定点相对、底面是俯视图中两个矩形两条边分别是2、4,其中一条侧棱与底面垂直,高都是2,圆柱的底面圆半径是2、母线长是4,∴几何体的体积V=2×+=,故选:B.12.记min{a,b}表示a,b中较小的数,比如min{3,﹣1}=﹣1.设函数f(x)=|min{x2,log x}|(x>0),若f(x1)=f(x2)=f(x3)(x1,x2,x3互不相等),则x1x2x3的取值范围为()A. B.C. D.【考点】函数的最值及其几何意义.【分析】由f(x1)=f(x2)=f(x3)(x1,x2,x3互不相等),不妨设x1<x2<x3,则0<x1<,=﹣,由此,即可求出x1x2x3的取值范围.【解答】解:作出y=x2及y=||的图象,f(x1)=f(x2)=f(x3)(x1,x2,x3互不相等),不妨设x1<x2<x3,则0<x1<,=﹣,∴x2x3=1,∴0<x1x2x3<,故选:A.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.一个蜂巢有1只蜜蜂,第1天,它飞出去找回了5个伙伴;第2天,6只蜜蜂飞出去,各自找回了5个伙伴…如果这个找伙伴的过程继续下去,第5天所有的蜜蜂都归巢后,蜂巢中一共有7776只蜜蜂.【考点】归纳推理.【分析】根据题意,第n天蜂巢中的蜜蜂数量为a n,则数列{a n}成等比数列.根据等比数列的通项公式,可以算出第5天所有的蜜蜂都归巢后,蜂巢中一共的蜜蜂.【解答】解:设第n天蜂巢中的蜜蜂数量为a n,根据题意得数列{a n}成等比数列,它的首项为6,公比q=6,所以{a n}的通项公式:a n=6•6n﹣1到第5天,所有的蜜蜂都归巢后,蜂巢中一共有a5=65=7776只蜜蜂.故答案为:7776.14.已知函数f(x)=为奇函数,则g(﹣2)=6﹣log35.【考点】函数奇偶性的性质.【分析】由题意,g(﹣2)=f(﹣2)+6,利用函数是奇函数,即可得出结论.【解答】解:由题意,g(﹣2)=f(﹣2)+6=﹣f(2)+6=6﹣log35故答案为:6﹣log35.15.若双曲线mx2+y2=1(m<﹣1)的离心率恰好是实轴长与虚轴长的等比中项,则m=﹣7﹣4.【考点】双曲线的简单性质.【分析】求出双曲线的标准方程,求出a,b,结合离心率恰好是实轴长与虚轴长的等比中项,建立方程关系进行转化求解即可.【解答】解:双曲线的标准方程为y2﹣=1(m<﹣1),则焦点在y轴上,且a=1,b2=﹣,∵离心率恰好是实轴长与虚轴长的等比中项,∴e2=2a•2b=4ab,即=4ab,则c2=4b,即1+b2=4b,平方得1+2b2+b4=16b2,即b4﹣14b2+1=0,则++1=0,则1+14m+m2=0即m===﹣7±4,∵m<﹣1,∴m=﹣7﹣4,故答案为:;16.长方体ABCD﹣A1B1C1D1的8个顶点都在球O的表面上,E为AB的中点,CE=3,cos ∠ACE=,且四边形ABB1A1为正方形,则球O的直径为4或.【考点】球的体积和表面积.【分析】设AB=2x,则AE=x,BC=,由余弦定理可得x2=9+3x2+9﹣2×3××,求出x,即可求出球O的直径.【解答】解:设AB=2x,则AE=x,BC=,∴AC=由余弦定理可得x2=9+3x2+9﹣2×3××,∴x=1或,∴AB=2,BC=2,球O的直径为=4,或AB=2,BC=,球O的直径为=.故答案为:4或.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在△ABC中,角A,B,C的对边分别是a,b,c,C=60°,c=b.(1)求角A,B的大小;(2)若D为边AC上一点,且a=4,△BCD的面积为,求BD的长.【考点】余弦定理;正弦定理.【分析】(1)由C=60°,可得sinC,由c=b,可得:,又由正弦定理可得:,解得sinB,结合b<c,可得B为锐角,利用三角形内角和定理可求B,A的值.(2)利用三角形面积公式及已知可求CD,由余弦定理即可解得BD的值.【解答】(本题满分为12分)解:(1)∵C=60°,可得:sinC=,由c=b,可得:,又∵由正弦定理,可得:,解得:sinB=,∵由已知可得b<c,可得B为锐角,∴可得:B=45°,A=π﹣B﹣C=75°.(2)∵△BCD的面积为,即:a•CD•sinC==,解得:CD=1,∴由余弦定理可得:BD===.18.已知某中学高三文科班学生的数学与地理的水平测试成绩抽样统计如下表:XA B C人数YA 14 40 10B a 36 bC 28 8 34若抽取学生n人,成绩分为A(优秀)、B(良好)、C(及格)三个等级,设x,y分别表示数学成绩与地理成绩,例如:表中地理成绩为A等级的共有14+40+(1)设在该样本中,数学成绩优秀率是30%,求a,b的值;(2)已知a≥8,b≥6,求数学成绩为A等级的人数比C等级的人数多的概率.【考点】列举法计算基本事件数及事件发生的概率.【分析】(1)由频率=,能求出a,b的值.(2)由14+a+28>10+b+34,得a>b+2.由此利用列举法能求出所求概率.【解答】解:(1)由频率=,得到,∴,故a=18,而14+a+28+40+36+8+10+b+34=200,∴b=12.…(2)∵a+b=30且a≥8,b≥6,∴由14+a+28>10+b+34,得a>b+2.(a,b)的所有结果为(8,22),(9,21),(10,20),(11,19),…(24,6)共17组,其中a>b+2的共8 组,故所求概率为:.…19.如图,在四棱柱ABCD﹣A1B1C1D1中,AC⊥B1D,BB1⊥底面ABCD,E为线段AD 上的任意一点(不包括A、D两点),平面CEC1与平面BB1D交于FG.(1)证明:AC⊥BD;(2)证明:FG∥平面AA1B1B.【考点】直线与平面平行的判定;棱柱的结构特征.【分析】(1)先证出BB1⊥AC,AC⊥B1D,即可证明AC⊥平面BB1D,从而证出AC⊥BD;(2)先证明CC1∥平面BB1D,得出CC1∥FG,从而得出FG∥BB1,再证出FG∥平面AA1B1B.【解答】解:(1)证明:四棱柱ABCD﹣A1B1C1D1中,∵BB1⊥底面ABCD,AC⊂平面ABCD,∴BB1⊥AC;又AC⊥B1D,BB1∩B1D=B1,∴BB1⊂平面BB1D,B1D⊂平面BB1D,∴AC⊥平面BB1D;又BD⊂平面BB1D,∴AC⊥BD;(2)四棱柱ABCD﹣A1B1C1D1中,CC1∥BB1,CC1⊄平面BB1D,BB1⊂平面BB1D,∴CC1∥平面BB1D;又平面CEC1∩平面BB1D=FG,∴CC1∥FG,∴FG∥BB1;又FG⊄平面ABB1A1,BB1⊂平面ABB1A1,∴FG∥平面AA1B1B.20.已知椭圆C: +=1(a>b>0)的离心率为,且椭圆C与圆M:x2+(y﹣3)2=4的公共弦长为4(1)求椭圆C的方程;(2)已知O为坐标原点,过椭圆C的右顶点A作直线l与圆x2+y2=相切并交椭圆C于另一点,求•的值.【考点】椭圆的简单性质.【分析】(1)运用椭圆的离心率公式和对称性可得椭圆经过点(±2,3),代入椭圆方程,解得a,b,进而得到椭圆方程;(2)设过右顶点A(4,0)的直线l为y=k(x﹣4),由直线和圆相切的条件:d=r,可得k,再由直线方程代入椭圆方程,运用韦达定理,可得B的横坐标,结合向量的数量积的坐标表示,即可得到所求值.【解答】解:(1)由题意可得e==,a2﹣b2=c2,椭圆C与圆M:x2+(y﹣3)2=4的公共弦长为4,可得椭圆经过点(±2,3),即有+=1,解得a=4,b=2,即有椭圆的方程为+=1;(2)设过右顶点A(4,0)的直线l为y=k(x﹣4),由直线与圆x2+y2=相切,可得=,解得k=±,将直线y=±(x﹣4),代入椭圆+=1,消去y,可得31x2﹣32x﹣368=0,设B(x0,y0),可得4x0=﹣,则•=(4,0)•(x0,y0)=4x0=﹣.21.已知函数f(x)=(ax2﹣lnx)(x﹣lnx)(a∈R).(1)当a=6时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若f(x)>0恒成立,求实数a的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(1)求出函数的导数,计算f(1),f′(1),求出切线方程即可;(2)设g(x)=x﹣lnx,(x>0),求出函数的导数,得到若f(x)>0恒成立,则ax2﹣lnx >0恒成立,问题转化为,设,根据函数的单调性求出a的范围即可.【解答】解:(1)当a=6时,,∴f'(1)=11,f(1)=6,∴曲线y=f(x)在点(1,f(1))处的切线方程为y﹣6=11(x﹣1),即y=11x﹣5.(2)设g(x)=x﹣lnx,(x>0),则,当0<x<1时,g'(x)<0,函数g(x)递减,当x>1时,g'(x)>0,函数g(x)递增,所以当x>0时,g(x)≥g(1)=1>0.若f(x)>0恒成立,则ax2﹣lnx>0恒成立,∴.设,则,当时,h'(x)>0,函数h(x)递增,当时,h'(x)<0,函数g(x)递减,所以当x>0时,,∴..请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲]22.如图,在⊙O的直径AB的延长线上取点P,作⊙O的切线PN,N为切点,在AB上找一点M,使PN=PM,连接NM并延长交⊙O于点C.(1)求证:OC⊥AB;(2)若⊙O的半径为,OM=MP,求MN的长.【考点】与圆有关的比例线段.【分析】(1)连接ON,运用圆的切线的性质和等腰三角形的性质,由垂直的判定即可得证;(2)运用直角三角形的勾股定理和圆的相交弦定理,计算即可得到所求值.【解答】解:(1)证明:连接ON,则ON⊥PN,且△OCN为等腰三角形,则∠OCN=∠ONC,∵PN=PM,∴∠PMN=∠PNM,∵∠OCM+∠OMC=∠ONC+∠PNM=90°,∴∠COM=90°,∴OC⊥AB.(2)在Rt△ONP中,由于OM=MP,∴OP2=PN2+ON2,∴,∴4PN2=PN2+12,∴PN=2,从而,∴,由相交弦定理可得MN•CM=BM•AM,又,∴.[选修4-4:坐标系与参数方程]23.以坐标原点O为极点,O轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ=2(sinθ+cosθ+).(1)写出曲线C的参数方程;(2)在曲线C上任取一点P,过点P作x轴,y轴的垂线,垂足分别为A,B,求矩形OAPB 的面积的最大值.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(1)由极坐标化为标准方程,再写出参数方程即可,(2)可设点P的坐标为(1+2cosθ,1+2sinθ),表示出矩形OAPB的面积为S,再设t=sinθ+cosθ,根据二次函数的性质即可求出答案.【解答】解:(1)由得ρ2=2(ρsinθ+ρcosθ+1),所以x2+y2=2x+2y+2,即(x﹣1)2+(y﹣1)2=4.故曲线C的参数方程(θ为参数).(2)由(1)可设点P的坐标为(1+2cosθ,1+2sinθ),θ∈[0,2π),则矩形OAPB的面积为S=|(1+2cosθ)(1+2sinθ)|=|1+2sinθ+2cosθ+4sinθcosθ)|令,t2=1+2sinθcosθ,,故当时,.[选修4-5:不等式选讲]24.已知不等式<|1+|﹣|1﹣|<对x∈(0,+∞)恒成立.(1)求实数a的取值范围;(2)不等式|x﹣1|+|x+1|≤a的解集为A,不等式4≤2x≤8的解集为B,试判断A∩B是否一定为空集?请证明你的结论.【考点】绝对值不等式的解法;绝对值三角不等式.【分析】(1)根据x的范围,得到关于a的不等式组,解出即可;(2)分别求出集合A,B,结合a的范围,判断A,B的交集是否是空集即可.【解答】解:(1)∵x>0,∴1+>0,不等式<|1+|﹣|1﹣|<对x∈(0,+∞)恒成立,即不等式<1+﹣|1﹣|<对x∈(0,+∞)恒成立.即对x∈(0,+∞)恒成立.即,∴,解得:1<a<8;(2)∵x>0,∴x+1>0,令f(x)=|x﹣1|+|x+1|,∴f(x)=|x﹣1|+x+1=,由(1)a=8时,得:2x<8,解得:x<4,故集合A的最大范围是(0,4),由4≤2x≤8,解得:2≤x≤3,故集合B=[2,3],故A∩B不一定是空集.2016年9月9日。
2016年普通高等学校招生全国统一考试(全国Ⅲ)数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)【2016年全国Ⅲ,理1,5分】设集合 ,则( )()(){}{}|230,|0S x x x T x x =--≥=>S T =(A ) (B ) (C )(D )[]2,3(][),23,-∞+∞ [)3,+∞(][)0,23,+∞ 【答案】D【解析】由解得或,,所以,故选()()230x x --≥3x ≥2x ≤{}23S x x ∴=≤≥或{}023S T x x x =<≤≥ 或D .【点评】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化.(2)【2016年全国Ⅲ,理2,5分】若,则( )i 12z =+4i1zz =-(A )1 (B ) (C ) (D )1-i i -【答案】C【解析】,故选C .4i 4ii (12i)(12i)11zz ==+---【点评】复数的加、减法运算中,可以从形式上理解为关于虚数单位“”的多项式合并同类项,复数的乘法与多i 项式的乘法相类似,只是在结果中把换成.复数除法可类比实数运算的分母有理化.复数加、减2i 1-法的几何意义可依平面向量的加、减法的几何意义进行理解.(3)【2016年全国Ⅲ,理3,5分】已知向量,,则( )1(2BA =u u v 1)2BC =u u u v ABC ∠=(A ) (B ) (C ) (D )30︒45︒60︒120︒【答案】A【解析】由题意,得,所以,故选A .cos BA BC ABC BA BC⋅∠=== 30ABC ∠=︒【点评】(1)平面向量与的数量积为,其中是与的夹角,要注意夹角的定义和它的取值a b ·cos a b a b θ或θa b 范围:;(2)由向量的数量积的性质有,,因此,0180θ︒≤≤︒|a ·cos a ba bθ=·0a b a b ⇔⊥ 或利用平面向量的数量积可以解决与长度、角度、垂直等有关的问题.(4)【2016年全国Ⅲ,理4,5分】某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中点表示十月的平均最高气温约为A ,点表示四月的平均最低气温约为.下面叙述不正确的是( )15C ︒B 5C ︒(A )各月的平均最低气温都在以上 (B )七月的平均温差比一月的平均温差大 0C ︒(C )三月和十一月的平均最高气温基本相同(D )平均气温高于的月份有5个20C ︒【答案】D【解析】由图可知均在虚线框内,所以各月的平均最低气温都在以上,A 正确;由图0C ︒0C ︒可在七月的平均温差大于,而一月的平均温差小于,所以七月的平均7.5C ︒7.5C ︒温差比一月的平均温差大,B 正确;由图可知三月和十一月的平均最高气温都大约在,基本相同,5C ︒C 正确;由图可知平均最高气温高于的月份有3个或2个,所以不正确,故选D .20C ︒【点评】解答本题时易错可能有两种:(1)对图形中的线条认识不明确,不知所措,只觉得是两把雨伞重叠在一起,找不到解决问题的方法;(2)估计平均温差时易出现错误,错选B.(5)【2016年全国Ⅲ,理5,5分】若,则()3tan4α=2cos2sin2αα+=(A)(B)(C)1 (D)642548251625【答案】A【解析】由,得或,所以,3tan4α=34sin,cos55αα==34sin,cos55αα=-=-2161264cos2sin24252525αα+=+⨯=故选A.【点评】三角函数求值:①“给角求值”将非特殊角向特殊角转化,通过相消或相约消去非特殊角,进而求出三角函数值;②“给值求值”关键是目标明确,建立已知和所求之间的联系.(6)【2016年全国Ⅲ,理6,5分】已知,,,则()432a=254b=1325c=(A)(B)(C)(D)b a c<<a b c<<b c a<<c a b<<【答案】A【解析】因为,,所以,故选A.422335244a b==>=1223332554c a==>=b a c<<【点评】比较指数的大小常常根据三个数的结构联系相关的指数函数与对数函数、幂函数的单调性来判断,如果两个数指数相同,底数不同,则考虑幂函数的单调性;如果指数不同,底数相同,则考虑指数函数的单调性;如果涉及到对数,则联系对数的单调性来解决.(7)【2016年全国Ⅲ,理7,5分】执行下图的程序框图,如果输入的,那么输出的46a b==或()n=(A)3 (B)4 (C)5 (D)6【答案】B【解析】第一循环,得;第二循环,得;2,4,6,6,1a b a s n=====2,6,4,10,2a b a s n=-====第三循环,得;第四循环,得2,4,6,16,3a b a s n=====;2,6,4,2016,4a b a s n=-===>=退出循环,输出,故选B.4n=【点评】解决此类型时要注意:第一,要明确是当型循环结构,还是直到型循环结构.根据各自的特点执行循环体;第二,要明确图中的累计变量,明确每一次执行循环体前和执行循环体后,变量的值发生的变化;第三,要明确循环体终止的条件是什么,会判断什么时候终止循环体.(8)【2016年全国Ⅲ,理8,5分】在中,,边上的高等于,则 ( )ABCDπ4B=BC13BC cos A=(A(B(C)(D)--【答案】C【解析】设边上的高线为,则,所以,.由余弦定理,BC AD3BC AD=AC==AB=知,故选C.222cos2AB AC BCAAB AC+-===⋅【点评】在平面几何图形中求相关的几何量时,需寻找各个三角形之间的联系,交叉使用公共条件,常常将所涉及到已知几何量与所求几何集中到某一个三角形,然后选用正弦定理与余弦定理求解.(9)【2016年全国Ⅲ,理9,5分】如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为()(A)(B)(C)90 (D)8118+54+【答案】B【解析】由三视图该集合体是以侧视图为底面的斜四棱柱,所以该几何体的表面积B.2362332354S=⨯⨯+⨯⨯+⨯⨯=+【点评】求解多面体的表面积及体积问题,关键是找到其中的特征图形,如棱柱中的矩形,棱锥中的直角三角形,棱台中的直角梯形等,通过这些图形,找到几何元素间的关系,建立未知量与已知量间的关系,进行求解.(10)【2016年全国Ⅲ,理10,5分】在封闭的直三棱柱内有一个体积为的球,若,111ABC A B C -V AB BC ⊥,,,则的最大值是( )6AB =8BC =13AA =V (A ) (B ) (C ) (D )4π92π6π323π【答案】B【解析】要使球的体积最大,必须球的半径最大.由题意知球的与直三棱柱的上下底面都相切时,球的半V R 径取得最大值,此时球的体积为,故选B .32334439(3322R πππ==【点评】立体几何是的最值问题通常有三种思考方向:(1)根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;(2)将几何体平面化,如利用展开图,在平面几何图中直观求解;(3)建立函数,通过求函数的最值来求解.(11)【2016年全国Ⅲ,理11,5分】已知为坐标原点,是椭圆的左焦点,分O F 2222:1(0)x y C a b a b+=>>,A B 别为的左,右顶点.为上一点,且轴.过点的直线与线段交于点,与轴交于C P C PF x ⊥A l PF M y 点.若直线经过的中点,则的离心率为( )E BM OE C (A ) (B ) (C ) (D )13122334【答案】A【解析】由题意设直线的方程为,分别令与得点,,由l ()y k x a =+x c =-0x =()FM k a c =-OE ka=~OBE ∆,得,即,整理得,所以椭圆离心率为,故选A .CBM ∆12OE OB FM BC=()2ka ak a c a c=-+13c a =1e 3=【点评】求解椭圆的离心率问题主要有三种方法:(1)直接求得的值,进而求得的值;(2)建立,a c e 的齐次等式,求得或转化为关于的等式求解;(3)通过特殊值或特殊位置,求出.,,a b c ba e e (12)【2016年全国Ⅲ,理12,5分】定义“规范01数列”如下:共有项,其中项为0,项为{}n a {}n a 2m m m 1,且对任意,中0的个数不少于1的个数.若,则不同的“规范01数列”共有(2k m ≤12,,,k a a a 4m =)(A )18个 (B )16个 (C )14个 (D )12个【答案】C【解析】由题意,得必有,,则具体的排法列表如下:,故选C .10a =81a =011101101111001101011001110100110101100101010101【点评】求解计数问题时,如果遇到情况较为复杂,即分类较多,标准也较多,同时所求计数的结果不太大时,往往利用表格法、树枝法将其所有可能一一列举出来,常常会达到岀奇制胜的效果.第II 卷本卷包括必考题和选考题两部分。
2016届高考复习·三次函数高考题及模拟题1.[2014·陕西卷] 如图1-2,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图像的一部分,则该函数的解析式为图1-2A .y =1125x 3-35xB .y =2125x 3-45xC .y =3125x 3-xD .y =-3125x 3+15x 答案:A2. [2014·江西卷] 在同一直角坐标系中,函数y =ax 2-x +a 2与y =a 2x 3-2ax 2+x +a (a ∈R )的图像不可能是( )答案:B3. [2014·陕西卷文科] 如图1-2所示,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图像的一部分,则该函数的解析式为( )图1-2A .y =12x 3-12x 2-xB .y =12x 3+12x 2-3xC .y =14x 3-xD .y =14x 3+12x 2-2x 答案:A4. 设a 为实数,函数f (x )=x 3+ax 2+(a -2)x 的导函数是f ′(x ),且f ′(x )是偶函数,则曲线y =f (x )在原点处的切线方程为( )A .y =-2xB .y =3xC .y =-3xD .y =4x【解析】由已知得f ′(x )=3x 2+2ax +a -2,因为f ′(x )是偶函数,所以a =0,即f ′(x )=3x 2-2,从而f ′(0)=-2,所以曲线y =f (x )在原点处的切线方程为y =-2x .【答案】A5. [2014·全国新课标卷Ⅰ] 已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( )A .(2,+∞)B .(1,+∞)C .(-∞,-2)D .(-∞,-1)答案:C [解析] 当a =0时,f (x )=-3x 2+1,存在两个零点,不符合题意,故a ≠0.由f ′(x )=3ax 2-6x =0,得x =0或x =2a.若a <0,则函数f (x )的极大值点为x =0,且f (x )极大值=f (0)=1,极小值点为x =2a ,且f (x )极小值=f ⎝⎛⎭⎫2a =a 2-4a 2,此时只需a 2-4a 2>0,即可解得a <-2; 若a >0,则f (x )极大值=f (0)=1>0,此时函数f (x )一定存在小于零的零点,不符合题意.综上可知,实数a 的取值范围为(-∞,-2).6. (2009江苏卷)在平面直角坐标系中,点P 在曲线上,且在第二象限内,已知曲线C 在点P 处的切线的斜率为2,则点P 的坐标为 .【解析】 ,又点P 在第二象限,点P 的坐标为(-2,15)7. 已知y =13x 3+bx 2+(b +2)x +3在R 上不是单调增函数,则b 的范围为________. [答案] b <-1或b >2 [解析] 若y ′=x 2+2bx +b +2≥0恒成立,则Δ=4b 2-4(b +2)≤0,∴-1≤b ≤2,由题意b <-1或b >2.8. (2012·大纲全国高考)已知函数y =x 3-3x +c 的图象与x 轴恰有两个公共点,则c =A .-2或2B .-9或3C .-1或1D .-3或1答案:A9. 若函数y =x 3-ax 2+4在(0,2)内单调递减,则实数a 的取值范围是____________.[答案] [3,+∞) [解析] y ′=3x 2-2ax ,由题意知3x 2-2ax <0在区间(0,2)内恒成立,即a >32x 在区间(0,2)上恒成立,∴a ≥3. 10. 三次函数f (x ),当x =1时有极大值4;当x =3时有极小值0,且函数图象过原点,则f (x )=_____ ___.答案:x 3-6x 2+9x11. 函数f (x )=x 3+ax -2在区间[1,+∞)上是增函数,则实数a 的取值范围是( )A .[3,+∞)B .[-3,+∞)C .(-3,+∞)D .(-∞,-3)[答案] B ∵f (x )=x 3+ax -2在[1,+∞)上是增函数,∴f ′(x )=3x 2+a ≥0在[1,+∞)上恒成立即a ≥-3x 2在[1,+∞)上恒成立又∵在[1,+∞)上(-3x 2)max =-3∴a ≥-3,故应选B.12.若函数f (x )=x 3-12x 在区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是 ( )A .k ≤-3或-1≤k ≤1或k ≥3B .-3<k <-1或1<k <3C .-2<k <2D .不存在这样的实数[答案] B [解析] 因为y ′=3x 2-12,由y ′>0得函数的增区间是(-∞,-2)和(2,+∞),由y ′<0,得函数的减区间是(-2,2),由于函数在(k -1,k +1)上不是单调函数,所xoy 3:103C y x x =-+231022y x x '=-=⇒=±2x ∴=-以有k -1<-2<k +1或k -1<2<k +1,解得-3<k <-1或1<k <3,故选B.13. [2014·辽宁卷] 当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A .[-5,-3] B.⎣⎡⎦⎤-6,-98 C .[-6,-2] D .[-4,-3] 13.C [解析] 当-2≤x <0时,不等式转化为a ≤x 2-4x -3x 3,令f (x )=x 2-4x -3x 3(-2≤x <0),则f ′(x )=-x 2+8x +9x 4=-(x -9)(x +1)x 4,故f (x )在[-2,-1]上单调递减,在(-1,0)上单调递增,此时有a ≤1+4-3-1=-2.当x =0时,g (x )恒成立.当0<x ≤1时,a ≥x 2-4x -3x 3,令个g (x )=x 2-4x -3x 3(0<x ≤1),则g ′(x )=-x 2+8x +9x 4=-(x -9)(x +1)x 4, 故g (x )在(0,1]上单调递增,此时有a ≥1-4-31=-6.综上,-6≤a ≤-2. 14.(2009江西卷文)若存在过点的直线与曲线和都相切,则等于A .或B .或C .或D .或 答案:A 【解析】设过的直线与相切于点,所以切线方程为即,又在切线上,则或, 当时,由与相切可得, 当时,由与相切可得,所以选. 15.(云南师大附中2015届高考适应性月考卷一)函数()()3f x x x x R =+∈当02πθ<<时,()()sin 10f a f a θ+->恒成立,则实数a 的取值范围是A .(﹣∞,1] B.(﹣∞,1) C .(1, +∞) D.(1, +∞)【答案解析】A 解析:2()130f x x '=+>,故3()()f x x x x =+∈R 在R 上单调递增,且为奇函数,所以由(sin )(1)0f a f a θ+->得(sin )(1)f a f a θ>-,从而sin 1a a θ>-,即当π02θ<<时,1sin 1a θ<--恒成立,所以1a ≤.则选A. 16. (2011年高考山东卷)已知()f x 是R 上最小正周期为2的周期函数,且当02x ≤<时,3()f x x x =-,则函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为(A )6 (B )7 (C )8 (D )9(1,0)3y x =21594y ax x =+-a 1-25-641-21474-25-6474-7(1,0)3y x =300(,)x x 320003()y x x x x -=-230032y x x x =-(1,0)00x =032x =-00x =0y =21594y ax x =+-2564a =-032x =-272744y x =-21594y ax x =+-1a =-A17. (2010大纲全国2卷)函数133)(23++-=x ax x x f(1)设2=a ,求f (x )的单调区间;(2)设f (x )在区间)3,2(中至少有一个极值点,求a 的取值范围。
答案:(1)↑+∞+--∞),32(),32,( ↓+-)32,32((2))35,45(18. 已知函数f (x )=-x 3+ax 2+bx +c 在(-∞,0)上是减函数,在(0,1)上是增函数,函数f (x )在R 上有三个零点,且1是其中一个零点.(1)求b 的值; (2)求f (2)的取值范围.19. (2011全国Ⅱ文)已知函数32()3(36)124()f x x ax a x a a R =++-+-∈(Ⅰ)证明:曲线()0y f x x ==在(2,2)的切线过点;(Ⅱ)若00()(1,3)f x x x x =∈在处取得极小值,,求a 的取值范围。
解 (Ⅰ) 2()36(36)f x x ax a '=++-,(0)36f a '=-,又(0)124f a =-曲线()0y f x x ==在的切线方程是:(124)(36)y a a x --=-,令2x =,得2y =所以曲线()0y f x x ==在(2,2)的切线过点;(Ⅱ)由()0f x '=得22120x ax a +--=,(i )当11a ≤时,()f x 没有极小值;(ii)当1a >或1a <时,由()0f x '=得12x a x a =-=-故02x x =。
由题设知13a <-<,当1a >时,不等式13a <-<无解;当1a <时,解不等式13a <-<得512a -<<综合(i)(ii)得a 的取值范围是5(,1)2-。
20、已知函数f (x )=x 3-ax 2-3x .(1)若f (x )在区间[1,+∞)上是增函数,求实数a 的取值范围;(2)若x =-13是f (x )的极值点,求f (x )在[1,a ]上的最大值; 解:(1)f′(x )=3x 2-2ax -3.∵f (x )在[1,+∞)上是增函数,∴f′(x )在[1,+∞)上恒有f′(x )≥0,即3x 2-2ax -3≥0在[1,+∞)上恒成立,则必有a 3≤1且f′(1)=-2a ≥0.∴a ≤0. (2)依题意,f ′⎝⎛⎭⎫-13=0,即13+23a -3=0.∴a =4,∴f (x )=x 3-4x 2-3x . 令f′(x )=3x 2-8x -3=0,得x 1=-13,x 2=3. 则当x∴f (x )在[1,4]上的最大值是f (1)=-6.21、已知对任意R ∈m ,直线0=++m y x 都不是)(3)(3R ∈-=a ax x x f 的切线.(I )求a 的取值范围;(II )求证在]1,1[-∈x 上至少存在一个0x ,使得41|)(|0≥x f 成立. 解:(I )),3[33)(2+∞-∈-='a a x x f , …………(2分)∵对任意R ∈m ,直线0=++m y x 都不是)(x f y =的切线,∴),3[1+∞-∉-a ,a 31-<-,实数a 的取值范围是31<a ; …………(4分)(II )问题等价于当]1,1[-∈x 时,41|)(|max ≥x f , …………(6分) 设|)(|)(x f x g =,)(x g 在]1,1[-∈x 上是偶函数,故只要证明当]1,0[∈x 时,41|)(|max ≥x f , ①当]1,0[)(,0)(,0在时x f x f a ≥'≤上单调递增且0)0(=f ,)()(x f x g =41131)1()(max >>-==a f x g ; …………(8分) ②当,10时<<a ))((333)(2a x a x a x x f -+=-=',列表:(f ∵13<<a a ,∴)3,0(a x ∈时,)()(x f x g -=,)1,3(a x ∈时,)()(x f x g =,∴)}(),1(max{)(max a f f x g -=,若410,31)1()(≤<-=≤-a a f a f 即,则4131)1()(max ≥-==a f x g ; 若3141,31)1()(<<-=>-a a f a f 即,则412)()(max >=-=a a a f x g ; ∴在]1,1[-∈x 上至少存在一个0x ,使得41|)(|0≥x f 成立. …………(12分) 22、设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值.(Ⅰ)求a 、b 的值;(Ⅱ)若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围.【解析】(Ⅰ)2()663f x x ax b '=++,因为函数()f x 在1x =及2x =取得极值,则有(1)0f '=,(2)0f '=. 即6630241230a b a b ++=⎧⎨++=⎩,.解得3a =-,4b =.(Ⅱ)由(Ⅰ)可知,32()29128f x x x x c =-++, 2()618126(1)(2)f x x x x x '=-+=--.当(01)x ∈,时,()0f x '>;当(12)x ∈,时,()0f x '<;当(23)x ∈,时,()0f x '>. 所以,当1x =时,()f x 取得极大值(1)58f c =+,又(0)8f c =,(3)98f c =+.则当[]03x ∈,时,()f x 的最大值为(3)98f c =+.因为对于任意的[]03x ∈,,有2()f x c <恒成立,所以 298c c +<,解得 1c <-或9c >,因此c 的取值范围为(1)(9)-∞-+∞U ,,.23. [2011·江西卷]设ax x x x f 22131)(23++-=. (1)若)(x f 在),32(+∞上存在单调递增区间,求a 的取值范围; (2)当20<<a 时,)(x f 在]4,1[上的最小值为316-,求)(x f 在该区间上的最大值. 【解析】(1))(x f 在),32(+∞上存在单调递增区间,即存在某个子区间),32(),(+∞⊆n m 使得0)('>x f .由a x a x x x f 241)21(2)(22'++--=++-=,)('x f 在区间),32[+∞上单调递减,则只需0)32('>f 即可。