无理数大小比较方法归纳
- 格式:doc
- 大小:112.00 KB
- 文档页数:3
无理数的性质与运算无理数是指不能表示为两个整数的商的实数,它包括无限不循环小数和无限循环小数两种类型。
与有理数相比,无理数具有一些特殊的性质和运算规则。
本文将就无理数的性质和运算进行探讨。
一、无理数的性质1. 无理数的无限性:无理数的小数部分是无限不循环的,它们没有重复的数字或者数字组合,可以一直延伸下去。
例如,圆周率π就是一个无限不循环小数。
2. 无理数的无序性:无理数之间没有大小的比较关系。
对于任意两个不同的无理数a和b,无论a是否大于b,总存在一个无理数c,使得a<b<c。
例如,根号2和根号3是两个无理数,它们之间没有大小的比较。
3. 无理数的无穷性:无理数的小数部分是无穷无尽的,不存在一个结束的部分。
这意味着无理数无法用分数或有限小数来表示,只能通过无限不循环小数表示。
二、无理数的运算1. 无理数的加法:对于两个无理数a和b,它们的和a+b也是一个无理数。
无理数的加法运算可以通过逼近法来实现,将两个无理数用有理数逼近,再进行相加操作。
2. 无理数的减法:对于两个无理数a和b,它们的差a-b也是一个无理数。
无理数的减法运算可以通过逼近法来实现,将两个无理数用有理数逼近,再进行相减操作。
3. 无理数的乘法:对于两个无理数a和b,它们的乘积a*b也是一个无理数。
无理数的乘法运算可以通过逼近法来实现,将两个无理数用有理数逼近,再进行相乘操作。
4. 无理数的除法:对于两个无理数a和b,它们的商a/b不一定是无理数。
有时候,a/b可以用有理数表示,有时候则是无理数。
例如,圆周率π除以根号2,结果是一个无理数。
5. 无理数的乘方:无理数的乘方操作结果可能是有理数,也可能是无理数。
例如,根号2的平方等于2,是一个有理数;而根号2的立方根结果是无理数。
三、无理数的应用1. 几何中的无理数:无理数广泛应用于几何学中。
例如,勾股定理中的边长可以是无理数,因为直角三角形的两条直角边长的比值可以是无理数。
..比无穷大更大!从有理数与无理数的比较开始(作者:刘岳老师)有理数有无数个无理数也有无数个那谁更多?还是一样多?无穷与无穷,是否可以比出谁多谁少?数轴上的点对应有理数或无理数?那有理数和无理数又是如何在数轴上分布?NO.1如何比较无穷当我们比较有限的数量时,只要比较具体的数字谁大即可。
鸡有两条腿,兔有四条腿,所以兔子腿更多。
有理数有无数个,无理数也有无数个,或许我们可以认为是都是无数个,都是数不完的,那就一样多呗,但实际上无限也可以分出大小,因为比较有限数量的方法并不能用于无穷的情况。
如何比较无穷?所有的正数和负数一样多。
在正数集里任取一个正数,在负数集合里都能找到唯一确定的一个负数与其相对应,比如正数集中取1,负数集里会有-1,正数集里取π,负数集里会有-π,有一个正数,就会有一个相应的负数。
我们可以在正数集和负数集间建立一种一一对应的关系。
所以正数与负数是一样多。
同样的道理,我们可以得出奇数和偶数是一样多的。
任取一个奇数2n-1,都会有一个偶数2n与其相对应,同样我们可以在奇数集和偶数集之间建立这种一一对应的关系,所以奇数和偶数也是一样多的。
我们把集合里元素的数量称为集合的基数,比如集合{1}的基数为1,集合{1,2}的基数为2。
判断无穷集合基数相等的方法便是:能够两个集合之间建立起一种一一对应的关系。
NO.2整体可以等于部分如果关于无穷的比较都像上面那么简单就好了,接下来我们继续看。
所有的偶数和所有的整数一样多。
What?偶数不是和奇数一样多吗?奇数和偶数一起构成了整数,偶数怎么和整数也一样多了?整数集合里任取一整数n,在偶数集合里都会有一个数2n与其相对应,所以我们依然可以在整数集和偶数集之间建立起一一对应的关系,在偶数集里任取一个偶数,在整数集里都会有一个唯一确定的元素与其相对应。
整体等于部分!这是我们在有限里不可能存在的情况,但在无穷集合里,却真真实实地发生了。
如果对于数没感觉我们再来看个图形的例子,在△ABC中,假定BC边为2,DE是BC边所对的中位线,所以DE=1,在BC边上任取点M,连接AM,则AM必与DE有一交点,记为N。
估算无理数的大小知识点估算的取值范围。
解:因为1<3<4,所以<<,即:1<<2如果想估算的更精确一些,比如说想精确到0.1.可以这样考虑:因为17的平方是289,18的平方是324,所以1.7的平方是2.89,1.8的平方是3.24.因为2.89<3<3.24,所以<<,所以1.7<<1.8。
如果需要估算的数比较大,可以找几个比较接近的数值验证一下。
比较无理数大小的几种方法:比较无理数大小的方法很多,在解题时,要根据所给无理数的特点,选择合适的比较方法。
一、直接法直接利用数的大小来进行比较。
①、同是正数:例: 与3的比较根据无理数和有理数的联系,被开数大的那个就大。
因为3=>,所以3>②、同是负数:根据无理数和有理数的联系,及同是负数绝对值大的反而小。
③、一正一负:正数大于一切负数。
二、隐含条件法:根据二次根式定义,挖掘隐含条件。
例:比较与的大小。
因为成立所以a-2≧0即a≧2所以1-a≦-1所以≧0,≦-1所以>三、同次根式下比较被开方数法:例:比较4与5大小因为四、作差法:若a-b>0,则a>b例:比较3-与-2的大小因为3-–-2=3-–+2=5-20即3->-2五、作商法:a>0,b>0,若>1,则a>b例:比较与的大小因为÷=×=六、找中间量法要证明a>b,可找中间量c,转证a>c,c>b例:比较与的大小因为>1,1>所以>七、平方法:a>0,b>0,若a2>b2,则a>b。
例:比较与的大小()2=5+2+11=16+2()2=6+2+10=16+2所以:八、倒数法:九、有理化法:可分母有理化,也可分子有理化。
无理数的性质及运算规律一、无理数的定义1.无理数是不能表示为两个整数比例的实数,即无限不循环小数。
2.无理数不能精确地表示为分数形式,其小数部分既不会终止也不会无限重复。
二、无理数的性质1.transcendental number:无法表示为任何一种函数的根,如π和e。
2.不可数性:无理数集合中的元素无法与自然数一一对应,即无法数清无理数的个数。
3.均匀分布性:无理数在小数点后的每一位出现的概率是相等的。
4.无法表示为有限或无限循环小数:与有理数相区别的根本特征。
三、无理数的运算规律1.加减法:无理数加减无理数仍为无理数。
示例:√2−√2=02.乘除法:无理数乘以无理数仍为无理数。
示例:√2×√2=23.乘方:一个无理数的平方仍为无理数。
示例:(√2)2=24.无理数与有理数的运算:结果为无理数或是有理数,取决于运算方式。
示例:√2+1(无理数与有理数和为无理数)5.根号的性质:只有非负实数的平方根才是无理数。
示例:√(−2)没有实数解四、无理数在日常生活中的应用1.测量与工程:角度、几何尺寸的精确度等。
2.物理科学:自然界的许多现象与数学常数相关,如π在圆的周长与直径的比值中。
3.计算机科学:算法中的随机数生成、加密等领域。
五、无理数的估算与近似1.逼近法:使用有理数逼近无理数的值,如用分数近似π。
2.近似值:在需要的精度范围内,对无理数进行近似取值。
示例:π≈3.14六、无理数在数学中的地位1.实数体系:无理数与有理数共同构成实数集,是数学分析、微积分等高级数学分支的基础。
2.数论:无理数在数论中有着广泛的应用,如素数的分布等。
3.几何学:无理数在几何形状的计算和理论分析中不可或缺。
总结:无理数是实数的重要组成部分,其独特的性质和运算规律在数学、科学及日常生活中具有广泛的应用。
习题及方法:1.习题:判断以下哪个数是无理数?方法:无理数是不能表示为两个整数比例的实数,即无限不循环小数。
一.求差法
求差法的基本思路是:设a、b为任意两个实数,先求出a与b的差,再根据“当a-b<0时,a<b;当a-b=0时,a=b;当a-b>0时,a>b。
”来比较a与b的大小。
二. 求商法
求商法的基本思路是:设a、b为任意两个正实数,先求出a与b的商,再根据“当时,a<b;当时,a=b;当时,a>b。
”来比较a与b的大小。
三.倒数法
倒数法的基本思路是:设a、b为任意两个正实数,先分别求出a与b的倒数,再根据“当时,a>b;当时,a<b,”来比较a与b的大小。
四.估算法
求商法的基本思路是:设a、b为任意两个正实数,,先估算出a、b两数中某部分的取值范围,再进行比较。
五.平方法
平方法的基本思路是:先将要比较的两个数分别平方,再根据“在时,可由得到”来比较大小。
这种方法常用于比较无理数的大小。
六.移动因式法
移动因式法的基本思路是:当时,若要比较形如 r的两数的大小,可先把根号外的因数a与c平方移入根号内,再根据被开方数的大小进行比较。
两个实数大小的比较,形式有多种多样,只要我们在实际操作时,有选择性地灵活运用上述方法,一定能方便快捷地取得令人满意的结果。
无理数的比较大小几种方法到初中阶段,我们知道很多种方法比较两个数的大小,如:平方法、作差法、作商法、倒数法、放缩法等。
无理数的大小比较是中学数学考试中基础题型之一。
但是在中学课本教材中,关于无理数的大小比较,相关例子很少。
这里我们讨论一两个无理数的大小的比较。
一、平方法:两个数分别平方,再比较。
例1:比较的大小与711513++。
解:设a=513+,b=711+,则a 2=2513)(+=18+245,b 2=2711)(+=18+277,因为245<277,所以a 2<b 2,所以a <b ,即513+<711+。
二、作差法:两个数作差,看差的符号再比较。
例2:比较2-5与52-5的大小。
解:设a=2-5,b=52-5,则a-b=(2-5)-(52-5)=7-53=)()()(7537537-53++⨯=)(7534-+<0,所以a <b ,即2-5<52-5。
这个方法是:作差后的差值与0比较,若a-b <0,则a <b ;若a-b=0,则a=b ;若a-b >0,则a >b 。
三、作商法:两个正数相除,看商的值与1比较。
例3:比较6-7与5-6的大小。
解:设a=6-7,b=5-6,67565-66-7b a ++==,因为5667>,>,所以1ba <,即a <b ,所以6-7<5-6。
这个方法是:作商后的商值与1比较,前提条件:a >0,b >0;若b a >1,则a >b ;若b a =1,则a=b ;若ba <1,则a <b ;则a=b ;若a-b >0,则a >b 。
四、放缩法:将其中一个数放大或者缩小再比较,或者两个数分别放大或缩小再做比较。
例4:比较62-112与65的大小。
解:62-112=)(6-112=6116116-112++⨯)()(=61110+<6610+=65,所以62-112<65。
五、倒数法:两个正数,倒数大的反而小。
例5:比较3-7与2-6的大小。
解:设a=3-7,b=2-6,则4373-71a 1+==,4262-61b 1+==,显然0b1a 1>>;所以a <b 。
考点二:估值原理:被开方数越大,则其算术平方根、立方根也越大;即:若0 b a ,则b a 且33b a ;判断: 328 3例1:满足不等式1893 x -的整数x 是例2:估算75在哪个范围( )A.8.0~8.5B.7.5~8.0C.7.0~7.5D.8.5~9.0用下面“逐步逼近”的方法可以求出7的近似值.先阅读,再答题:因为,37222 所以372 ;第一步:取5.2232=+,由725.65.22 =得:375.2 ; 第二步:取75.2235.2=+,由75625.775.22 =得:75.275.2 请你继续上面的步骤,写出第三步,并回答,通过第三步的结论,对7十分位上的数字作一估计.例367 3)45(215- 21(提示:>,<,=,>)例4:阅读材料: 学习了无理数后,某数学兴趣小组开展了一次探究活动:估算13的近似值.小明的方法:()()()67.332313326913691331310313;16139222≈+≈∴≈+≈∴++=∴+=∴+=k kk k k k k 解得设 请你依照小明的方法,估算41的近似值;数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:39.众人十分惊奇,忙问计算的奥妙.你知道怎样迅速准确的计算出结果吗?请你按下面的问题试一试:(1)103=1000,1003=1000000,你能确定59319的立方根是几位数吗?答: 位数.(2)由59319的个位数是9,你能确定59319的立方根的个位数是几吗?答:(3)如果划去59319后面的三位319得到数59,而33=27,43=64,由此你能确定59319的立方根的十位数是几吗?答: ;因此59319的立方根是(4)现在换一个数185193,你能按这种方法说出它的立方根吗?答:①它的立方根是 位数,②它的立方根的个位数是 ,③它的立方根的十位数是 ,④185193的立方根是 .(5)求13824的立方根?考点三:无理数的整数部分和小数部分任何一个小数=整数部分+小数部分所以:小数部分=这个小数-整数部分例1:35的整数部分为x ,其小数部分为y 为,求y x +-3的值?思考:对于正整数n 来说,n 的整数部分是4的最小值n 是多少?最大值n 是多少?例2:43-的整数部分为x ,其小数部分为y 为,求y x +3的值? (提示:2-=x ,23-=y )例3:已知b a ,为有理数,n m ,分别表示75-的整数部分和小数部分,且12=+bn amn ,求b a +2的值?考点五:已知化简结果,反过来求等式成立的条件 若已知:x x -=-33,则x 的取值范围是 ; 若已知:3962-=+-x x x ,则x 的取值范围是 ; 若已知:xx 232)322(2-=-,则x 的取值范围是 ; 若已知:143)14(92--=-x x ,则x 的取值范围是 ;(提示:41 x )。
无理数判定方法
无理数的判定方法如下:
1. 定义法:根据无理数的三种形式进行判断。
例如,无法开方开得尽方的数是无理数,无限不循环小数是无理数。
2. 特殊值法:选取适当的特殊值进行检验,如对于平方根类无理数,可取其算术平方根或0进行检验。
3. 性质法:根据无理数的性质进行判断,例如,无理数加(减)无理数既可以是无理数又可以是有理数。
无理数乘(除)无理数既可以是无理数又可以是有理数。
无理数加(减)有理数一定是无理数。
无理数乘(除)一个非0有理数一定是无理数。
4. 运算判别法:通过实数的运算性质来判断,如利用有理数的运算性质,反证无理数的存在。
5. 放缩法:通过放缩法判断一个数是否为无理数。
例如,对于形如√n的开
方类无理数,可通过放缩其范围来判定。
6. 代数法:通过代数法来判断一个数是否为无理数。
例如,对于形如
√n+√m的复杂形式,可通过代数变形来判定。
7. 反证法:通过反证法来判断一个数是否为无理数。
例如,假设一个数为有理数,然后利用有理数的性质进行推导,得出矛盾,从而证明原假设不成立,该数为无理数。
以上方法仅供参考,具体应用时需要根据具体情况选择合适的方法进行判断。
同时需要注意,判定一个数是否为无理数需要严格按照定义和性质进行判断,不能随意臆断。