无理数大小比较方法归纳
- 格式:doc
- 大小:112.00 KB
- 文档页数:3
无理数的性质与运算无理数是指不能表示为两个整数的商的实数,它包括无限不循环小数和无限循环小数两种类型。
与有理数相比,无理数具有一些特殊的性质和运算规则。
本文将就无理数的性质和运算进行探讨。
一、无理数的性质1. 无理数的无限性:无理数的小数部分是无限不循环的,它们没有重复的数字或者数字组合,可以一直延伸下去。
例如,圆周率π就是一个无限不循环小数。
2. 无理数的无序性:无理数之间没有大小的比较关系。
对于任意两个不同的无理数a和b,无论a是否大于b,总存在一个无理数c,使得a<b<c。
例如,根号2和根号3是两个无理数,它们之间没有大小的比较。
3. 无理数的无穷性:无理数的小数部分是无穷无尽的,不存在一个结束的部分。
这意味着无理数无法用分数或有限小数来表示,只能通过无限不循环小数表示。
二、无理数的运算1. 无理数的加法:对于两个无理数a和b,它们的和a+b也是一个无理数。
无理数的加法运算可以通过逼近法来实现,将两个无理数用有理数逼近,再进行相加操作。
2. 无理数的减法:对于两个无理数a和b,它们的差a-b也是一个无理数。
无理数的减法运算可以通过逼近法来实现,将两个无理数用有理数逼近,再进行相减操作。
3. 无理数的乘法:对于两个无理数a和b,它们的乘积a*b也是一个无理数。
无理数的乘法运算可以通过逼近法来实现,将两个无理数用有理数逼近,再进行相乘操作。
4. 无理数的除法:对于两个无理数a和b,它们的商a/b不一定是无理数。
有时候,a/b可以用有理数表示,有时候则是无理数。
例如,圆周率π除以根号2,结果是一个无理数。
5. 无理数的乘方:无理数的乘方操作结果可能是有理数,也可能是无理数。
例如,根号2的平方等于2,是一个有理数;而根号2的立方根结果是无理数。
三、无理数的应用1. 几何中的无理数:无理数广泛应用于几何学中。
例如,勾股定理中的边长可以是无理数,因为直角三角形的两条直角边长的比值可以是无理数。
..比无穷大更大!从有理数与无理数的比较开始(作者:刘岳老师)有理数有无数个无理数也有无数个那谁更多?还是一样多?无穷与无穷,是否可以比出谁多谁少?数轴上的点对应有理数或无理数?那有理数和无理数又是如何在数轴上分布?NO.1如何比较无穷当我们比较有限的数量时,只要比较具体的数字谁大即可。
鸡有两条腿,兔有四条腿,所以兔子腿更多。
有理数有无数个,无理数也有无数个,或许我们可以认为是都是无数个,都是数不完的,那就一样多呗,但实际上无限也可以分出大小,因为比较有限数量的方法并不能用于无穷的情况。
如何比较无穷?所有的正数和负数一样多。
在正数集里任取一个正数,在负数集合里都能找到唯一确定的一个负数与其相对应,比如正数集中取1,负数集里会有-1,正数集里取π,负数集里会有-π,有一个正数,就会有一个相应的负数。
我们可以在正数集和负数集间建立一种一一对应的关系。
所以正数与负数是一样多。
同样的道理,我们可以得出奇数和偶数是一样多的。
任取一个奇数2n-1,都会有一个偶数2n与其相对应,同样我们可以在奇数集和偶数集之间建立这种一一对应的关系,所以奇数和偶数也是一样多的。
我们把集合里元素的数量称为集合的基数,比如集合{1}的基数为1,集合{1,2}的基数为2。
判断无穷集合基数相等的方法便是:能够两个集合之间建立起一种一一对应的关系。
NO.2整体可以等于部分如果关于无穷的比较都像上面那么简单就好了,接下来我们继续看。
所有的偶数和所有的整数一样多。
What?偶数不是和奇数一样多吗?奇数和偶数一起构成了整数,偶数怎么和整数也一样多了?整数集合里任取一整数n,在偶数集合里都会有一个数2n与其相对应,所以我们依然可以在整数集和偶数集之间建立起一一对应的关系,在偶数集里任取一个偶数,在整数集里都会有一个唯一确定的元素与其相对应。
整体等于部分!这是我们在有限里不可能存在的情况,但在无穷集合里,却真真实实地发生了。
如果对于数没感觉我们再来看个图形的例子,在△ABC中,假定BC边为2,DE是BC边所对的中位线,所以DE=1,在BC边上任取点M,连接AM,则AM必与DE有一交点,记为N。
估算无理数的大小知识点估算的取值范围。
解:因为1<3<4,所以<<,即:1<<2如果想估算的更精确一些,比如说想精确到0.1.可以这样考虑:因为17的平方是289,18的平方是324,所以1.7的平方是2.89,1.8的平方是3.24.因为2.89<3<3.24,所以<<,所以1.7<<1.8。
如果需要估算的数比较大,可以找几个比较接近的数值验证一下。
比较无理数大小的几种方法:比较无理数大小的方法很多,在解题时,要根据所给无理数的特点,选择合适的比较方法。
一、直接法直接利用数的大小来进行比较。
①、同是正数:例: 与3的比较根据无理数和有理数的联系,被开数大的那个就大。
因为3=>,所以3>②、同是负数:根据无理数和有理数的联系,及同是负数绝对值大的反而小。
③、一正一负:正数大于一切负数。
二、隐含条件法:根据二次根式定义,挖掘隐含条件。
例:比较与的大小。
因为成立所以a-2≧0即a≧2所以1-a≦-1所以≧0,≦-1所以>三、同次根式下比较被开方数法:例:比较4与5大小因为四、作差法:若a-b>0,则a>b例:比较3-与-2的大小因为3-–-2=3-–+2=5-20即3->-2五、作商法:a>0,b>0,若>1,则a>b例:比较与的大小因为÷=×=六、找中间量法要证明a>b,可找中间量c,转证a>c,c>b例:比较与的大小因为>1,1>所以>七、平方法:a>0,b>0,若a2>b2,则a>b。
例:比较与的大小()2=5+2+11=16+2()2=6+2+10=16+2所以:八、倒数法:九、有理化法:可分母有理化,也可分子有理化。
无理数的性质及运算规律一、无理数的定义1.无理数是不能表示为两个整数比例的实数,即无限不循环小数。
2.无理数不能精确地表示为分数形式,其小数部分既不会终止也不会无限重复。
二、无理数的性质1.transcendental number:无法表示为任何一种函数的根,如π和e。
2.不可数性:无理数集合中的元素无法与自然数一一对应,即无法数清无理数的个数。
3.均匀分布性:无理数在小数点后的每一位出现的概率是相等的。
4.无法表示为有限或无限循环小数:与有理数相区别的根本特征。
三、无理数的运算规律1.加减法:无理数加减无理数仍为无理数。
示例:√2−√2=02.乘除法:无理数乘以无理数仍为无理数。
示例:√2×√2=23.乘方:一个无理数的平方仍为无理数。
示例:(√2)2=24.无理数与有理数的运算:结果为无理数或是有理数,取决于运算方式。
示例:√2+1(无理数与有理数和为无理数)5.根号的性质:只有非负实数的平方根才是无理数。
示例:√(−2)没有实数解四、无理数在日常生活中的应用1.测量与工程:角度、几何尺寸的精确度等。
2.物理科学:自然界的许多现象与数学常数相关,如π在圆的周长与直径的比值中。
3.计算机科学:算法中的随机数生成、加密等领域。
五、无理数的估算与近似1.逼近法:使用有理数逼近无理数的值,如用分数近似π。
2.近似值:在需要的精度范围内,对无理数进行近似取值。
示例:π≈3.14六、无理数在数学中的地位1.实数体系:无理数与有理数共同构成实数集,是数学分析、微积分等高级数学分支的基础。
2.数论:无理数在数论中有着广泛的应用,如素数的分布等。
3.几何学:无理数在几何形状的计算和理论分析中不可或缺。
总结:无理数是实数的重要组成部分,其独特的性质和运算规律在数学、科学及日常生活中具有广泛的应用。
习题及方法:1.习题:判断以下哪个数是无理数?方法:无理数是不能表示为两个整数比例的实数,即无限不循环小数。
一.求差法
求差法的基本思路是:设a、b为任意两个实数,先求出a与b的差,再根据“当a-b<0时,a<b;当a-b=0时,a=b;当a-b>0时,a>b。
”来比较a与b的大小。
二. 求商法
求商法的基本思路是:设a、b为任意两个正实数,先求出a与b的商,再根据“当时,a<b;当时,a=b;当时,a>b。
”来比较a与b的大小。
三.倒数法
倒数法的基本思路是:设a、b为任意两个正实数,先分别求出a与b的倒数,再根据“当时,a>b;当时,a<b,”来比较a与b的大小。
四.估算法
求商法的基本思路是:设a、b为任意两个正实数,,先估算出a、b两数中某部分的取值范围,再进行比较。
五.平方法
平方法的基本思路是:先将要比较的两个数分别平方,再根据“在时,可由得到”来比较大小。
这种方法常用于比较无理数的大小。
六.移动因式法
移动因式法的基本思路是:当时,若要比较形如 r的两数的大小,可先把根号外的因数a与c平方移入根号内,再根据被开方数的大小进行比较。
两个实数大小的比较,形式有多种多样,只要我们在实际操作时,有选择性地灵活运用上述方法,一定能方便快捷地取得令人满意的结果。
无理数的比较大小几种方法到初中阶段,我们知道很多种方法比较两个数的大小,如:平方法、作差法、作商法、倒数法、放缩法等。
无理数的大小比较是中学数学考试中基础题型之一。
但是在中学课本教材中,关于无理数的大小比较,相关例子很少。
这里我们讨论一两个无理数的大小的比较。
一、平方法:两个数分别平方,再比较。
例1:比较的大小与711513++。
解:设a=513+,b=711+,则a 2=2513)(+=18+245,b 2=2711)(+=18+277,因为245<277,所以a 2<b 2,所以a <b ,即513+<711+。
二、作差法:两个数作差,看差的符号再比较。
例2:比较2-5与52-5的大小。
解:设a=2-5,b=52-5,则a-b=(2-5)-(52-5)=7-53=)()()(7537537-53++⨯=)(7534-+<0,所以a <b ,即2-5<52-5。
这个方法是:作差后的差值与0比较,若a-b <0,则a <b ;若a-b=0,则a=b ;若a-b >0,则a >b 。
三、作商法:两个正数相除,看商的值与1比较。
例3:比较6-7与5-6的大小。
解:设a=6-7,b=5-6,67565-66-7b a ++==,因为5667>,>,所以1ba <,即a <b ,所以6-7<5-6。
这个方法是:作商后的商值与1比较,前提条件:a >0,b >0;若b a >1,则a >b ;若b a =1,则a=b ;若ba <1,则a <b ;则a=b ;若a-b >0,则a >b 。
四、放缩法:将其中一个数放大或者缩小再比较,或者两个数分别放大或缩小再做比较。
例4:比较62-112与65的大小。
解:62-112=)(6-112=6116116-112++⨯)()(=61110+<6610+=65,所以62-112<65。
五、倒数法:两个正数,倒数大的反而小。
例5:比较3-7与2-6的大小。
解:设a=3-7,b=2-6,则4373-71a 1+==,4262-61b 1+==,显然0b1a 1>>;所以a <b 。
考点二:估值原理:被开方数越大,则其算术平方根、立方根也越大;即:若0 b a ,则b a 且33b a ;判断: 328 3例1:满足不等式1893 x -的整数x 是例2:估算75在哪个范围( )A.8.0~8.5B.7.5~8.0C.7.0~7.5D.8.5~9.0用下面“逐步逼近”的方法可以求出7的近似值.先阅读,再答题:因为,37222 所以372 ;第一步:取5.2232=+,由725.65.22 =得:375.2 ; 第二步:取75.2235.2=+,由75625.775.22 =得:75.275.2 请你继续上面的步骤,写出第三步,并回答,通过第三步的结论,对7十分位上的数字作一估计.例367 3)45(215- 21(提示:>,<,=,>)例4:阅读材料: 学习了无理数后,某数学兴趣小组开展了一次探究活动:估算13的近似值.小明的方法:()()()67.332313326913691331310313;16139222≈+≈∴≈+≈∴++=∴+=∴+=k kk k k k k 解得设 请你依照小明的方法,估算41的近似值;数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:39.众人十分惊奇,忙问计算的奥妙.你知道怎样迅速准确的计算出结果吗?请你按下面的问题试一试:(1)103=1000,1003=1000000,你能确定59319的立方根是几位数吗?答: 位数.(2)由59319的个位数是9,你能确定59319的立方根的个位数是几吗?答:(3)如果划去59319后面的三位319得到数59,而33=27,43=64,由此你能确定59319的立方根的十位数是几吗?答: ;因此59319的立方根是(4)现在换一个数185193,你能按这种方法说出它的立方根吗?答:①它的立方根是 位数,②它的立方根的个位数是 ,③它的立方根的十位数是 ,④185193的立方根是 .(5)求13824的立方根?考点三:无理数的整数部分和小数部分任何一个小数=整数部分+小数部分所以:小数部分=这个小数-整数部分例1:35的整数部分为x ,其小数部分为y 为,求y x +-3的值?思考:对于正整数n 来说,n 的整数部分是4的最小值n 是多少?最大值n 是多少?例2:43-的整数部分为x ,其小数部分为y 为,求y x +3的值? (提示:2-=x ,23-=y )例3:已知b a ,为有理数,n m ,分别表示75-的整数部分和小数部分,且12=+bn amn ,求b a +2的值?考点五:已知化简结果,反过来求等式成立的条件 若已知:x x -=-33,则x 的取值范围是 ; 若已知:3962-=+-x x x ,则x 的取值范围是 ; 若已知:xx 232)322(2-=-,则x 的取值范围是 ; 若已知:143)14(92--=-x x ,则x 的取值范围是 ;(提示:41 x )。
无理数判定方法
无理数的判定方法如下:
1. 定义法:根据无理数的三种形式进行判断。
例如,无法开方开得尽方的数是无理数,无限不循环小数是无理数。
2. 特殊值法:选取适当的特殊值进行检验,如对于平方根类无理数,可取其算术平方根或0进行检验。
3. 性质法:根据无理数的性质进行判断,例如,无理数加(减)无理数既可以是无理数又可以是有理数。
无理数乘(除)无理数既可以是无理数又可以是有理数。
无理数加(减)有理数一定是无理数。
无理数乘(除)一个非0有理数一定是无理数。
4. 运算判别法:通过实数的运算性质来判断,如利用有理数的运算性质,反证无理数的存在。
5. 放缩法:通过放缩法判断一个数是否为无理数。
例如,对于形如√n的开
方类无理数,可通过放缩其范围来判定。
6. 代数法:通过代数法来判断一个数是否为无理数。
例如,对于形如
√n+√m的复杂形式,可通过代数变形来判定。
7. 反证法:通过反证法来判断一个数是否为无理数。
例如,假设一个数为有理数,然后利用有理数的性质进行推导,得出矛盾,从而证明原假设不成立,该数为无理数。
以上方法仅供参考,具体应用时需要根据具体情况选择合适的方法进行判断。
同时需要注意,判定一个数是否为无理数需要严格按照定义和性质进行判断,不能随意臆断。
第三章实数(解析板)5、估算无理数的大小知识点梳理估算无理数的大小估算无理数大小要用逼近法.思维方法:用有理数逼近无理数,求无理数的近似值同步练习一.选择题(共10小题)1.若k<<k+1(k是整数),则k=()A.6B.7C.8D.9【考点】估算无理数的大小.【分析】根据=9,=10,可知9<<10,依此即可得到k的值.【解答】解:∵k<<k+1(k是整数),9<<10,∴k=9.故选:D.【点评】本题考查了估算无理数的大小,解题关键是估算的取值范围,从而解决问题.2.估计的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间【考点】估算无理数的大小.【分析】利用”夹逼法“得出的范围,继而也可得出的范围.【解答】解:∵2=<=3,∴3<<4,故选:B.【点评】此题考查了估算无理数的大小的知识,属于基础题,解答本题的关键是掌握夹逼法的运用.3.对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[]=1,[﹣2.5]=﹣3.现对82进行如下操作:82[]=9[]=3[]=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1()A.1B.2C.3D.4【考点】估算无理数的大小.【分析】[x]表示不大于x的最大整数,依据题目中提供的操作进行计算即可.【解答】解:121[]=11[]=3[]=1,∴对121只需进行3次操作后变为1,故选:C.【点评】本题考查了估算无理数的大小,解决本题的关键是明确[x]表示不大于x的最大整数.4.估计+1的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【考点】估算无理数的大小.【分析】先估算出的范围,即可得出答案.【解答】解:∵3<<4,∴4<+1<5,即+1在4和5之间,故选:C.【点评】本题考查了估算无理数的大小,能估算出的范围是解此题的关键.5.估计+1的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间【考点】估算无理数的大小.【分析】直接利用已知无理数得出的取值范围,进而得出答案.【解答】解:∵2<<3,∴3<+1<4,∴+1在3和4之间.故选:C.【点评】此题主要考查了估算无理数大小,正确得出的取值范围是解题关键.6.与最接近的整数是()A.5B.6C.7D.8【考点】实数;估算无理数的大小.【分析】由题意可知36与37最接近,即与最接近,从而得出答案.【解答】解:∵36<37<49,∴<<,即6<<7,∵37与36最接近,∴与最接近的是6.故选:B.【点评】此题主要考查了无理数的估算能力,关键是整数与最接近,所以=6最接近.7.已知a为整数,且,则a等于()A.1B.2C.3D.4【考点】估算无理数的大小.【分析】直接利用,接近的整数是2,进而得出答案.【解答】解:∵a为整数,且,∴a=2.故选:B.【点评】此题主要考查了估算无理数大小,正确得出无理数接近的有理数是解题关键.8.下列整数中,与10﹣最接近的是()A.4B.5C.6D.7【考点】估算无理数的大小.【分析】解法一:由于9<13<16,可判断与4最接近,从而可判断与10﹣最接近的整数为6.解法二:计算3.5的平方与13作比较,再得10﹣<6.5,可作判断.【解答】解:解法一:∵9<13<16,∴3<<4,∵3.62=12.96,3.72=13.69,∴3.6<<3.7,∴﹣3.7<﹣<﹣3.6,∴10﹣3.7<10﹣<10﹣3.6,∴6.3<10﹣<6.4,∴与10﹣最接近的是6.解法二:∵3<<4,∴6<10﹣<7,∵3.52=12.25,且12.25<13,∴>3.5,∴10﹣<6.5,∴与10﹣最接近的是6.故选:C.【点评】此题考查了估算无理数的大小,熟练掌握估算无理数的方法是解本题的关键.9.估计a=×﹣1的值应在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间【考点】估算无理数的大小.【分析】先求出×=,因为5<<6,所以×﹣1在4到5之间.【解答】解:a=×﹣1=﹣1,∵5<<6,∴在5到6之间,∴﹣1在4到5之间,故选:C.【点评】本题考查了二次根式的乘法,估算无理数的大小等,比较简单,理解二次根式的意义是解题的关键.10.如图,数轴上的点A,B,O,C,D分别表示数﹣2,﹣1,0,1,2,则表示数2﹣的点P应落在()A.线段AB上B.线段BO上C.线段OC上D.线段CD上【考点】实数与数轴;估算无理数的大小.【分析】根据2<<3,得到﹣1<2﹣<0,根据数轴与实数的关系解答.【解答】解:2<<3,∴﹣1<2﹣<0,∴表示数2﹣的点P应落在线段BO上,故选:B.【点评】本题考查的是无理数的估算、实数与数轴,正确估算无理数的大小是解题的关键.二.填空题(共14小题)11.若5+的小数部分是a,5﹣的小数部分是b,则ab+5b=2.【考点】估算无理数的大小.【分析】由于2<<3,所以7<5+<8,由此找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的整数部分,小数部分让原数减去整数部分,代入求值即可.【解答】解:∵2<<3,∴2+5<5+<3+5,﹣2>﹣>﹣3,∴7<5+<8,5﹣2>5﹣>5﹣3,∴2<5﹣<3∴a=﹣2,b=3﹣;将a、b的值,代入可得ab+5b=2.故答案为:2.【点评】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.估算出整数部分后,小数部分=原数﹣整数部分.12.已知a,b为两个连续整数,且a<<b,则a+b=7.【考点】估算无理数的大小.【分析】根据被开方数越大对应的算术平方根越大求得a、b的值,然后利用加法法则计算即可.【解答】解:∵9<11<16,∴3<<4.∵a,b为两个连续整数,且a<<b,∴a=3,b=4.∴a+b=3+4=7.故答案为:7.【点评】本题主要考查的是估算无理数的大小,求得a、b的值是解题的关键.13.已知m是的整数部分,n是的小数部分,则m2﹣n=12﹣.【考点】估算无理数的大小.【分析】由于3<<4,由此找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的整数部分,小数部分让原数减去整数部分,代入求值即可.【解答】解:∵3<<4,∴m=3;又∵3<<4,∴n=﹣3;则m2﹣n=9﹣+3=12﹣.故答案为:12﹣.【点评】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.估算出整数部分后,小数部分=原数﹣整数部分.14.已知:m、n为两个连续的整数,且m<<n,则m+n=7.【考点】估算无理数的大小.【分析】先估算出的取值范围,得出m、n的值,进而可得出结论.【解答】解:∵9<11<16,∴3<<4,∴m=3,n=4,∴m+n=3+4=7.故答案为:7.【点评】本题考查的是估算无理数的大小,先根据题意算出的取值范围是解答此题的关键.15.规定用符号[x]表示一个实数的整数部分,例如[3.69]=3.[]=1,按此规定,[﹣1]=2.【考点】估算无理数的大小.【分析】先求出(﹣1)的范围,再根据范围求出即可.【解答】解:∵9<13<16,∴3<<4,∴2<﹣1<3,∴[﹣1]=2.故答案是:2.【点评】本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.16.已知a、b为两个连续的整数,且,则a+b=11.【考点】估算无理数的大小.【分析】根据无理数的性质,得出接近无理数的整数,即可得出a,b的值,即可得出答案.【解答】解:∵,a、b为两个连续的整数,∴<<,∴a=5,b=6,∴a+b=11.故答案为:11.【点评】此题主要考查了无理数的大小,得出比较无理数的方法是解决问题的关键.17.规定:用符号[x]表示一个不大于实数x的最大整数,例如:[3.69]=3,[+1]=2,[﹣2.56]=﹣3,[﹣]=﹣2.按这个规定,[﹣﹣1]=﹣5.【考点】估算无理数的大小.【分析】先求出的范围,求出﹣1的范围,即可得出答案.【解答】解:∵,∴,∴,∴[﹣﹣1]=﹣5.故答案为:﹣5.【点评】本题考查了估算无理数的大小的应用,解此题的关键是求的范围.18.设m=,那么m+的整数部分是2.【考点】估算无理数的大小.【分析】根据2<<3,可得答案.【解答】解:m+===.∵2<<2.5,∴12<6<15,∴2<m+=<3,故答案为:2.【点评】本题考查了估算无理数的大小,利用算术平方根越大被开方数越大得出2<<3是解题关键.19.已知的小数部分是a,的整数部分是b,则a+b=.【考点】估算无理数的大小.【分析】先分别求出和的范围,得到a、b的值,再代入a+b计算即可.【解答】解:∵2<<3,2<<3,∴a=﹣2,b=2,a+b=﹣2+2=,故答案为.【点评】本题考查了估算无理数的大小,利用夹值法估算出和的范围是解此题的关键.20.已知,则的值约为0.048.【考点】估算无理数的大小.【分析】由于当被开方数两位两位地移,它的算术平方根相应的向相同方向就一位一位地移,由此即可求解.【解答】解:把0.0023向右移动4位,即可得到23,显然只需对4.80向左移动2位得到0.048.故答案为:0.048.【点评】此题主要考查了算术平方根的性质和无理数的估算,关键是利用了被开方数与其算术平方根之间位数的移动关系.21.若x<﹣1<y且x,y是两个连续的整数,则x+y的值是3.【考点】估算无理数的大小.【分析】估算得出的范围,进而求出x与y的值,即可求出所求.【解答】解:∵4<6<9,∴2<<3,即1<﹣1<2,∴x=1,y=2,则x+y=1+2=3,故答案为:3【点评】此题考查了估算无理数的大小,弄清估算的方法是解本题的关键.22.已知a,b为两个连续整数,且,则a+b=7.【考点】估算无理数的大小.【分析】因为32<13<42,所以3<<4,求得a、b的数值,进一步求得问题的答案即可.【解答】解:∵32<13<42,∴3<<4,即a=3,b=b,所以a+b=7.故答案为:7.【点评】此题考查无理数的估算,利用平方估算出根号下的数值的取值,进一步得出无理数的取值范围,是解决这一类问题的常用方法.23.若的整数部分是a,小数部分是b,则2a﹣b=24﹣.【考点】估算无理数的大小.【分析】首先确定的范围,即可推出ab的值,把ab的值代入求出即可.【解答】解:∵8<<9,∴a=8,b=﹣8,∴2a﹣b=2×8﹣(﹣8)=24﹣.故答案为:24﹣.【点评】考查了估算无理数的大小,解此题的关键是确定的范围.8<<9,得出a,b的值.24.的整数部分是a,小数部分是b,则a﹣b=2﹣.【考点】估算无理数的大小.【分析】根据无理数大小可得出a,b的值,进而得出答案.【解答】解:∵的整数部分是a,小数部分是b,∴a=1,b=﹣1,则a﹣b=1﹣(﹣1)=2﹣.故答案为:2﹣.【点评】此题主要考查了估计无理数,得出a,b的值是解题关键.三.解答题(共7小题)25.已知5a+2的立方根是3,3a+b﹣1的算术平方根是4,c是的整数部分,求3a﹣b+c 的平方根.【考点】平方根;算术平方根;立方根;估算无理数的大小.【分析】利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c的值,代入代数式求出值后,进一步求得平方根即可.【解答】解:∵5a+2的立方根是3,3a+b﹣1的算术平方根是4,∴5a+2=27,3a+b﹣1=16,∴a=5,b=2,∵c是的整数部分,∴c=3,∴3a﹣b+c=16,3a﹣b+c的平方根是±4.【点评】此题考查立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可.26.对于实数a,我们规定:用符号表示不大于的最大整数,称为a的根整数,例如:,.(1)仿照以上方法计算:=2;=5.(2)若,写出满足题意的x的整数值1,2,3.如果我们对a连续求根整数,直到结果为1为止.例如:对10连续求根整数2次,这时候结果为1.(3)对100连续求根整数,3次之后结果为1.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是255.【考点】估算无理数的大小;实数的运算.【分析】(1)先估算和的大小,再由并新定义可得结果;(2)根据定义可知x<4,可得满足题意的x的整数值;(3)根据定义对100进行连续求根整数,可得3次之后结果为1;(4)最大的正整数是255,根据操作过程分别求出255和256进行几次操作,即可得出答案.【解答】解:(1)∵22=4,52=25,62=36,∴5<<6,∴=[2]=2,[]=5,故答案为:2,5;(2)∵12=1,22=4,且,∴x=1,2,3,故答案为:1,2,3;(3)第一次:[]=10,第二次:[]=3,第三次:[]=1,故答案为:3;(4)最大的正整数是255,理由是:∵[]=15,[]=3,[]=1,∴对255只需进行3次操作后变为1,∵[]=16,[]=4,[]=2,[]=1,∴对256只需进行4次操作后变为1,∴只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为:255.【点评】本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和猜想能力,同时也考查了一个数的平方数的计算能力.27.阅读下面的文字,解答问题,例如:∵<<,即2<<3,∴的整数部分为2,小数部分为(﹣2).请解答:(1)的整数部分是4,小数部分是﹣4.(2)已知:9﹣小数部分是m,9+小数部分是n,且(x+1)2=m+n,请求出满足条件的x的值【考点】估算无理数的大小.【分析】(1)根据夹逼法可求的整数部分和小数部分;(2)首先估算出m,n的值,进而得出m+n的值,可求满足条件的x的值.【解答】解:(1)∵4<<5,∴的整数部分是4,小数部分是﹣4.(2)∵9﹣小数部分是m,9+小数部分是n,∴m=9﹣﹣4=5﹣,n=9+﹣13=﹣4,∵(x+1)2=m+n=5﹣+﹣4=1,∴x+1=±1,解得x1=﹣2,x2=0.故满足条件的x的值为x1=﹣2,x2=0.故答案为:4,﹣4.【点评】此题主要考查了估算无理数的大小,正确得出各数的小数部分是解题关键.28.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵<<,即2<<3,∴的整数部分为2,小数部分为(﹣2).请解答:(1)的整数部分是4,小数部分是﹣4.(2)如果的小数部分为a,的整数部分为b,求a+b﹣的值;(3)已知:10+=x+y,其中x是整数,且0<y<1,求x﹣y的相反数.【考点】估算无理数的大小.【分析】(1)先估算出的范围,即可得出答案;(2)先估算出、的范围,求出a、b的值,再代入求出即可;(3)先估算出的范围,求出x、y的值,再代入求出即可.【解答】解:(1)∵4<<5,∴的整数部分是4,小数部分是,故答案为:4,﹣4;(2)∵2<<3,∴a=﹣2,∵3<<4,∴b=3,∴a+b﹣=﹣2+3﹣=1;(3)∵1<3<4,∴1<<2,∴11<10+<12,∵10+=x+y,其中x是整数,且0<y<1,∴x=11,y=10+﹣11=﹣1,∴x﹣y=11﹣(﹣1)=12﹣,∴x﹣y的相反数是﹣12+;【点评】本题考查了估算无理数的大小,能估算出、、、的范围是解此题的关键.29.已知5a+2的立方根是3,3a+b﹣1的算术平方根是4,c是的整数部分.(1)求a,b,c的值;(2)求3a﹣b+c的平方根.【考点】估算无理数的大小.【分析】(1)利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c 的值;(2)将a、b、c的值代入代数式求出值后,进一步求得平方根即可.【解答】解:(1)∵5a+2的立方根是3,3a+b﹣1的算术平方根是4,∴5a+2=27,3a+b﹣1=16,∴a=5,b=2,∵c是的整数部分,∴c=3.(2)将a=5,b=2,c=3代入得:3a﹣b+c=16,∴3a﹣b+c的平方根是±4.【点评】此题考查立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可.30.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,而1<<2,于是可用﹣1来表示的小数部分.请解答下列问题:(1)的整数部分是4,小数部分是﹣4.(2)如果的小数部分为a,的整数部分为b,求a+b﹣的值(3)已知:100+=x+y,其中x是整数,且0<y<1,求x++24﹣y的平方根.【考点】平方根;估算无理数的大小.【分析】(1)先估算出的范围,即可得出答案;(2)先估算出、的范围,求出a、b的值,再代入求出即可;(3)先估算出的范围,求出x、y的值,再代入求出即可.【解答】解:(1)∵4<<5,∴的整数部分是4,小数部分是﹣4,故答案为:4,﹣4;(2)∵2<<3,∴a=﹣2,∵3<<4,∴b=3,∴a+b﹣=﹣2+3﹣=1;(3)∵100<110<121,∴10<<11,∴110<100+<111,∵100+=x+y,其中x是整数,且0<y<1,∴x=110,y=100+﹣110=﹣10,∴x++24﹣y=110++24﹣+10=144,x++24﹣y的平方根是±12..【点评】本题考查了估算无理数的大小,能估算出、、、的范围是解此题的关键.31.已知2a﹣1的算术平方根是3,3a+b﹣9的立方根是2,c是的整数部分,求7a﹣2b﹣2c的平方根.【考点】平方根;估算无理数的大小.【分析】根据平方根、立方根、算术平方根,即可解答.【解答】解:∵2a﹣1的算术平方根是3,∴2a﹣1=9,∴a=5,∵3a+b﹣9的立方根是2,∴3a+b﹣9=8,∴b=2,∵c是的整数部分,,∴c=3,∴7a﹣2b﹣2c=35﹣4﹣6=25,∴7a﹣2b﹣2c的平方根是±5.【点评】本题考查了平方根、立方根、算术平方根,解决本题的关键是熟记平方根、立方根、算术平方根的定义。
估算无理数的大小在一些题目中我们常常需要估算无理数的取值范围,要想准确地估算出无理数的取值范围需要记住一些常用数的平方。
一般情况下从1到达20 整数的平方都应牢记。
例:估算船的取值范围。
解:因为1 v 3 v 4,所以EI v U v H 即:1 Vv 2如果想估算的更精确一些比如说想精确到0.1 .可以这样考虑:因为17的平方是289 , 18的平方是324,所以1.7的平方是2.89 , 1.8的平方是3.24 .因为2.89 v 3 v 3.24 , 所以济v直v丽,所以1.7 v v 1.8。
如果需要估算的数比较大,可以找几个比较接近的数值验证一下。
比较无理数大小的几种方法:比较无理数大小的方法很多,在解题时,要根据所给无理数的特点,选择合适的比较方法。
一、直接法直接利用数的大小来进行比较。
①、同是正数:例:心与3的比较根据无理数和有理数的联系,被开数大的那个就大。
因为3=宀>、「,所以3> '②、同是负数:根据无理数和有理数的联系,及同是负数绝对值大的反而小。
③、一正一负:正数大于一切负数。
二、隐含条件法:根据二次根式定义,挖掘隐含条件。
例:比较莎石与后巨的大小。
因为Ja_2成立所以a-2 M 0即a M 2所以1-a三-1所以】仝0, J门三-1以 Ja — 2 > 計' —a三、同次根式下比较被开方数法: 例:比较4氏与5止大小因为4运=J16x5 = 俪.5A /4 = A /25 x 4 = ^/100L所以 ,即 4<5^4四、作差法: 若 a-b>0,则 a>b 例:比较3-d 与宀-2的大小 因为3・'=5-2 -=3-品 y/~6 +2亦V =2 5所以:5-2曲>0 即 3- \ 乂>、' -2五、作商法:a>0,b>0,若'>1,则 a>b 石+1 需+2 例:比较*「与J 」' 的大小 蕩+1 侖+2 因为宀'「+ 石+ ] 祐+ 3_亦十2 需+ 2= ----- X六、找中间量法要证明a>b,可找中间量c ,转证 a>c,c>bVio+3 2厉 + 2例:比较E 2与+U I '的大小所以: 石+1 7^+2需+ 2 V 而+ —V10+3 2馆 + 2因为\W+2>1,1> 2-^ + 3A/To+3 2 腐+ 2所以烦+ 2 >2^5 + 3七、平方法:a>0,b>0,若a2>b 2则a>b。
无理数的大小比较和排序在数学中,无理数是指不能表示为有限小数的实数。
它们与有理数相对,后者可以表示为两个整数之比。
无理数占据了实数线上绝大部分,如 $\pi$、$\sqrt{2}$、$\sqrt{3}$ 等。
由于无理数的特殊性质,它们的大小比较和排序相对困难。
本文将探讨无理数的大小关系及排序方式。
一、大小关系大小关系是指判断两个实数大小的关系,一般可通过比较它们的差值来确定,然而对于无理数,常规判断方式是无法使用的。
例如,$\sqrt{2}$ 与 $\pi$ 两个数谁大谁小?这就需要使用一些特殊的技巧。
1. 估值法估值法是指使用有理数逼近无理数,这样就可以将无理数转化为有理数进行比较。
例如,将 $\sqrt{2}$ 逼近到小数点后第二位,则 $\sqrt{2}\approx1.41$,将 $\pi$ 逼近到同样的位数,得到$\pi\approx3.14$。
于是我们可以比较两个有理数的大小,得出$\pi>\sqrt{2}$。
估值法的优势在于易于理解,但它十分依赖于逼近的精度,如果逼近不够准确,比较的结果也不准确。
2. 平方比较法平方比较法比较适用于那些有一个数是某个整数的平方的情况。
由于 $\sqrt{k^2+n}$ 与 $k$ 相等,对于两个无理数 $x=\sqrt{a}$,$y=\sqrt{b}$,如果 $a-b$ 是某个整数 $k$ 的平方,则有:$$ x>y \Longleftrightarrow a-b=k^2 $$这时,无需估算就能判断它们的大小关系。
例如,比较$\sqrt{2}$ 与 $\sqrt{3}$,它们的差值为 $1$,是 $1$ 的平方,所以$\sqrt{2}<\sqrt{3}$。
平方比较法有一个明显的局限性,即 $a-b$ 必须是某个整数$k$ 的平方,这种情况并不常见。
3. 函数比较法函数比较法使用初等函数来确定两个无理数的大小关系,例如,对于两个正的无理数 $a$ 和 $b$,有以下结论:$$ \ln a < \ln b \Longleftrightarrow a<b $$$$ a^x < b^x \Longleftrightarrow a<b \quad\text{和}\quad x>0 $$$$ a^x > b^x \Longleftrightarrow a>b \quad\text{和}\quad x<0 $$函数比较法优势在于适用范围广,但对于一些不好表达的无理数,比如 $\pi$,也无法得出精确的结果。