苏教版必修3互斥事件
- 格式:ppt
- 大小:11.68 MB
- 文档页数:5
第10课时7.4.2 互斥事件及其发生的概率(2)分层训练1、先后抛掷两颗骰子,设出现的点数之和是12,11,10的概率依次是123,,P P P ,则( ) A .123P P P =< B .123P P P << C .123P P P <= D .321P P P =<2、已知直线36y x =-+与4y x =-+,现将一个骰子连掷两次,设第一次得的点数为x ,第二次得的点数为y ,则点(x ,y )在已知直线下方的概率为_____________.3、 某工厂为节约用电,规定每天的用电量指标为1000千瓦时,按照上个月的用电记录,30天中有12天的用电量超过指标,若第二个月仍没有具体的节电措施,则该月的第一天用电量超过指标的概率为_______________.4、抛掷一粒骰子,观察掷出的点数,设事件A 为出现奇数,事件B 为出现2点,已知P (A )=21,P (B )=61,求出现奇数点或2点的概率之和.5、在房间里有4个人.问至少有两个人的生日是同一个月的概率是多少?拓展延伸6、在一只袋子中装有7个红玻璃球,3个绿玻璃球.从中无放回地任意抽取两次,每次只取一个.试求:(1)取得两个红球的概率; (2)取得两个绿球的概率; (3)取得两个同颜色的球的概率; (4)至少取得一个红球的概率.7、.某单位36人的血型类别是:A 型12人,B 型10人,AB 型8人,O 型6人.现从这36人中任选2人,求此2人血型不同的概率.8、一场篮球比赛到了最后5分钟,甲队比乙队少得5分.若甲队全投3分球,则有8次投篮机会.若甲队全投2分球,则有3次投篮机会.假设甲队队员投3分球的命中率均为0.6,投2分球的命中率均为0 .8,并且甲队加强防守,不给乙队投篮机会.问全投3分球与全投2分球这两种方案中选择哪一种甲队获胜的概率较大?本节学习疑点:7.4.2随机事件及其概率(2)1、B2、118 3、254、“出现奇数点”的概率是事件A ,“出现2点”的概率是事件B ,“出现奇数点或2点”的概率之和为P (C )=P (A )+P (B )=21+61=325、96416、 (1)157 (2)151 (3)158 (4)15147、45348、要使甲队获胜,甲队至少投中2个3分球,或3个2分球,甲队全投3分球至少投中2个球的概率为[]99148032.04.0C 4.06.0C 1808718=⨯+⨯⨯-.,甲队全投2分球至少投中3个的概率为512.08.03=.,所以选择全投3分球甲队获胜的概率较大。
互斥事件及其发生的概率班级________姓名________【学习目标】1.了解互斥事件和对立事件的概念,能判断某两个事件是否为互斥事件,进而判断它们是否为对立事件2.了解互斥事件概率的加法公式及对立事件的概率和为13.运用互斥事件概率和公式及对立事件的概率和进行简单的概率计算【预学单】〔一〕问题情境问题1:一个盒子内放有10个大小相同的小球,其中有7个红球、2个绿球、1个黄球,从中任取 1个小球。
求:(1)得到红球的概率;(2)得到绿球的概率;3得到红球或绿球的概率想一想:“得到红球〞和“得到绿球〞这两个事件之间有什么关系,可以同时发生吗事件得到“红球或绿球〞与上两个事件又有什么关系它们的概率间的关系如何【研学单】〔二〕建构数学1.互斥事件:不可能同时发生的两个事件叫做互斥事件.一般地,如果事件中的任何两个都是互斥的,那么就说事件彼此互斥.2.互斥事件的概率如果事件,互斥,那么事件发生的概率,等于事件,分别发生的概率的和,即.一般地,如果事件两两互斥,那么问题2:互斥事件一定不能同时发生,那么是否可以同时不发生?举例说明问题3:“从盒中摸出1个球,得到的不是红球〔即绿球或黄球〕〞与“得到是红球〞之间有什么关系?3.对立事件两个互斥事件必有一个发生,那么称这两个事件为对立事件.事件的对立事件记为.对立事件和必有一个发生,故是必然事件,从而.因此,我们可以得到一个重要公式.备注:对立事件是互斥事件的特殊情形;前者两个事件都可以不发生,但后者两个事件必有一个发生概念理解问题4、抛掷一颗骰子一次,记“向上的点数是4,5,6〞为事件A,“向上的点数是1,2〞为事件B,“向上的点数为1,2,3〞为事件C,“向上的点数是1,2,3,4〞,为事件D,判别以下每件事件是不是互斥事件1A与B 〔2〕A与C 〔3〕A与D问题5、判断以下给出的每对事件,是否为互斥事件,是否为对立事件,并说明理由。
从40张扑克牌〔红桃、黑桃、梅花、方块点数从1~10各10张〕中,任取一张〔1〕“抽出红桃〞与“抽出黑桃〞;〔2〕“抽出红色牌〞与“抽出黑色牌〞;〔3〕“抽出的牌的点数为5的倍数〞与“抽出的牌的点数大于9〞问题6、一只口袋内装有大小一样的4只白球和4只黑球,从中任意摸出2只球。
2022年春节前夕,南京市某超市进行有奖促销活动,有一等奖与二等奖奖项,其中中一等奖的概率为0.1,中二等奖的概率是0.25,假设每位顾客只有一次机会.问题1:假设顾客甲获奖,说明什么?提示:说明顾客甲中一等奖或二等奖.问题2:通过上述问题“中一等奖”与“中二等奖”能否同时发生?提示:不能同时发生.问题3:在上述问题中“中奖”与“不中奖”这两个大事必有一个发生吗?提示:必有一个发生.1.互斥大事(1)定义:不能同时发生的两个大事称为互斥大事.(2)假如大事A1,A2,…,A n中的任何两个都是互斥大事,就说大事A1,A2,…,A n彼此互斥.(3)规定:设A,B为互斥大事,若大事A、B至少有一个发生,我们把这个大事记作A+B. 2.互斥大事的概率加法公式(1)假如大事A,B互斥,那么大事A+B发生的概率等于大事A,B分别发生的概率的和,即P(A+B)=P(A)+P(B).(2)假如大事A1,A2,…,A n两两互斥,则P(A1+A2+…+A n)=P(A1)+P(A2)+…+P(A n).3.对立大事(1)定义:两个互斥大事必有一个发生,则称这两个大事为对立大事,大事A的对立大事记为A.(2)性质:P(A)+P(A)=1,P(A)=1-P(A).1.从集合的角度理解互斥大事与对立大事.设两个大事分别为A和B,则(1)大事A和B互斥可用图(1)表示.(2)大事A和B对立可用图(2)表示.2.运用互斥大事的概率公式时,肯定要首先确定各大事是否彼此互斥,然后求出各大事分别发生的概率,再求和.[例1]推断下列各对大事是否是互斥大事,是否为对立大事.并说明道理.某小组有3名男生和2名女生,从中任选2名同学去参与演讲竞赛,其中(1)恰有1名男生和恰有2名男生;(2)至少有1名男生和至少有1名女生;(3)至少有1名男生和全是男生;(4)至少有1名男生和全是女生.[思路点拨]依据互斥大事、对立大事的定义推断.[精解详析](1)是互斥大事. 不是对立大事.道理是:在所选的两名同学中,“恰有一名男生”实质是选出的是“一名男生和一名女生”,它与“恰有两名男生”不行能同时发生,所以是一对互斥大事.但其并大事不是必定大事,所以不是对立大事.(2)不行能是互斥大事.从而也不是对立大事.道理是:“至少有1名男生”包括“1名男生、1名女生”和“两名都是男生”两种结果.“至少有1名女生”包括“1名女生、1名男生”和“两名都是女生”两种结果,它们可同时发生.(3)不行能是互斥大事.也不是对立大事.道理是:“至少有1名男生”包括“1名男生、1名女生”和“两名都是男生”,这与“全是男生”可同时发生.(4)是互斥大事.也是对立大事.道理是:“至少有1名男生”包括“1名男生、1名女生”和“两名都是男生”两种结果,它与“全是女生”不行能同时发生,且其并大事是必定大事,所以是对立大事.[一点通]对立大事肯定是互斥大事,也就是说不互斥的两个大事肯定不是对立大事,在确定了两个大事互斥的状况下,就要看这两个大事的和是不是必定大事,这是推断两个大事对立的基本方法.1.下列说法:①将一枚硬币抛两次,设大事A:“两次正面朝上”,大事B:“只有一次反面朝上”,则大事A与B 是对立大事②若大事A与B为对立大事,则大事A与B为互斥大事③若大事A与B为互斥大事,则大事A与B为对立大事④若大事A与B为对立大事,则大事A+B为必定大事其中,正确的个数是________.解析:由对立大事与互斥大事的定义知,只有②④正确.答案:22.一个射手进行一次射击,试推断下列大事哪些是互斥大事?哪些是对立大事?大事A:命中环数大于7环.大事B:命中环数为10环.大事C:命中环数小于6环.大事D:命中环数为6,7,8,9,10环.解:大事A与C互斥(不行能同时发生),B与C互斥,C与D互斥.又由于大事C与大事D至少有一个发生,所以C与D也是对立大事.[例2](12分)某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的大事分别为A、B、C,求:(1)大事A、B、C的概率;(2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率.[思路点拨]明确大事的特征,利用互斥大事或对立大事求解.[精解详析]P(A)=11 000,P(B)=101 000=1100,P(C)=501 000=120.(3分)故大事A,B,C的概率分别为11 000,1100,120.(4分)(2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个大事为M,则M=A+B+C.(5分)∵A、B、C两两互斥,∴P(M)=P(A+B+C)=P(A)+P(B)+P(C)(6分)=1+10+501 000=611 000.故1张奖券的中奖概率为611 000.(7分)(3)法一:设“1张奖券不中特等奖且不中一等奖”为大事N,则大事N与“1张奖券中特等奖或中一等奖”为对立大事,(9分)∴P(N)=1-P(A+B)=1-(11 000+1100)=9891 000.(11分)故1张奖券不中特等奖且不中一等奖的概率为9891 000.(12分)法二:不中特等奖且不中一等奖即为中二等奖或不中奖∴P=501 000+1 000-611 000=9891 000.(12分)[一点通]针对这个类型的题目,首先要推断所给已知大事是否为互斥大事,再将要求概率的大事写成几个已知概率的互斥大事的和.最终用概率加法公式求得.3.现有语文、数学、英语、物理和化学共5本书,从中任取1本,取出的是理科书的概率为________.解析:记取到语文、数学、英语、物理、化学书分别为大事A 、B 、C 、D 、E ,则A 、B 、C 、D 、E 互斥,取到理科书的概率为大事B 、D 、E 概率的和.∴P (B +D +E )=P (B )+P (D )+P (E )=15+15+15=35.答案:354.在某一时期内,一条河流某处的年最高水位在各个范围内的概率如下表:年最高水位(单位:m) [8,10) [10,12) [12,14) [14,16) [16,18) 概率0.10.280.380.160.08计算在同一时期内,河流这一处的年最高水位在下列范围内的概率: (1)[10,16)(m); (2)[8,12)(m); (3)水位不低于14 m.解:设水位在[a ,b )范围内的概率为P ([a ,b )).由于水位在各范围内对应的大事是互斥的,由概率加法公式得:(1)P ([10,16))=P ([10,12))+P ([12,14))+P ([14,16))=0.28+0.38+0.16=0.82. (2)P ([8,12))=P ([8,10))+P ([10,12))=0.1+0.28=0.38. (3)P ([14,18))=P ([14,16))+P ([16,18))=0.16+0.08=0.24.[例3] 一个箱子内有9张票,其号数分别为1,2,…,9.从中任取2张,其号数至少有一个为奇数的概率是多少?[思路点拨] 用对立大事的性质去求解. [精讲详析] 从9张票中任取2张,有 (1,2),(1,3),…,(1,9); (2,3),(2,4),…,(2,9); (3,4),(3,5),…,(3,9); …(7,8),(7,9);(8,9),共计36种取法.记“号数至少有一个为奇数”为大事B ,“号数全是偶数”为大事C ,则大事C 为从号数为2,4,6,8的四张票中任取2张有(2,4)(2,6)(2,8)(4,6)(4,8)(6,8)共6种取法.∴P (C )=636=16,由对立大事的性质得P (B )=1-P (C )=1-16=56.[一点通]1.求简单大事的概率通常有两种方法:一是将所求大事转化成彼此互斥的大事的和;二是先去求对立大事的概率.2.涉及到“至多”“至少”型的问题,可以用互斥大事以及分类争辩的思想求解,当涉及的互斥大事多于两个时,一般用对立大事求解.5.甲、乙两颗卫星同时监测台风,在同一时刻,甲、乙两颗卫星精确 预报台风的概率分别为0.8和0.75,则在同一时刻至少有一颗卫星预报精确 的概率为________.解析:由对立大事的性质知在同一时刻至少有一颗卫星预报精确 的对立大事为两颗卫星预报都不精确 ,故所求概率为1-(1-0.8)·(1-0.75)=0.95.答案:0.95 6.某学校成立了数学、英语、音乐3个课外爱好小组,3个小组分别有39,32,33个成员,一些成员参与了不止1个小组,具体状况如图所示.随机选出一个成员,求:(1)他至少参与2个小组的概率; (2)他参与不超过2个小组的概率.解:(1)由题图知3个课外爱好小组的总人数为60.用A 表示大事“选取的成员只参与1个小组”,则A 表示“选取的成员至少参与2个小组”.于是P (A )=1-P (A )=1-6+8+1060=35.(2)用大事B 表示“选取的成员参与不超过2个小组”,用B 表示“选取的成员参与3个小组”,所以P (B )=1-P (B )=1-860=1315.1.利用互斥大事的概率加法公式可以求一些简单大事的概率,但肯定要留意公式使用前提,一是两两互斥,二是有一个发生.2.利用互斥大事与对立大事的概率公式有助于解决较简单的古典概型问题,可以把一个简单大事分成几个简洁的互斥大事或者考虑一个大事的对立大事往往能达到化繁为简的目的.课下力量提升(十八) 一、填空题1.从装有数十个红球和数十个白球的罐子里任取两球,下列状况中是互斥但不对立的两个大事是________.①至少有一个红球;至少有一个白球 ②恰有一个红球;都是白球 ③至少有一个红球;都是白球④至多有一个红球;都是红球解析:对于①,“至少有一个红球”可能为一个红球、一个白球,“至少有一个白球”可能为一个白球,一个红球,故两大事可能同时发生,所以不是互斥大事;对于②,“恰有一个红球”,则另一个必是白球,与“都是白球”是互斥大事,而任取两个球还有都是红球的情形,故两大事不是对立大事;对于③,“至少有一个红球”为都是红球或一红一白,与“都是白球”明显是对立大事;对于④,“至多有一个红球”为都是白球或一红一白,与“都是红球”是对立大事.答案:②2.口袋中装有100个大小相同的红球、白球、黑球,其中红球45个,从口袋中摸出一个球,摸出白球的概率是0.23,则摸出黑球的概率是________.解析:∵摸出红球的概率P 1=45100=0.45,∴摸出黑球的概率为1-0.45-0.23=0.32. 答案:0.32 3.如图所示,靶子由一个中心圆面Ⅰ和两个同心圆环Ⅱ、Ⅲ构成,射手命中Ⅰ、Ⅱ、Ⅲ的概率分别为0.15、0.20、0.45,则不中靶的概率是________.解析:设射手“命中圆面Ⅰ”为大事A ,“命中圆环Ⅱ”为大事B ,“命中圆环Ⅲ”为大事C ,“不中靶”为大事D ,则A ,B ,C ,D 彼此互斥,故射手中靶概率为P (A +B +C )=P (A )+P (B )+P (C )= 0.15+0.20+0.45=0.80.由于中靶和不中靶是对立大事,所以不中靶的概率P (D )=1-P (A +B +C )=1-0.80=0.20. 答案:0.204.袋中有2个白球和3个黑球,从中任取两个球,则取得的两球中至少有1个白球的概率是________. 解析:从5个球中任取两个球含10个基本大事,取得的两球中没有白球的含3个基本大事,且此大事 与大事A :“取得的两球中至少有一个白球”对立, 则P (A )=1-P (A -)=1-310=710.答案:7105.大事A ,B 互斥,它们都不发生的概率为25,且P (A )=2P (B ),则P (A -)=________.解析:由于大事A ,B 互斥,它们都不发生的概率为25,所以P (A )+P (B )=1-25=35.又由于P (A )=2P (B ),所以P (A )+12P (A )=35,所以P (A )=25,所以P (A -)=1-P (A )=1-25=35.答案:35二、解答题6.推断下列给出的每对大事是否为互斥大事?是否为对立大事?并说明理由. 从40张扑克牌(红桃、黑桃、方块、梅花,点数从1~10各10张)中,任取一张.(1)“抽出红桃”与“抽出黑桃”; (2)“抽出红色牌”与“抽出黑色牌”;(3)“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”.解:(1)是互斥大事,不是对立大事.从40张扑克牌中任意抽取1张,“抽出红桃”和“抽出黑桃”是不行能同时发生的,所以是互斥大事.同时,不能保证其中必有一个发生,这是由于还可能抽出“方块”或者“梅花”,因此,二者不是对立大事.(2)既是互斥大事,又是对立大事.从40张扑克牌中,任意抽取1张.“抽出红色牌”与“抽出黑色牌”,两个大事不行能同时发生,但其中必有一个发生,所以它们既是互斥大事,又是对立大事.(3)不是互斥大事,当然不行能是对立大事.从40张扑克牌中任意抽取1张.“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”这两个大事可能同时发生,如抽得10,因此,二者不是互斥大事,当然不行能是对立大事.7.某学校篮球队、羽毛球队、乒乓球队的某些队员不止参与了一支球队,具体状况如图所示,现从中随机抽取一名队员,求:(1)该队员只属于一支球队的概率; (2)该队员最多属于两支球队的概率.解:(1)设“该队员中属于一支球队”为大事A ,则大事A 的概率为P (A )=5+4+320=35.(2)设“该队员最多属于两支球队”为大事B ,则大事B 的概率为P (B )=1-220=910.8.甲、乙两人玩一种玩耍,每次由甲、乙各出1到5根手指头,若和为偶数则算甲赢,否则算乙赢. (1)若以A 表示“和为6”的大事,求P (A );(2)现连玩三次,以B 表示“甲至少赢一次”的大事,C 表示“乙至少赢两次”的大事,则B 与C 是否为互斥大事?试说明理由;(3)这种玩耍规章公正吗?试说明理由.解:(1)令x 、y 分别表示甲、乙出的手指数,则基本大事可表示为坐标中的数表示甲、乙伸出的手指数的和. 由于S 中点的总数为5×5=25, 所以基本大事总数n =25. 大事A 包含的基本大事为(1,5),(2,4),(3,3),(4,2),(5,1),共5个, 所以P (A )=525=15.(2)B 与C 不是互斥大事,如“甲赢一次,乙赢两次”的大事中,大事B 与C 是同时发生的.(3)由(1)知,和为偶数的基本大事数为13个,即甲赢的概率为1325,乙赢的概率为1225,所以这种玩耍规章不公正.。
3.4互斥事件教学要求1、了解互斥事件及对立事件的概念,能判断某两个事件是否是互斥事件,进而判断它们是否是对立事件.2、正确理解两个互斥事件的概率加法公式,会用相关公式进行简单概率计算.【课堂互动】案例:体育考试的成绩分为四个等级:优、良、中、不及格,某班50名学生参加了体育考试,结果如下: 优85分及以上 9人 良75----84分 15人 中60----74分 21人 不及格 60分以下 5人问题:在同一次考试中,某一位同学能否既得优又得良?从这个班任意抽取一位同学,那么这位同学的体育成绩为“优良”(优或良)的概率是多少?【解】体育考试的成绩的等级为优、良、中、不及格的事件分别记为D C B A ,,,.在同一次体育考试中,同一人不能同时既得优又得良,即事件B A ,是不可能同时发生的.在上述关于体育考试成绩的问题中,用事件B A +表示事件“优”和“良”,那么从50人中任意抽取1个人,有50种等可能的方法,而抽到优良的同学的方法有 9+15种,从而事件B A +发生的概率50159)(+=+B A P . 另一方面509)(=A P ,5015)(=B P ,因此有)()()(B P A P B A P +=+. 【小结】1.互斥事件:不能同时发生的两个事件称为互斥事件.2.互斥事件的概率 :如果事件A ,B 互斥,那么事件B A +发生的概率,等于事件A ,B 分别发生的概率的和,即)()()(B P A P B A P +=+.一般地,如果事件n A A A ,,,21 两两互斥,则1212()()()()n n P A A A P A P A P A ++=+++.3.对立事件:两个互斥事件必有一个发生,则称这两个事件为对立事件.事件A 的对立事件记为A .对立事件A 和A 必有一个发生,故A A +是必然事件,从而1)()()(=+=+A P A P A A P . 因此,我们可以得到一个重要公式)(1)(A P A P -=.【精典范例】例1 一个射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件? 事件A :命中环数大于7环;事件B :命中环数为10环;事件C :命中环数小于6环;事件D :命中环数为6、7、8、9、10环.【分析】要判断所给事件是对立还是互斥,首先将两个概念的联系与区别弄清楚,互斥事件是指不可能同时发生的两事件,而对立事件是建立在互斥事件的基础上,两个事件中一个不发生,另一个必发生.【解】A 与C 互斥(不可能同时发生),B 与C 互斥,C 与D 互斥,C 与D 是对立事件(至少一个发生).例2 一只口袋内装有大小一样的4只白球与4只黑球,从中一次任意摸出2只球.记摸出2只白球为事件A ,摸出1只白球和1只黑球为事件B .问事件A 和B 是否为互斥事件?是否为对立事件?【解】 事件A 和B 互斥因为从中一次可以摸出2只黑球,所以事件A 和B 不是对立事件.例3 某人射击1次,命中7---10环的概率如下表所示: 命中环数10环 9环 8环 7环 概率 0.12 0.18 0.28 0.32(1) 求射击一次,至少命中7环的概率;(2) 求射击1次,命中不足7环的概率.【解】 记事件“射击1次,命中k 环”为),10,(≤∈k N k A k 且则事件k A 两两相斥.(1)记“射击一次,至少命中7环”的事件为A ,那么当10A ,9A ,8A 或7A 之一发生时,事件A 发生.由互斥事件的概率加法公式,得)()(78910A A A A P A P +++= =)()()()(78910A P A P A P A P +++=9.032.028.018.012.0=+++.(2)事件“射击一次,命中不足7环”是事件“射击一次,命中至少7环”的对立事件,即A 表示事件“射击一次,命中不足7环”.根据对立事件的概率公式,得 1.09.01)(1)(=-=-=A P A P .答 此人射击1次,至少命中7环的概率为0.9;命中不足7环的概率为0.1.例4 黄种人群中各种血型的人所占的比如下表所示: 血型 A BAB O 该血型的人所占比/% 2829 8 35 已知同种血型的人可以输血,O 型血可以输给任一种血型的人,任何人的血都可以输给AB 型血的人,其他不同血型的人不能互相输血.小明是B 型血,若小明因病需要输血,问:(1)任找一个人,其血可以输给小明的概率是多少?(2)任找一个人,其血不能输给小明的概率是多少?【解】 (1)对任一人,其血型为A ,B ,AB ,O 型血的事件分别记为,,,,D C B A ''''它们是互斥的.由已知,有35.0)(,08.0)(,29.0)(,28.0)(='='='='D P C P B P A P . 因为B ,O 型血可以输给B 型血的人,故“可以输给B 型血的人”为事件D B '+'.根据互斥事件的加法公式,有64.035.029.0)()()(=+='+'='+'D P B P D B P .(2)由于A ,AB 型血不能输给B 型血的人,故“不能输给B 型血的人”为事件 C A '+',且36.008.028.0)()()(=+='+'='+'C P A P C A P .答 任找一人,其血可以输给小明的概率为0.64,其血不能输给小明的概率为0.36. 注 :第(2)问也可以这样解:因为事件“其血可以输给B 型血的人”与事件“其血不能输给B 型血的人”是对立事件,故由对立事件的概率公式,有36.064.01)(1)(=-='+'-='+'D B P D B P追踪训练1、连续掷3次硬币,那么互为对立的事件是 ( C )A 、至少一次是正面和最多有一次正面;B 、最多有一次正面和恰有两次正面;C 、不多于一次正面和至少有两次正面;D 、至少有两次正面和恰有一次正面.2、一射手进行一次射击,给出4个事件:①命中的环数大于8,②命中的环数大于5,③命中的环数小于4,④命中的环数小于6,其中互斥事件的有( C )A 、1组B 、2组C 、3组D 、4组3、在一批产品中,有多于4件的次品和正品,从这批产品中任意抽取4件,事件A 为抽取4件产品中至少有一件次品,那么A 为 ( C )A 、抽取的4件产品中至多有1件次品;B 、抽取的4件产品中恰有1件次品;C 、抽取的4件产品中没有次品;D 、抽取的4件产品中有多于4件的次品.4、某射手在一次射击训练中,射中10环、9环、8环、7环的概率分别为0.21、0.23、0.25、0.28,计算这个射手在一次射击中:(1)射中10环或7环的概率;(2)不够7环的概率.答:(1)1P =0.21+0.28=0.49;(2)2P =1-0.21-0.23-0.25-0.28=0.03.。
互斥事件一、教学目标1、知识与技能(1)了解互斥事件、对立事件的概念,能判断某两个事件是否是互斥事件、是否是对立事件;(2)理解两个互斥事件概率的加法公式,用相关公式进行简单概率计算,掌握对立事件的计算公式。
2、过程与方法(1)通过设置问题,引导学生发现、思考,逐步概括出互斥事件、对立事件的概念。
(2)通过小组合作学习,探讨并得出互斥事件的概率加法公式,通过正确的理解,准确利用公式求相关概率。
3、情感态度与价值观通过学生自己动手、动脑和分组讨论来获取知识,体会数学知识与现实世界的联系;逐步培养学生自主学习的习惯和与人合作的精神。
二、学习重点互斥事件、对立事件的概念;互斥事件、对立事件概率公式及简单应用。
三、学习难点互斥事件与对立事件的区别和联系;互斥事件概率加法公式及其应用四、教学用具多媒体教学五、教学过程一、问题情境体育考试的成绩分为4个等级;优、良、中、不及格.某班50名学生参加了体育考试,结果如下:优85分以上9人良75~8415人中60~7421人不及格60分以下5人问题1:在同一次考试中,某一位同学能否既得优又得良?问题2:从这个班任意抽取一位同学,那么这位同学的测试成绩为“优”的概率,为“良”的概率,为“优良”(优或良)的概率分别是多少? 二、学生活动 优的概率为509,良的概率为5015.优良的概率为5024,是优和良的概率之和.三、建构数学将体育考试成绩的等级为优、良、中、不及格的事件分别记为A ,B ,C ,D . 概念一:不能同时发生的两个事件称为互斥事件。
问一:你能否列举生活中的互斥事件?概念二:如果事件A ,B 是互斥事件,那么事件A +B 发生(即A ,B 中至少有一个发生)的概率,等于事件A ,B 分别发生的概率的和,即()()()P A B P A P B +=+。
推广形式:一般地,如果事件A 1,A 2,…,A n 彼此互斥,那么P (A 1+A 2+…+A n = P A 1P A 2…P A n 。