毕奥—萨伐尔定律,安培环路定理
- 格式:ppt
- 大小:803.00 KB
- 文档页数:27
物理(下)作业专业班级:姓名:学号:第十二章稳恒磁场(1)一、选择题1、在真空中设置一直角坐标系oxyz ,在其坐标原点处放置一电流元l Id,电流方向沿y轴正向。
则根据毕奥—萨伐尔定律,该电流元在(0,a ,0)点处的磁感应强度的大小为(A )、024Idla;(B )、04Idla;(C )、024Ia;(D )、0。
[]2、真空中有一载流直导线,如图所示。
则在纸面内P 、M 两点的磁感应强度分别为P B和M B,它们的方向应为:(A )、P B 垂直纸面向里,M B也垂直纸面向里;(B )、P B 垂直纸面向里,M B 垂直纸面向外;(C )、P B 垂直纸面向外,M B 垂直纸面向里;(D )、P B 垂直纸面向外,M B 也垂直纸面向外。
[]二、填空题1、设在真空中有一半径为R 的圆形载流线圈,共有N 匝,其上通有电流I 。
则在其圆心处的磁感应强度的大小为____________________。
2、如图所示,一无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O点的磁感应强度大小等于____________________;其方向为__________________。
3、一正方形线圈ABCD ,每边长度为a ,通有电流为I ,则正方形中心O 处的磁感应强度大小为__;及其方向为__________________。
三、计算题1、(2019暨南大学)两根直导线沿铜环的半径方向在A 、B 两点与铜环连接,铜环粗细均匀,半径为R 。
现向直导线中通入强度为I 的电流,流向如图所示,求铜环中心O 处的磁感应强度.MD2、如图,一根无限长的直导线,通有电流I,中部一段弯成半径为a的圆弧形,求图中P 点磁感应强度的大小。
四、简答题(2016年兰州大学)简述毕奥--萨伐尔定律。
物理(下)作业专业班级:姓名:学号:第十二章稳恒磁场(2)一、选择题1、如图所示,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L 。
由毕奥萨伐尔定律导出安培环路定理好呀,咱们今天就来聊聊毕奥萨伐尔定律和安培环路定理,这可是一对好搭档,像老夫老妻一样,彼此相辅相成。
你可能会想,这俩定律有什么特别之处,能让人如此兴奋呢?别急,慢慢来,咱们一步步揭开它们的神秘面纱。
毕奥萨伐尔定律。
这名字听着就挺复杂,不过其实说白了,就是讲磁场和电流的关系。
想象一下,你在海边,看到水波荡漾。
电流就像那海浪,一波接一波,而磁场就是那些水波掀起的涟漪。
电流越强,涟漪就越大,形成的磁场也就越强。
是不是有点儿形象?你要是拿个电流计,把电流一开,磁场就像调皮的孩子一样,立马跑出来,四处捣乱。
这时候,你就能感受到电流产生的磁场影响了。
安培环路定理又是什么呢?听起来好像很严肃,其实它告诉我们,磁场和电流之间的关系更是深得不得了。
安培可真是个聪明的人,他意识到,磁场的形成不是随意的,而是有规律可循的。
就像你去一家餐馆,服务员会告诉你菜单上的菜如何搭配,磁场也是有自己的“菜单”的。
通过安培的定理,我们可以知道,围绕电流流动的路径,磁场会形成一个闭合的环路,就像是舞会上人们手拉手围成的圆圈。
电流在中间转悠,磁场就在旁边欢快地跳舞。
咱们就要把这俩定律捏合在一起,看看它们怎么亲密无间地合作。
想象一下你手里拿着一个导线,电流在里面欢快地游来游去。
根据毕奥萨伐尔定律,你知道这个电流会在周围制造出一个磁场,而这个磁场的强度和方向,取决于电流的强度和位置。
你绕着这个导线走一圈,就能用安培环路定理来测量这个磁场。
听起来像个科学实验,是吧?其实这就是物理学的魅力,越是深入,越是让人惊叹。
哦,还有一点要提的是,毕奥萨伐尔定律其实是从微观层面出发的,它告诉我们每一小段电流都会产生一个微小的磁场,而安培环路定理则把这些小磁场结合在一起,形成了一个整体的磁场。
就像是拼积木,每一块都有它的位置,最终组合成一座宏伟的建筑。
每当你看到这些小块搭起来,心里是不是也会产生一丝成就感呢?有趣的是,咱们在生活中也能见到这些原理的身影。
安培环路定理是电磁学中非常重要的原理之一,它描述了磁场的环路积分与通过该环路的电流之间的关系。
而毕奥萨伐尔定律则是安培环路定理的应用,它指出了磁场的旋度与电流密度之间的关系。
本文将围绕这两个定律展开,从安培环路定理的推导开始,逐步深入探讨毕奥萨伐尔定律的相关内容。
1. 安培环路定理的推导安培环路定理是从麦克斯韦方程组中的法拉第电磁感应定律和高斯定理推导而来的。
首先我们回顾一下这两个定律的表达式:- 法拉第电磁感应定律:$\oint_{\partial \Sigma} \mathbf{E} \cdot \mathrm{d} \boldsymbol{\ell}=-\frac{\partial}{\partialt}\int_{\Sigma} \mathbf{B} \cdot \mathrm{d} \mathbf{S}$- 高斯定理:$\oint_{\partial V} \mathbf{F} \cdot \mathrm{d}\mathbf{S} = \int_V \nabla \cdot \mathbf{F} \, \mathrm{d}V$其中,$\Sigma$ 为任意闭合曲面,$\partial \Sigma$ 为该闭合曲面的边界,$\mathbf{E}$ 为电场强度,$\mathbf{B}$ 为磁感应强度,$\mathbf{F}$ 为任意矢量场,$\mathbf{S}$ 为曲面的法向量,$\boldsymbol{\ell}$ 为曲线的切向量,$V$ 为任意闭合曲面围成的体积。
通过对法拉第电磁感应定律取环路积分,我们可以得到:$\oint_{\partial \gamma} \mathbf{E} \cdot \mathrm{d}\boldsymbol{\ell} = -\frac{\partial}{\partial t} \iint_{\Sigma}\mathbf{B} \cdot \mathrm{d} \mathbf{S}$再根据斯托克斯定理,上式可以转化为:$\oint_{\partial \gamma} \mathbf{E} \cdot \mathrm{d}\boldsymbol{\ell} = -\frac{\partial}{\partial t} \iint_{\Sigma}\nabla \times \mathbf{A} \cdot \mathrm{d} \mathbf{S}$其中,$\mathbf{A}$ 为矢量势。
安培环路定理和毕奥萨伐尔定律是电磁学中重要的定理和法则,它们在描述电路中电流和磁场的关系上起着关键作用。
下面将分别对这两个定理进行介绍和解析。
一、安培环路定理安培环路定理又称安培定律,是电磁学中重要的定理之一,它描述了磁场中闭合曲线上的磁场强度与该曲线所围成的电流的关系。
安培环路定理可以总结为以下几点:1. 磁场环路定理的表述在闭合曲线上的磁场强度的矢量和等于该曲线所围成的电流的矢量和乘以一个常数μ0,即ΣH·dl=μ0ΣI。
2. 安培环路定理的数学表达式安培环路定理的数学表达式为∮H·dl=μ0∑I,其中∮H·dl表示磁场强度矢量沿着曲线的积分,μ0为真空磁导率,∑I表示曲线所围成电流的代数和。
3. 安培环路定理的应用安培环路定理可以用于计算闭合曲线中的磁场强度,是电磁学中重要的工具之一。
通过安培环路定理,可以求解复杂电路中的磁场分布,为电磁学的研究和应用提供了重要的方法。
二、毕奥萨伐尔定律毕奥萨伐尔定律是电磁学中描述通过导体中电流产生的磁场的定律,它对于电路和电磁场的分析具有重要意义。
以下是毕奥萨伐尔定律的主要内容:1. 毕奥萨伐尔定律的表述毕奥萨伐尔定律指出,通过导体中电流产生的磁场的强度与导体上任意点到电流元素的距离成正比,在大小和方向上满足右手定则。
2. 毕奥萨伐尔定律的数学表达式毕奥萨伐尔定律的数学表达式为B=μ0/4π∫(Idl×r)/r^3,其中B表示磁场强度,μ0为真空磁导率,Idl表示电流元素,r为导体上任意点到电流元素的距离。
3. 毕奥萨伐尔定律的应用毕奥萨伐尔定律可用于计算导体中的磁场分布,也可以应用于分析电路中的电流产生的磁场对周围环境的影响。
在电磁学的理论研究和工程实践中,毕奥萨伐尔定律都具有重要的应用价值。
总结安培环路定理和毕奥萨伐尔定律是描述电流和磁场之间关系的重要定理,在电磁学的理论研究和工程应用中起着关键作用。
通过学习和理解这两个定律,可以更好地理解电磁学的基本原理,为电路和电磁场的分析提供重要的方法和工具。
第九章磁场Stationary Magnetic Field磁铁和电流周围存在着磁场,磁现象的本质就是电荷的运动, 磁场的基本特性是对位于其中的运动电荷有力的作用.1、磁感应强度的定义;2、毕奥-萨伐尔定律,安培环路定理;3、几种电流产生的磁感应强度的计算;4、磁场对运动电荷、载流导线、载流线圈的作用;5、磁场和磁介质之间的相互作用.第一节磁场磁感应强度磁现象永磁体——磁铁的性质S N(1)具有磁性(magnetism),能吸引铁、钴、镍等物质;(2)永磁体具有磁极(magnetic pole),磁北极和磁南极;(3)磁极之间存在相互作用,同性相斥,异性相吸;(4)磁极不能单独存在.奥斯特实验(1819年)NS I在载流导线附近的小磁针会发生偏转Hans ChristianOersted,1777~1851年丹麦物理学家1820年安培的发现SN F I 放在磁体附近的载流导线或线圈会受到力的作用而发生运动.安培分子电流假说(1822年)一切磁现象的根源是电流!磁性物质的分子中存在着“分子电流”,磁性取定于物质中分子电流的磁效应之和.一、磁场(Magnetic Field)电流~~~磁铁、电流~~~电流运动电荷~~~运动电荷、运动电荷~~~磁铁通过一种特殊物质的形式——磁场来传递的.磁铁周围存在磁场,运动电荷和载流导线周围也存在磁场.磁场对其中的运动电荷和载流导线有力的作用;磁力也能做功,具有能量.电流与电流之间的相互作用I I ++--II ++--磁场对运动电荷的作用S +电子束N运动电荷磁场运动电荷从运动的点电荷在磁场中所受的磁力来定义磁感应强度的大小和方向!B 方向:小磁针在磁场中,其磁北极N 的指向B 二、磁感应强度(Magnetic Induction)磁感应强度:描述磁场性质的物理量B点电荷在磁场中运动的实验+B v F max c 、电荷q 沿磁场方向运动时,F = 0;b 、F 大小随v 变化;d 、电荷q 沿垂直磁场方向运动时,F max .(2)在垂直磁场方向改变速率v ,改变点电荷电量q在磁场中同一点,F max /qv 为一恒量,而在不同的点上,F max /qv 的量值不同.(1)点电荷q 以不同运动v a 、受磁力,;F v磁感应强度的大小:qv F B m ax =单位:T 特斯拉(Tesla)G 高斯(Gauss)T10G 14-=磁感应强度的方向:max F vB a.由小磁针的N 极指向定,b.由到的右手螺旋法则定max F v三、磁感应线用磁感应线来形象地描写磁感应强度这一矢量场在空间的分布:曲线上某点处的切向表示该点的方向;曲线在某处的疏密表示该点的大小.B B 磁感应线的特点★任一条磁感应线是闭合的,或两端伸向无穷远;★磁感应线与载流回路互相套联;★任两条磁感应线不能相交.IB四、磁通量(Magnetic Flux)通过磁场中某给定面的磁感应线的总数.θcos d d m S B Φ=⎰⎰=⋅=S S m S B S B Φd cos d θ 单位:Wb ,1Wb=1T ﹒m 2磁通量:穿过磁场中任意闭合曲面的磁通量为零.磁场是无源场:其磁感应线闭合成环,无头无尾;同时也表示不存在磁单极,无单个的N 或S 极.The total magnetic flux through a closed surface is always zero.d 0S B S ⋅=⎰ 五、磁场的高斯定理(Gauss’s law for magnetism)寻找磁单极子1975 年:美国加州大学,休斯敦大学联合小组报告,用装有宇宙射线探测器气球在40 km 高空记录到电离性特强离子踪迹,认为是磁单极. 为一次虚报.1982年,美国斯坦福大学报告,用d = 5 cm 的超导线圈放入D =20 cm 超导铅筒. 由于迈斯纳效应屏蔽外磁场干扰,只有磁单极进入会引起磁通变化,运行151天,记录到一次磁通突变, 改变量与狄拉克理论相符. 但未能重复,为一悬案.人类对磁单极的探寻从未停止,一旦发现磁单极,将改写电磁理论.1820年实验得到:长直载流导线周围的磁感应强度与距离成反比与电流强度成正比. r I B Laplace 对此结果作了分析整理,得出了电流元产生的磁场的磁感应强度表达式.一、毕奥—萨伐尔定律(Law of Biot and Savart)I B r 第二节毕奥—萨伐尔定律d I l IBd l r d I l02d sin d 4I l B r μθπ=002d d 4I l r B r μπ⨯= μo 为真空中的磁导率:μo = 4 π⨯10-7 T·m·A -1. 整个载流导线在P 点产生的磁感应强度为:002d d 4L LI l r B B r μπ⨯==⎰⎰ P d I l θr d Bnqvs I =0024qv r B r μπ⨯= ++++++I S v d I l 导体中带电粒子的定向运动形成电流I ,并由此可分析得到运动电荷产生的磁场.+v r B ×-v r B·二、运动电荷的磁场圆电流轴线上的磁感应强度02d sin d 4I l B r μθπ=02d sin 90cos d cos 4x I l B B B r μααπ︒===⎰⎰22xR r +=22cos R R x α=+x x P R αr d B d I ld B x d B y 毕奥—萨伐尔定律的应用d I l r ⊥ 注意到,通过对称性分析,可知B y = 0,因此:()()2200323222220d 42RR l IR B R x R x πμμπ==++⎰方向:沿轴线与电流成右手螺旋关系.()2032222IRB R x μ=+定义圆电流磁矩:mp IS ISn == 在圆心处x = 0,B 大小:R IB 20μ=IS m p ()2322m 02x R P B += πμ圆电流轴线上磁场的另一种表达式:例:亥姆霍兹圈:两个完全相同的N 匝共轴密绕短线圈,其中心间距与半径R 相等,通有同向平行等大电流I . 求轴线上O 1、O 2之间的磁场.x I P1o 匝N R ⋅⋅R R 匝N o 2o I x o1o 2B 1B 2o 实验室用近似均匀磁场解20322222P NIR B R R x μ=+⎡⎤⎛⎫++ ⎪⎢⎥⎝⎭⎣⎦20322222NIRR R x μ⎡⎤⎛⎫+- ⎪⎢⎥⎝⎭⎣⎦00.72O NIB Rμ=0120.68O O NIB B Rμ==θ2Oθ1Pa d xx载流长直导线的磁感应强度02d sin d 4I x B rμθπ=tan x a θ=-2d d sin a x θθ=θsin a r =2022sin d sin d 4sin I aB B aμθθθπθ==⎰⎰Iθrd B 210sin d 4I B a θθμθθπ=⎰()012cos cos 4I a μθθπ=-方向:对图中所在的P 点,磁感应强度垂直纸面向外.()012cos cos 4I B aμθθπ=-对无限长载流导线θ1= 0 , θ2= π:02I B aμπ=半无限长载流导线θ1= π/2 , θ2 = π:04I B aμπ=若P 点在导线延长线上:B =导线密绕,且长度远大于直径:=外B 实验可知:内部的磁感应强度只有平行于轴线的分量;并且平行于轴的任一直线上各点大小相等.︒⋅⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅BI单位长度上的匝数n载流长直螺线管内部的磁场︒⋅⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅BInIB 0μ=内部为均匀磁场,在长直螺线管的两端点处的磁场为中间的一半:012S B nIμ=0nIμ012nI μ通过对圆电流的磁感应强度的叠加积分,可以求得螺线管中间的磁感应强度大小为:方向由右手螺旋法则确定.恒定磁场是无源场,静电场是有源场;静电场是保守场,是无旋场;对静电场和恒定磁场作类比分析:1d SE S q ε⋅=∑⎰d 0LE l ⋅=⎰d 0SB S ⋅=⎰d ?LB l ⋅=⎰表达了恒定磁场的什么性质?第三节安培环路定理安培环路定理:0d LB l Iμ⋅=∑⎰L 磁场中任一闭合曲线—具有一定绕向的环路是环路上各点的磁感应强度,为空间所有电流产生,包括穿过L 的和不穿过的电流.:B:穿过以L 为边界的任意曲面的电流的代数和.I ∑------对L 包围的电流求代数和,并且规定:与L 绕向成右旋关系的电流I i >0,否则I i <0.以长直电流的磁场为例验证1) 路径选在垂直于长直载流导线的平面内,以导线与平面交点O 为圆心,半径为r 的圆周路径L ,其指向与电流成右手螺旋关系.BIr oL00200cos 0d d =d 22rL L I I B l l l r rIπμμππμ⋅=⋅=⎰⎰⎰BIr oL若电流反向:02000d d 2 =d 2cos L L rI I B l l r I l rππμπμμπ⋅=⋅-=-⎰⎰⎰2) 在垂直于导线平面内围绕电流的任意闭合路径Bθϕd ld rLI 02020000d 2 =d 2 d cos 2d L L I B l r I r r I I l ππμπμϕπμϕπμθ⋅=⋅==⎰⎰⎰⎰同理,在电流反向时------积分结果取负.3) 闭合路径不包围电流ϕ1L 2L I()()[]121200d d d =d d 2 02LL L L L B l B l B l I Iμϕϕπμϕϕπ⋅=⋅+⋅+=+-=⎰⎰⎰⎰⎰4) 空间存在多个长直电流时()12110in d d d d =L LLLiLB l B B l B l B l I μ⋅=++⋅=⋅+⋅+⎰⎰⎰⎰∑安培环路定理揭示磁场是非保守场,是涡旋场.l B L d ⋅⎰穿过的电流:对和均有贡献BL 不穿过的电流:对上各点有贡献;对无贡献BL l B Ld ⋅⎰L 0d LB l Iμ⋅=∑⎰可证对任意的稳恒电流和任意形式的闭合环路均成立.注意:练习:如图,流出纸面的电流为2I ,流进纸面的电流为I ,则下述各式中那一个是正确的?⊗∙I 21L 2L 3L 4L I10 ( d )2A L B l I μ⋅=⎰ 20(B) d L B l I μ⋅=⎰30 d (C)L B l I μ⋅=-⎰40(D) d L B l I μ⋅=-⎰Br RB RrP IQ 长直圆柱形载流导线内外的磁场圆柱截面半径为R ,电流I 沿轴流动.过P 点(或Q 点)取半径为r 的磁感应线为积分回路,求出B 矢量的环流:0d 2LB l B r I πμ⋅=⋅=∑⎰r ≥R012I I I B r r μπ==∝∑,r< R20222I r IrI B r R Rπμππ==∝∑,方向沿圆周与电流成右手关系!or LL BoRrr1∝B r∝思考:无限长均匀载流直圆筒,B ~r 曲线?BoRr管外磁场为零.无限长直载流螺线管内磁场︒⋅⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅BI单位长度上的匝数n解密绕长螺线管,已知I , n ,计算管内的磁感应强度.dc ab 作矩形安培环路abcd 如图,绕行方向为逆时针.00d d 000=b c d a LabcdB l B l B dl B dl B dlBcd I ncdIμμ⋅=⋅+⋅+⋅+⋅=+++=⎰⎰⎰⎰⎰∑0B nIμ=无限长螺线管磁场为均匀.求螺线环内的磁感应强度I l B L∑=⋅⎰0d μ 02B r NIπμ⋅=rNI B πμ20=2N n rπ=nIB 0μ=Or 1r 2Pr 为平均半径, 考虑到对称性,环内磁场的磁感应线都是同心圆,选择通过管内某点P 的磁感应线L 作为积分环路:方向由电流方向通过右手法则判断.第四节磁场对运动电荷的作用一. 洛仑兹力磁场对运动电荷的作用f qv B=⨯ 大小:θsin qvB F =特点:不改变大小,只改变方向,不对做功.vq v vBf运动正电荷受力方向垂直于和构成的平面,成右手螺旋.v B1、运动方向与磁场方向平行sin F qvB θ=θ= 0 , F = 0带电粒子在均匀磁场中的运动匀速直线运动θBvq+f⊗θBvq-fB+v⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯B 2、运动方向与磁场方向垂直RvmqvB 2=qBmv R =v B f qvB⊥⇒=R22R m T v qBππ==匀速圆周运动周期f+v半径托克马克装置3、沿任意方向方向运动匀速圆周运动与匀速直线运动的合成——轨迹为螺旋线qBmv R θsin =qBm T π2=螺距//2cos m h v T v qBπθ==h +B ⊥v //v θv例有一均匀磁场,B = 1.5 T ,水平方向由南向北. 有一5.0 兆电子伏特的质子沿竖直向下的方向通过磁场,求作用在质子上的力?(m = 1.67⨯10-27 kg )) J (100.8) eV (100.5211362k -⨯=⨯==mv E ) s m (101.31067.1100.822172713k ---⋅⨯=⨯⨯⨯==m E v ︒⨯⨯⨯⨯⨯==-90sin 5.1101.3106.1sin 719θqvB F )N (104.712-⨯=解方向向东F q v 下B 北二、质谱仪(mass spectrograph)R +-⋅⋅⋅P ⋅⋅⋅⋅⋅⋅⋅⋅⋅N ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅B N :粒子源,P :速度选择器 qE qvB v E B ''=⇒=质谱分析:qB mv R x 22==E x B qB m 2'=谱线位置:同位素质量;谱线黑度:相对含量.B’三、霍尔效应(Hall effect)现象:通电流I ,磁场垂直于I ,在既垂直于I ,又垂直于的方向出现电势差∆U. B B m e F qv B F qE =⨯= H I IB U Bb R nqbd d∆==霍尔电势差:解释:载流子q 以漂移,受到磁场力,正负电荷上下两侧积累,形成电场,受力平衡时,有稳定的霍尔电场.v x y zB I b d P 型半导体v q +++++++-+------e F m F I nqvbd =霍尔系数R H 与载流子浓度n 成反比. 在金属中,由于载流子浓度很大,因此霍尔系数很小,相应地霍尔效应也很弱; 而在半导体中,载流子浓度较小,因此霍尔效应也较明显. 霍尔效应是半导体研究的重要手段. 问题:对n 型半导体,霍尔电势差的方向如何?应用:测载流子浓度测载流子电性—半导体类型B 测磁场(霍耳元件)H 1R nq霍尔系数(Hall coefficient):一、安培定律(Ampère Law )磁场对电流元的作用Bl I F ⨯=d d 载流导线所受磁场力d d L L F F I l B ==⨯⎰⎰ 第五节磁场对电流的作用磁矩L I B d I l Fm F qv B =⨯ d F qv BdN qv BnSdl =⨯=⨯载流直导线在均匀磁场中所受的力d L F I l B =⨯⎰ sin d L F IB l θ=⎰θsin ILB F =sin d L IB l θ=⎰安培力的方向由右手螺旋法则可知为垂直纸面向里×IBθFB θd I lLA B C D I 1I 21d I l 2d I l 1B 2B 1d F 2d F 平行长直载流导线间的相互作用力距a 的两无限长直导线,I 1、I 2,导线CD 上的电流元受力:2222d d sin F B I l θ=012 ,22I B a μπθπ==CD 单位长度受力:2012121d d d 2d F I I F l a l μπ==安培:真空中相距为1m 的无限长直细导线,载有相等的电流,若每米导线上受力正好为2⨯10-7N ,则导线内电流定义为1A.例:如图,均匀磁场垂直纸面向外,半径为R 的半圆导线通有电流I ,求作用在导线上的安培力.解R y x Bd θθd I l d F d x F d y F d F =IB d l =IBR d θd d F I l B =⨯ 0d (d )sin 2y y L F F F IBR IBR πθθ====⎰⎰方向为y 轴正向.推广:起点终点相同的载流直导线所受的力?对称性-----各电流元受力水平分量之和为零。
磁学公式推导及应用磁学是物理学中的重要分支,研究磁场的性质和行为。
在磁学中,一系列重要的公式被用于推导和解释磁场相关的现象,同时也被广泛应用于磁学的实际问题。
本文将深入探讨磁学公式的推导过程,并介绍其应用。
一、磁学公式的推导1. 安培环路定理安培环路定理是磁学中的基本公式之一,描述了磁场沿闭合路径的环路积分等于该路径内的电流总和的倍数。
设有一闭合路径,其长度为l,方向为顺时针方向。
在该路径上有n根电流为I1、I2、...、In的导线。
安培环路定理可表达为:∮B·dl = μ0ΣIn,其中B为磁感应强度,dl为路径微元,μ0为真空磁导率。
通过对每根导线的磁场贡献进行积分,可以推导得到安培环路定理。
2. 洛仑兹力公式洛仑兹力公式描述了带电粒子在磁场中所受到的力的大小和方向。
设带电粒子电荷为q,速度为v,在磁感应强度为B的磁场中运动。
洛仑兹力公式可表达为:F = qv×B,其中×表示叉乘。
利用洛仑兹力公式,可以推导出轨道半径、回旋频率等与粒子的运动轨迹相关的物理量。
3. 毕奥-萨伐尔定律毕奥-萨伐尔定律描述了任意一点P由一小电流元dI产生的磁场强度dH和力矩dM。
设导线上有一小电流元dI,其长度为dl。
毕奥-萨伐尔定律可表达为:dH = (μ0/4π)·(dI×r/r^3),dM = dI×r/H其中μ0为真空磁导率,r为待求点到电流元的矢量。
通过对导线上所有小电流元的贡献进行积分,可以得到某一点由整个导线所产生的磁场强度和力矩。
二、磁学公式的应用1. 磁场分布计算利用上述推导得到的磁学公式,可以根据不同的电流分布情况计算磁场在空间中的分布。
例如,当电流分布呈直线导线时,可以利用洛仑兹力公式计算导线附近的磁场强度。
当电流分布呈环形导线时,可以利用安培环路定理计算环心、环外等不同位置的磁场强度。
2. 电磁感应现象电磁感应现象是指磁场的变化可以诱导电场、电流的产生。