SPSS线性回归分析案例
- 格式:doc
- 大小:77.50 KB
- 文档页数:6
SPSS 统计分析多元线性回归分析方法操作与分析实验目的:引入1998~2008年上海市城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率和房屋空置率作为变量,来研究上海房价的变动因素。
实验变量:以年份、商品房平均售价(元/平方米)、上海市城市人口密度(人/平方公里)、城市居民人均可支配收入(元)、五年以上平均年贷款利率(%)和房屋空置率(%)作为变量。
实验方法:多元线性回归分析法软件:spss19.0操作过程:第一步:导入Excel数据文件1.open data document——open data——open;2. Opening excel data source——OK.第二步:1.在最上面菜单里面选中Analyze——Regression——Linear ,Dependent(因变量)选择商品房平均售价,Independents(自变量)选择城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率、房屋空置率;Method 选择Stepwise.进入如下界面:2.点击右侧Statistics,勾选Regression Coefficients(回归系数)选项组中的Estimates;勾选Residuals(残差)选项组中的Durbin-Watson、Casewise diagnostics默认;接着选择Model fit、Collinearity diagnotics;点击Continue.3.点击右侧Plots,选择*ZPRED(标准化预测值)作为纵轴变量,选择DEPENDNT(因变量)作为横轴变量;勾选选项组中的Standardized Residual Plots(标准化残差图)中的Histogram、Normal probability plot;点击Continue.4.点击右侧Save,勾选Predicted Vaniues(预测值)和Residuals(残差)选项组中的Unstandardized;点击Continue.5.点击右侧Options,默认,点击Continue.6.返回主对话框,单击OK.输出结果分析:1.引入/剔除变量表Variables Entered/Removed aModel Variables Entered Variables Removed Method1 城市人口密度(人/平方公里) . Stepwise (Criteria:Probability-of-F-to-enter<= .050,Probability-of-F-to-remove >=.100).2 城市居民人均可支配收入(元) . Stepwise (Criteria:Probability-of-F-to-enter<= .050,Probability-of-F-to-remove >=.100).a. Dependent Variable: 商品房平均售价(元/平方米)该表显示模型最先引入变量城市人口密度(人/平方公里),第二个引入模型的是变量城市居民人均可支配收入(元),没有变量被剔除。
SPSS 统计分析多元线性回归分析方法操作与分析实验目的:引入1998~2008年上海市城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率和房屋空置率作为变量,来研究上海房价的变动因素。
实验变量:以年份、商品房平均售价(元/平方米)、上海市城市人口密度(人/平方公里)、城市居民人均可支配收入(元)、五年以上平均年贷款利率(%)和房屋空置率(%)作为变量。
实验方法:多元线性回归分析法软件:spss19.0操作过程:第一步:导入Excel数据文件1.open data document——open data——open;2. Opening excel data source——OK.第二步:1.在最上面菜单里面选中Analyze——Regression——Linear ,Dependent(因变量)选择商品房平均售价,Independents(自变量)选择城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率、房屋空置率;Method 选择Stepwise.进入如下界面:2.点击右侧Statistics,勾选Regression Coefficients(回归系数)选项组中的Estimates;勾选Residuals(残差)选项组中的Durbin-Watson、Casewise diagnostics默认;接着选择Model fit、Collinearity diagnotics;点击Continue.3.点击右侧Plots,选择*ZPRED(标准化预测值)作为纵轴变量,选择DEPENDNT(因变量)作为横轴变量;勾选选项组中的Standardized Residual Plots(标准化残差图)中的Histogram、Normal probability plot;点击Continue.4.点击右侧Save,勾选Predicted Vaniues(预测值)和Residuals(残差)选项组中的Unstandardized;点击Continue.5.点击右侧Options,默认,点击Continue.6.返回主对话框,单击OK.输出结果分析:1.引入/剔除变量表Variables Entered/Removed aModel Variables Entered Variables Removed Method1 城市人口密度(人/平方公里) . Stepwise (Criteria:Probability-of-F-to-enter<= .050,Probability-of-F-to-remove >=.100).2 城市居民人均可支配收入(元) . Stepwise (Criteria:Probability-of-F-to-enter<= .050,Probability-of-F-to-remove >=.100).a. Dependent Variable: 商品房平均售价(元/平方米)该表显示模型最先引入变量城市人口密度(人/平方公里),第二个引入模型的是变量城市居民人均可支配收入(元),没有变量被剔除。
下图为25个职业人群的肺癌死亡指数(100=平均水平)和抽烟指数(100=平均水平)。
职业抽烟指数肺癌死亡指数农业、林业工人77.0 84.0挖掘、采石工人110.0 118.0玻璃陶器制造者94.0 120.0天然气、化工生产者117.0 123.0锻造锻压工人116.0 135.0电气及电子工人102.0 101.0工程及相关行业人员111.0 118.0木工业工人93.0 113.0建筑工人113.0 141.0皮革业工人92.0 104.0服装业工人91.0 102.0造纸印刷业工人107.0 102.0纺织业工人102.0 93.0其他产品制造者112.0 96.0油漆工、装潢工110.0 137.0发动机、起重机等操作员115.0 113.0食品行业工人104.0 112.0交通运输业工人115.0 128.0库管员等105.0 114.0服务业场所工人105.0 111.0文书办事员87.0 81.0销售员91.0 88.0行政、经理人员76.0 61.0艺术家、科学家66.0 55.0其他劳动力113.0 123.0散点图呈线性关系令Y=肺癌死亡指数,X=抽烟指数,做线性回归分析如下:表2中R=0.839 表示两变量高度相关R方=0.703 表示拟合较好,散点相对集中于回归线表3中sig.<0.05 则自变量与因变量具有显著的线性关系,即可以用回归模型表示表4中自变量sig.<0.05 则自变量对因变量的线性影响是显著的由此得到抽烟指数及肺癌死亡指数的一元回归方程:Y=-24.421+1.301X即抽烟指数每变动一个单位则肺癌死亡指数平均变动1.301个单位Welcome !!! 欢迎您的下载,资料仅供参考!。
SPSS实现一元线性回归分析实例2009-12-14 15:311、准备原始数据。
为研究某一大都市报开设周日版的可行性,获得了34种报纸的平日和周日的发行量信息(以千为单位)。
数据如图1所示。
SPSS17.0图12、判断是否存在线性关系。
制作直观散点图:(1)SPSS:菜单Analyze/Regression/linear Regression,如图2所示:图2 (2)打开对话框如图3图3图3中,Dependent是因变量,Independent是自变量,分别将左栏中的sunday选入因变量,daily选入自变量,newspaper作为标识标签选入case labels.(3)点击图3对话框中的plots按钮,如图4所示:图4将因变量DEPENTENT 选入Y:,自变量 ZPRED 选入X: continue 返回上级对话框。
单击主对话框OK.便生成散点图如图5所示:图5从以上散点图可看出,二者变量之间关系趋势呈线性关系。
2、回归方程菜单Analyze/Regression/linear Regression,在图3对话框的右边单击statistics如图6所示:图6regression coefficient回归系数,estimates估计值,confidence intervals level:95%置信区间,model fit拟合模型。
点击continue返回主对话框,单击OK.结果如图7、图8所示:图7图7中第一个图是变量的输入与输出,从图下的提示可知所有变量均输入与输出,没有遗漏。
图7中的第二图是模型总和R值,R平方值,R调整后的平方值,及标准误。
图8图8中第一图为方差统计图,包括回归平方和,自由度,方程检验F值及P值。
图8第二图为回归参数图,从图中可知,constant为回归方程截距,即13.836,回归系数为1.340,标准误分别为:35.804和0.071,及t检验值和95%的置信区间的最大值和最小值。
偏度偏度(skewness),是统计数据分布偏斜方向和程度的度量,是统计数据分布非对称程度的数字特征。
表征概率分布密度曲线相对于平均值不对称程度的特征数。
直观看来就是密度函数曲线尾部的相对长度。
正偏离(右偏态)、负偏离(左偏态):正态分布的偏度为为0,两侧尾部长度对称。
若以bs表示偏度。
bs<0称分布具有负偏离,也称左偏态,此时数据位于均值左边的比位于右边的少,直观表现为左边的尾部相对于与右边的尾部要长,因为有少数变量值很小,使曲线左侧尾部拖得很长;bs>0称分布具有正偏离,也称右偏态,此时数据位于均值右边的比位于左边的少,直观表现为右边的尾部相对于与左边的尾部要长,因为有少数变量值很大,使曲线右侧尾部拖得很长;而bs接近0则可认为分布是对称的。
若知道分布有可能在偏度上偏离正态分布时,可用偏离来检验分布的正态性。
右偏时一般算术平均数>中位数>众数,左偏时相反,即众数>中位数>平均数。
计算:1.2.其中:而,数学期望所以:举个栗子(见excel表中):Χ2分布,t分布,F分布Χ2分布:t分布:F分布:关于p分为点决定系数(coefficient of determination)有的教材上翻译为判定系数,也称为拟合优度,决定系数是指在x或y的总变异中,可以相互以直线关系说明的部分所占的比率。
即在Y的总平方和中,由X引起的平方和所占的比例,记为R^2(R的平方)。
当R^2越接近1时,表示相关的方程式参考价值越高,越符合回归线。
计算:RSS = (回归平方和)TSS = (总离差平方和)区别:SPSS-线性回归(举个栗子)例1. 某分公司连续6年记录了员工的平均工资,数据如下表,试建立线性回归模型。
操作步骤(1)定义变量:年份定义为x,工资定义为y,点击“变量试图”,定义x,y变量;(2)数据录入:点击“数据视图”,输入x,y对应的数据;(3)线性回归准备:“分析”->“回归”->“线性”,打开“线性回归”的对话框;(4)线性回归:选择因变量y进入“因变量”栏中,选择自变量x进入“自变量”栏中,单击右上角的“statics”统计对话框可以选择要计算的统计数据,最后单击左下角的“确定”按钮;(5)结果分析(α系数默认为0.05):图1图2图3图4图2中R^2是0.995,表明Y的总平方和中,由X引起的平方和所占的比例为99.5%。
SPSS一元线性回归分析例题(体检数据中的体重和肺活量的分析)某单位对12名女工进行体检,体检项目包括体重(kg)和肺活量(L),数据如下:X(体重:kg) 42.00 42.00 46.00 46.00 46.00 50.0050.00 50.00 52.00 52.00 58.00 58.00Y(肺活量:L) 2.55 2.20 2.75 2.40 2.80 2.813.41 3.10 3.46 2.85 3.50 3.00用x表示体重,y表示肺活量,建立数据文件。
利用一元线性回归分析描述其关系。
基本操作提示:Step 1 建立数据文件,并打开该数据文件。
Step 2 选择菜单Analyz e→Regressio n→Linear,打开主对话框。
在“Dependent”(因变量)列表框中选择变量“肺活量”,作为线性回归分析的被解释变量;在“Independent”(自变量)列表框中选择变量“体重”,作为解释变量。
Step 3 单击“Statistics”按钮,在打开的对话框中,依次选择“Estimates”(显示回归系数的估计值)、“Confidence intervals”、“Model fit”(模型拟合)、“Descriptives”、“Casewise diagnostic”(个案诊断)和“All Cases”选项。
选择完毕后,单击“Continue”按钮,返回主对话框。
Step 4 单击“Plots”(图形)按钮,在打开的主对话框中,选择“DEPENDENT”(因变量)作为y轴变量,“*ZPRED”(标准化预测值)作为x轴变量;并在“Standardized Residual Plots”(标准化残差图)中选择“Histogram”(直方图)和“Normal probabilityplot”(正态概率图,即P-P图)选项。
选择完毕后,单击“Continue”按钮,返回主对话框。
Step 5 单击“Save”(保存)按钮,在打开的主对话框中,在“Predicted Values”(预测值)选项区域中选择“Unstandardized”和“S. E. ofmean predictions”(预测值均数的标准误差)选项;“PredictionIntervals”(预测区间)选项区域中选择“Mean”和“Individual”选项;“Residuals”(残差)选项区域中选择“Unstandardized”选项。
SPSS 统计分析多元线性回归分析方法操作与分析实验目的:引入1998~2008年上海市城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率和房屋空置率作为变量,来研究上海房价的变动因素。
实验变量:以年份、商品房平均售价(元/平方米)、上海市城市人口密度(人/平方公里)、城市居民人均可支配收入(元)、五年以上平均年贷款利率(%)和房屋空置率(%)作为变量。
实验方法:多元线性回归分析法软件:spss19.0操作过程:第一步:导入Excel数据文件1.open data document——open data——open;2.Opening excel data s ource——OK.第二步:1.在最上面菜单里面选中Analyze——Regression——Linear,Depende n(t因变量)选择商品房平均售价,Independents(自变量)选择城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率、房屋空置率;Method 选择Stepwise.进入如下界面:2.点击右侧Statistics,勾选Regression Coefficients(回归系数)选项组中的Estimates;勾选Residuals(残差)选项组中的Durbin-Watson、Casewise diagnostics 默认;接着选择Model fit、Collinearity diagnotics;点击Continue.3.点击右侧Plots,选择*ZPRED(标准化预测值)作为纵轴变量,选择DEPENDN T(因变量)作为横轴变量;勾选选项组中的Standardized Residual Plo t(s标准化残差图)中的Histogram、Normal probability plot;点击Continue.4.点击右侧Save,勾选Predicted Vaniues(预测值)和Residuals(残差)选项组中的Unstandardized;点击Continue.5.点击右侧Options,默认,点击Continue.a. Predictors: (Constant), 城市人口密度 (人/平方公里)b. Predictors: (Constant), 城市人口密度 (人/平方公里), 城市居民人均可支配收入(元)c. Dependent Variable: 商品房平均售价(元/平方米)Variables Entered/Removed aModel 1Variables Entered 城市人口密度 (人/平方公里)Variables Removed2城市居民人均可支配收入(元)Method. Stepwise (Criteria: Probability-of-F-to-enter <= .050,Probability-of-F-to-remove >= .100).. Stepwise (Criteria: Probability-of-F-to-enter <= .050,Probability-of-F-to-remove >= .100).a. Dependent Variable: 商品房平均售价(元/平方米)该表显示模型的拟合情况。
SPSS线性回归分析案例回归分析实验内容:基于居民消费性支出与居民可支配收入的简单线性回归分析【研究目的】居民消费在社会经济的持续发展中有着重要的作用。
影响各地区居民消费支出的因素很多,例如居民的收入水平、商品价格水平、收入分配状况、消费者偏好、家庭财产状况、消费信贷状况、消费者年龄构成、社会保障制度、风俗习惯等等。
为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的经济模型去研究。
【模型设定】我们研究的对象是各地区居民消费的差异。
由于各地区的城市与农村人口比例及经济结构有较大差异,现选用城镇居民消费进行比较。
模型中被解释变量Y选定为“城市居民每人每年的平均消费支出”。
从理论和经验分析,影响居民消费水平的最主要因素是居民的可支配收入,故可以选用“城市居民每人每年可支配收入”作为解释变量X,选取2010年截面数据。
1、实验数据表1:2010年中国各地区城市居民人均年消费支出和可支配收入2、实验过程作城市居民家庭平均每人每年消费支出(Y)和城市居民人均年可支配收入(X)的散点图,如图1:表2 模型汇总b表3相关性从散点图可以看出居民家庭平均每人每年消费支出(Y)和城市居民人均年可支配收入(X)大体呈现为线性关系,所以建立如下线性模型:Y=a+bX表4系数a3、结果分析表2模型汇总:相关系数为0.965,判定系数为0.932,调整判定系数为0.930,估计值的标准误877.29128表3是相关分析结果。
消费性支出Y与可支配收入X相关系数为0.965,相关性很高。
表4是回归分析中的系数:常数项b=704.824,可支配收入X的回归系数a=0.668。
a的标准误差为0.034,回归系数t的检验值为19.921,P值为0,满足95%的置信区间,可认为回归系数有显著意义。
得线性回归方程Y=0.668X+704.824.【实验结论】(1)结果显示,变量之间具有如下关系式:Y=0.668X+704.824.也就是说消费与收入之间存在稳定的函数关系。
SPSS统计分析分析案例案例:影响学生学业成绩的因素分析1.引言学业成绩作为评估学生学习成绩的重要指标,对于学校和家庭来说具有重要意义。
了解影响学生学业成绩的因素,对于制定有效的教学和管理措施具有指导意义。
本研究旨在通过SPSS统计软件对影响学生学业成绩的因素进行分析。
2.方法2.1参与者本研究的参与者为100名来自不同年级和专业的大学生。
2.2变量本研究共选取了以下影响学生学业成绩的因素作为自变量:学习时间、课堂参与度、家庭背景、学习动机、学习方法、自律性等。
学业成绩作为依变量。
2.3测量工具为了获取相关数据,本研究使用了以下测量工具:-学习时间:参与者填写每周学习时间的小时数。
-课堂参与度:参与者填写自己在课堂上的活跃程度,范围从1(非常低)到5(非常高)。
-家庭背景:参与者填写自己的家庭收入水平,范围从1(非常低)到5(非常高)。
-学习动机:参与者填写自己的学习动机程度,范围从1(非常低)到5(非常高)。
-学习方法:参与者选择自己使用的学习方法,包括书本阅读、听讲座、做练习等。
-自律性:参与者填写自己对学习的自律性程度,范围从1(非常低)到5(非常高)。
2.4数据分析为了分析影响学生学业成绩的因素,本研究将使用SPSS统计软件进行多元线性回归分析。
首先,我们将通过描述性统计分析了解参与者的学习时间、课堂参与度、家庭背景、学习动机、学习方法、自律性的情况。
然后,将进行相关分析,以评估各个因素之间的相关性。
最后,通过多元线性回归分析,确定各个因素对学业成绩的影响。
3.结果通过数据分析得到的初步结果显示,学习时间、课堂参与度、学习动机、自律性对学业成绩有显著的正向影响,而家庭背景因素对学业成绩影响较小。
具体来说,多元线性回归分析结果显示,学习时间、课堂参与度、学习动机和自律性对学业成绩的影响是显著的(p<0.05)。
然而,家庭背景对学业成绩的影响不显著(p>0.05)。
此外,学习方法与学业成绩之间的关系也需要进一步研究。
SPSS--回归-多元线性回归模型案例解析多元线性回归,主要是研究⼀个因变量与多个⾃变量之间的相关关系,跟⼀元回归原理差不多,区别在于影响因素(⾃变量)更多些⽽已,例如:⼀元线性回归⽅程为:毫⽆疑问,多元线性回归⽅程应该为:上图中的 x1, x2, xp分别代表“⾃变量”Xp截⽌,代表有P个⾃变量,如果有“N组样本,那么这个多元线性回归,将会组成⼀个矩阵,如下图所⽰:那么,多元线性回归⽅程矩阵形式为:其中:代表随机误差,其中随机误差分为:可解释的误差和不可解释的误差,随机误差必须满⾜以下四个条件,多元线性⽅程才有意义(⼀元线性⽅程也⼀样)1:服成正太分布,即指:随机误差必须是服成正太分别的随机变量。
2:⽆偏性假设,即指:期望值为03:同共⽅差性假设,即指,所有的随机误差变量⽅差都相等4:独⽴性假设,即指:所有的随机误差变量都相互独⽴,可以⽤协⽅差解释。
今天跟⼤家⼀起讨论⼀下,SPSS---多元线性回归的具体操作过程,下⾯以教程教程数据为例,分析汽车特征与汽车销售量之间的关系。
通过分析汽车特征跟汽车销售量的关系,建⽴拟合多元线性回归模型。
数据如下图所⽰:点击“分析”——回归——线性——进⼊如下图所⽰的界⾯:将“销售量”作为“因变量”拖⼊因变量框内,将“车长,车宽,耗油率,车净重等10个⾃变量拖⼊⾃变量框内,如上图所⽰,在“⽅法”旁边,选择“逐步”,当然,你也可以选择其它的⽅式,如果你选择“进⼊”默认的⽅式,在分析结果中,将会得到如下图所⽰的结果:(所有的⾃变量,都会强⾏进⼊)如果你选择“逐步”这个⽅法,将会得到如下图所⽰的结果:(将会根据预先设定的“F统计量的概率值进⾏筛选,最先进⼊回归⽅程的“⾃变量”应该是跟“因变量”关系最为密切,贡献最⼤的,如下图可以看出,车的价格和车轴跟因变量关系最为密切,符合判断条件的概率值必须⼩于0.05,当概率值⼤于等于0.1时将会被剔除)“选择变量(E)" 框内,我并没有输⼊数据,如果你需要对某个“⾃变量”进⾏条件筛选,可以将那个⾃变量,移⼊“选择变量框”内,有⼀个前提就是:该变量从未在另⼀个⽬标列表中出现!,再点击“规则”设定相应的“筛选条件”即可,如下图所⽰:点击“统计量”弹出如下所⽰的框,如下所⽰:在“回归系数”下⾯勾选“估计,在右侧勾选”模型拟合度“ 和”共线性诊断“ 两个选项,再勾选“个案诊断”再点击“离群值”⼀般默认值为“3”,(设定异常值的依据,只有当残差超过3倍标准差的观测才会被当做异常值)点击继续。
农民收入影响因素的多元回归分析自改革开放以来,虽然中国经济平均增长速度为9.5 % ,但二元经济结构给经济发展带来的问题仍然很突出。
农村人口占了中国总人口的70 %多,农业产业结构不合理,经济不发达,以及农民收入增长缓慢等问题势必成为我国经济持续稳定增长的障碍。
正确有效地解决好“三农”问题是中国经济走出困境,实现长期稳定增长的关键。
其中,农民收入增长是核心,也是解决“三农”问题的关键。
本文力图应用适当的多元线性回归模型,对有关农民收入的历史数据和现状进行分析,寻找其根源,探讨影响农民收入的主要因素,并在此基础上对如何增加农民收入提出相应的政策建议。
一、回归模型的建立(1)数据的收集根据实际的调查分析,我们在影响农民收入因素中引入3个解释变量。
即:X2-财政用于农业的支出的比重,X3-乡村从业人员占农村人口的比重,X4 -农作物播种面积1991223.2510.2650.92149585.8 1992233.1910.0551.53149007.1 1993265.679.4951.86147740.7 1994335.169.252.12148240.6 1995411.298.4352.41149879.3 1996460.688.8253.23152380.6 1997477.968.354.93153969.2 1998474.0210.6955.84155705.7 1999466.88.2357.16156372.8 2000466.167.7559.33156299.9 2001469.87.7160.62155707.9 2002468.957.1762.02154635.5 2003476.247.1263.721524152004499.399.6765.64153552.6 2005521.27.2267.59155487.7(1)回归模型的构建Y i=1+2X2+3X3+4X4+u i二、回归模型的分析(1)多重共线性检验系数a(2)模型异方差的检验异方差产生的原因有:数据质量原因、模型设定原因。
多元线性回归spss案例【篇一:多元线性回归spss案例】多元线性回归,主要是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程为:毫无疑问,多元线性回归方程应该为:上图中的x1, x2, xp分别代表自变量xp截止,代表有p个自变量,如果有 n组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示:那么,多元线性回归方程矩阵形式为:其中:代表随机误差,其中随机误差分为:可解释的误差和不可解释的误差,随机误差必须满足以下四个条件,多元线性方程才有意义(一元线性方程也一样)1:服成正太分布,即指:随机误差必须是服成正太分别的随机变量。
2:无偏性假设,即指:期望值为03:同共方差性假设,即指,所有的随机误差变量方差都相等4:独立性假设,即指:所有的随机误差变量都相互独立,可以用协方差解释。
今天跟大家一起讨论一下,spss---多元线性回归的具体操作过程,下面以教程教程数据为例,分析汽车特征与汽车销售量之间的关系。
通过分析汽车特征跟汽车销售量的关系,建立拟合多元线性回归模型。
数据如下图所示:点击分析回归线性进入如下图所示的界面:将销售量作为因变量拖入因变量框内,将车长,车宽,耗油率,车净重等10个自变量拖入自变量框内,如上图所示,在方法旁边,选择逐步,当然,你也可以选择其它的方式,如果你选择进入默认的方式,在分析结果中,将会得到如下图所示的结果:(所有的自变量,都会强行进入)如果你选择逐步这个方法,将会得到如下图所示的结果:(将会根据预先设定的 f统计量的概率值进行筛选,最先进入回归方程的自变量应该是跟因变量关系最为密切,贡献最大的,如下图可以看出,车的价格和车轴跟因变量关系最为密切,符合判断条件的概率值必须小于0.05,当概率值大于等于0.1时将会被剔除)选择变量(e) 框内,我并没有输入数据,如果你需要对某个自变量进行条件筛选,可以将那个自变量,移入选择变量框内,有一个前提就是:该变量从未在另一个目标列表中出现!,再点击规则设定相应的筛选条件即可,如下图所示:点击统计量弹出如下所示的框,如下所示:在回归系数下面勾选估计,在右侧勾选模型拟合度和共线性诊断两个选项,再勾选个案诊断再点击离群值一般默认值为 3 ,(设定异常值的依据,只有当残差超过3倍标准差的观测才会被当做异常值)点击继续。
SPSS案例实践笔记:多重线性回归分析数据小兵博客当只考察一个自变量对因变量的影响时,我们称之为简单一元线性回归,如果要多考察一些自变量,此时许多人习惯性将之称为多元线性回归,统计学上建议称之为多重线性回归,避免和多元统计方法冲突。
案例背景介绍这是mei国50个州关于犯罪率的一组数据,包括人口、面积、收入、文盲率、高中毕业率、霜冻天数、犯罪率共7个指标,现在我们想考察一下州犯罪率和其他因素间的关系。
SPSS变量视图如下:研究目标是各州的犯罪率(因变量),可能的因素(自变量)是人口、面积、收入、文盲率、高中毕业率、霜冻天数。
因变量犯罪率连续数值变量,有多个自变量,从研究目标和数据类型来看,可选用多重线性回归分析。
线性关系初步判断线性回归要求每个自变量和因变量之间存在线性关系,可以依靠相关分析和散点图来初步判断。
犯罪率与文盲率、霜冻天数、高中毕业率、人口存在较为明显的线性关系,面积和其他变量普遍无关,越冷的地方文盲率越低、高中毕业率越高。
有统计学意义的相关系数依次为:0.703(文盲率)、-0.539(霜冻天数)、-0.488(高中毕业率)、0.344(人口)。
除因变量外其他因素两两间相关系数均在0.7以下,因素间没有强相关关系存在,初步提示共线性问题较弱。
以上分析表明,并不是所有因素都有犯罪率存在明显线性关系,如果我们构建多重线性回归,这可能涉及到自变量筛选的问题,可优先选择逐步回归的方法。
共线性问题共线性问题是由于自变量间存在强相关关系造成的,它的存在对回归是有影响的,现在我们需要观察6个自变量间的共线性问题,最为常见的依据则是关注容忍度Tol和方差膨胀因子VIF。
SPSS在线性回归中可以是输出这两个指标,来看一下具体情况:VIF是T ol的倒数,所以它们两个其实是一回事,我们只需要解读其一即可。
一般认为如果某个自变量的容忍度T ol<0.1,则可能存在严重共线性问题。
反过来就是VIF>10提示存在较为严重共线性问题。
SPSS多元线性回归分析实例操作步骤在数据分析的领域中,多元线性回归分析是一种强大且常用的工具,它能够帮助我们理解多个自变量与一个因变量之间的线性关系。
下面,我们将通过一个具体的实例来详细介绍 SPSS 中多元线性回归分析的操作步骤。
假设我们正在研究一个人的体重与身高、年龄和每日运动量之间的关系。
首先,打开 SPSS 软件,并将我们收集到的数据输入或导入到软件中。
数据准备阶段是至关重要的。
确保每个变量的数据格式正确,没有缺失值或异常值。
如果存在缺失值,可以根据具体情况选择合适的处理方法,比如删除包含缺失值的样本,或者使用均值、中位数等进行填充。
对于异常值,需要仔细判断其是否为真实的数据错误,如果是,则需要进行修正或删除。
接下来,点击“分析”菜单,选择“回归”,然后再选择“线性”。
在弹出的“线性回归”对话框中,将我们的因变量(体重)选入“因变量”框中,将自变量(身高、年龄、每日运动量)选入“自变量”框中。
然后,我们可以在“方法”选项中选择合适的回归方法。
SPSS 提供了几种常见的方法,如“进入”“逐步”“向后”“向前”等。
“进入”方法会将所有自变量一次性纳入模型;“逐步”方法则会根据一定的准则,逐步选择对因变量有显著影响的自变量进入模型;“向后”和“向前”方法则是基于特定的规则,逐步剔除或纳入自变量。
在这个例子中,我们先选择“进入”方法,以便直观地看到所有自变量对因变量的影响。
接下来,点击“统计”按钮。
在弹出的“线性回归:统计”对话框中,我们通常会勾选“描述性”,以获取自变量和因变量的基本统计信息,如均值、标准差等;勾选“共线性诊断”,用于检查自变量之间是否存在严重的多重共线性问题;勾选“模型拟合度”,以评估回归模型的拟合效果。
然后,点击“绘制”按钮。
在“线性回归:图”对话框中,我们可以选择绘制一些有助于分析的图形,比如“正态概率图”,用于检验残差是否服从正态分布;“残差图”,用于观察残差的分布情况,判断模型是否满足线性回归的假设。
回归分析
实验内容:基于居民消费性支出与居民可支配收入的简单线性回归分析
【研究目的】
居民消费在社会经济的持续发展中有着重要的作用。
影响各地区居民消费支出的因素很多,例如居民的收入水平、商品价格水平、收入分配状况、消费者偏好、家庭财产状况、消费信贷状况、消费者年龄构成、社会保障制度、风俗习惯等等。
为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的经济模型去研究。
【模型设定】
我们研究的对象是各地区居民消费的差异。
由于各地区的城市与农村人口比例及经济结构有较大差异,现选用城镇居民消费进行比较。
模型中被解释变量Y选定为“城市居民每人每年的平均消费支出”。
从理论和经验分析,影响居民消费水平的最主要因素是居民的可支配收入,故可以选用“城市居民每人每年可支配收入”作为解释变量X,选取2010年截面数据。
1、实验数据
表1:
(
2010年中国各地区城市居民人均年消费支出和可支配收入
}
数据来源:《中国统计年鉴》2010年
2、实验过程
作城市居民家庭平均每人每年消费支出(Y)和城市居民人均年可支配收入(X)的散点图,如图1:
表2
模型汇总b
模型…
R
R方调整R方标准估计的误差
1.965a.93
2.930
a.预测变量:(常量),可支配收入X(元)。
b.因变量:消费性支出Y(元)
~
表3
相关性
消费性支出Y
(元)
可支配收入X(元)
Pearson相关
性消费性支出
Y(元)
.965
从散点图可以看出居民家庭平均每人每年消费支出(Y)和城市居民人均年可支配收入(X)大体呈现为线性关系,所以建立如下线性模型:Y=a+bX
表4
系数a
3、结果分析
表2模型汇总:相关系数为,判定系数为,调整判定系数为,估计值的标准误
表3是相关分析结果。
消费性支出Y与可支配收入X相关系数为,相关性很高。
表4是回归分析中的系数:常数项b=,可支配收入X的回归系数a=。
a的标准误差为,回归系数t的检验值为,P值为0,满足95%的置信区间,可认为回归系数有显著意义。
得线性回归方程Y=+.【实验结论】
(1)结果显示,变量之间具有如下关系式:Y=+.也就是说消费与收入之间存在稳定的函数关系。
随着收入的增加,消费将增加,但消费的增长低于收入的增长。
这与凯尔斯的绝对收入消费理论刚好吻
合。
但为了研究方便,这里假设边际消费倾向为常数。
由公式知X每增长1个单位,Y增加个单位。
(2)居民可支配收入是影响消费支出的最主要因素。
因此,要大力发展经济,增加居民的可支配收入特别是提高低收入居民群体的收入,才能最大限度发挥消费对经济的拉动效应,促进消费的持续。
有效增长。
(3)居民的边际消费倾向数值越大,增加1单位居民可支配收入所引起的居民消费支出也越大。
因此,政府可以实行一定的经济政策来增强居民的消费能力。
(4)在上述分析的基础上,可以进行更深入的分析。
比如整理各地区食物支出总额,算出各地区食物支出总额占个人消费支出总额的比重,也就是恩格尔系数来说明经济发展、收入增加对生活消费的影响程度。
一个地区的恩格尔系数越小,就说明这个地区经济越富裕。