计算题1、已知应力状态如图所示,求主应力及最大切应力(图示单位为
- 格式:pdf
- 大小:548.82 KB
- 文档页数:18
2010 —2011材料力学试题及答案A一、单选题(每小题2分,共10小题,20分)1、工程构件要正常安全的工作,必须满足一定的条件。
下列除()项,其他各项是必须满足的条件。
A、强度条件B、刚度条件C、稳定性条件D、硬度条件2、内力和应力的关系是()A、内力大于应力B、内力等于应力的代数和C、内力是矢量,应力是标量D、应力是分布内力的集度3、根据圆轴扭转时的平面假设,可以认为圆轴扭转时横截面()。
A、形状尺寸不变,直径线仍为直线。
B、形状尺寸改变,直径线仍为直线。
C、形状尺寸不变,直径线不保持直线。
D、形状尺寸改变,直径线不保持直线。
4、建立平面弯曲正应力公式My i:,需要考虑的关系有()。
A、平衡关系,物理关系,变形几何关系;B、变形几何关系,物理关系,静力关系;C、变形几何关系,平衡关系,静力关系;D、平衡关系,物理关系,静力关系;5、利用积分法求梁的变形,不需要用到下面那类条件()来确定积分常数。
A、平衡条件。
B、边界条件。
C、连续性条件。
D、光滑性条件。
6、图示交变应力的循环特征r、平均应力m、应力幅度a分别为()。
A -10、20、10 ;B 30、10、20;1 1- -----------------------------C 3、20、10;D 3、10、20。
7、一点的应力状态如下图所示,则其主应力1、2、3分别为()。
A 30MPa、100 MPa、50 MPaB 50 MPa、30MPa、-50MPaC 50 MPa、0、-50Mpa、D -50 MPa、30MPa、50MPa8、对于突加载的情形,系统的动荷系数为()。
A、2B、3C、4D、59、压杆临界力的大小,()。
A 与压杆所承受的轴向压力大小有关;B与压杆的柔度大小有关;C与压杆材料无关;D与压杆的柔度大小无关。
10、利用图乘法计算弹性梁或者刚架的位移,要求结构满足三个条件。
以下那个条件不是必须的()A、EI为常量B、结构轴线必须为直线。
计算题:1、已知应力状态如图所示,求主应力及最大切应力(图示单位为MPa)。
(10分)2、已知应力状态如图所示,求主应力及最大切应力。
(10分)3、已知应力状态如图所示,求主应力及最大切应力(图示单位为MPa)。
(10分)4、已知应力状态如图所示,求主应力及最大切应力(图示单位为MPa)。
(10分)5、已知应力状态如图示,图中应力单位皆为MPa,试求:(1)主应力的大小,主平面的方位;(2)最大切应力;(10分)6、已知应力状态如图示,图中应力单位皆为MPa ,试求:(3) 主应力的大小,主平面的位置; (4) 最大切应力。
(10分)7、(10分)已知三向应力状态如图所示(图中应力单位:MPa ), 试求: 1) 主应力;2)主切应力;3)形变应变能密度f e 。
8、(14分)已知K 点处为二向应力状态,过K 点两个截面上的应力如图所示(应力单位为MPa )。
试用解析法(用图解法无效)确定该点的三个主应力。
9、(8分)图示为某构件内危险点的应力状态(图中应力单位为MPa ),试分别求其第二、第四强度理论的相当应力2r σ、4r σ(3.0=μ)。
10、(8分)图示为某构件内危险点的应力状态(图中应力单位为MPa ),试分别求其第二、第四强度理论的相当应力2r σ、4r σ(3.0=μ)。
11、(4分)矩形截面细长悬臂梁如图所示。
试求A 、B 、C 三点的应力,并 用单元体分别表示这三点的应力状态。
12、(4分)已知构件内某点处的应力状态为两种应力状态的叠加结果,试求叠加后该点该平面内的(1)主应力与主应变; (2)主切应力;(3)该点的形变应变能密度fe 。
(已知材料的弹性模量GPa 200=E ,横向变形系数3.0=ν)13、图示板件,微体处于纯剪切应力状态,试计算沿对角线AC 与BD 方位的正应力,以及所对应力正应变045ε与045-ε,沿板厚方向的正应变z ε。
材料的弹性常数E 与μ均为已知。
计算题:1、已知应力状态如图所示,求主应力及最大切应力(图示单位为MPa)。
(10分)2、已知应力状态如图所示,求主应力及最大切应力。
(10分)3、已知应力状态如图所示,求主应力及最大切应力(图示单位为MPa)。
(10分)4、已知应力状态如图所示,求主应力及最大切应力(图示单位为MPa)。
(10分)5、已知应力状态如图示,图中应力单位皆为MPa,试求:(1)主应力的大小,主平面的方位;(2)最大切应力;(10分)6、已知应力状态如图示,图中应力单位皆为MPa ,试求:(3) 主应力的大小,主平面的位置; (4) 最大切应力。
(10分)7、(10分)已知三向应力状态如图所示(图中应力单位:MPa ), 试求: 1) 主应力;2)主切应力;3)形变应变能密度f e 。
8、(14分)已知K 点处为二向应力状态,过K 点两个截面上的应力如图所示(应力单位为MPa )。
试用解析法(用图解法无效)确定该点的三个主应力。
9、(8分)图示为某构件内危险点的应力状态(图中应力单位为MPa ),试分别求其第二、第四强度理论的相当应力2r σ、4r σ(3.0=μ)。
10、(8分)图示为某构件内危险点的应力状态(图中应力单位为MPa ),试分别求其第二、第四强度理论的相当应力2r σ、4r σ(3.0=μ)。
11、(4分)矩形截面细长悬臂梁如图所示。
试求A 、B 、C 三点的应力,并 用单元体分别表示这三点的应力状态。
12、(4分)已知构件内某点处的应力状态为两种应力状态的叠加结果,试求叠加后该点该平面内的(1)主应力与主应变; (2)主切应力;(3)该点的形变应变能密度fe 。
(已知材料的弹性模量GPa 200=E ,横向变形系数3.0=ν)13、图示板件,微体处于纯剪切应力状态,试计算沿对角线AC 与BD 方位的正应力,以及所对应力正应变045ε与045-ε,沿板厚方向的正应变z ε。
材料的弹性常数E 与μ均为已知。
第八章 应力应变状态分析一、选择或填空题1、过受力构件内任一点,取截面的不同方位,各个面上的( )。
A 、正应力相同,切应力不同;B 、正应力不同,切应力相同;C 、正应力相同,切应力相同;D 、正应力不同,切应力不同。
2、在单元体的主平面上( )。
A 、正应力一定最大;B 、正应力一定为零;C 、切应力一定最小;D 、切应力一定为零。
3、图示矩形截面悬臂梁,A-A 为任意横截面,1点位于截面上边缘,3点位于中性层,则1、2、3点的应力状态单元体分别为( )。
A-AA B C4、图示单元体,其最大主应力为( )A 、σ;B 、2σ;C 、3σ;D 、4σ。
5、下面 单元体表示构件A 点的应力状态。
6、图示单元体,如果MPa 30=ασ,则βσ=( ) A 、100Mpa ; B 、50Mpa ; C 、20MPa ; D 、0MPa 。
(C)7、图示单元体应力状态,沿x 方向的线应变εx 可表示为( )A 、Eyσ; B 、)(1y x E μσσ−;C 、)(1x y E μσσ− ;D 、Gτ。
8、图示应力圆对应于单元体( )。
9、已知单元体及应力圆如图所示,σ1所在主平面的法线方向为( )。
A 、n 1;B 、 n 2;C 、n 3;D 、n4。
二、计算题1、已知应力状态如图所示,试用解析法计算图中指定截面上的正应力和切应力。
2、试画图示应力状态的三向应力圆,并求主应力、最大正应力和最大切应力。
3、边长为20mm的钢立方块置于刚性模中,在顶面受力F=14kN作用。
已知材料的泊松比为0.3,求立方体各个面上的正应力。
4、图示矩形截面梁某截面上的弯矩和剪力分别为M=10 kN.m,Q=120 kN。
试绘出截面上1、2、3、4各点的应力状态单元体,并求其主应力。
第九章 强度理论一、选择题或填空题 1、在冬天严寒天气下,水管中的水会受冻而结冰。
根据低温下水管和冰所受力情况可知( )。
A 、冰先破裂而水管完好;B 、水管先破裂而冰完好;C 、冰与水管同时破裂;D 、不一定何者先破裂。
工程力学练习册学校学院专业学号教师姓名第一章静力学基础1-1 画出下列各图中物体A,构件AB,BC或ABC的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。
(a)(b)(c)(d)(e)(f)(g)1-2 试画出图示各题中AC杆(带销钉)和BC杆的受力图(a)(b)(c)(a)1-3 画出图中指定物体的受力图。
所有摩擦均不计,各物自重除图中已画出的外均不计。
(a)(b)(c)(d)(e)(f)(g)第二章 平面力系2-1 电动机重P=5000N ,放在水平梁AC 的中央,如图所示。
梁的A 端以铰链固定,另一端以撑杆BC 支持,撑杆与水平梁的夹角为30 0。
如忽略撑杆与梁的重量,求绞支座A 、B 处的约束反力。
题2-1图∑∑=︒+︒==︒-︒=PF F FF F F B A yA B x 30sin 30sin ,0030cos 30cos ,0解得: N P F F B A 5000===2-2 物体重P=20kN ,用绳子挂在支架的滑轮B 上,绳子的另一端接在绞车D 上,如图所示。
转动绞车,物体便能升起。
设滑轮的大小及轴承的摩擦略去不计,杆重不计,A 、B 、C 三处均为铰链连接。
当物体处于平衡状态时,求拉杆AB 和支杆BC 所受的力。
题2-2图∑∑=-︒-︒-==︒-︒--=030cos 30sin ,0030sin 30cos ,0P P F FP F F F BC yBC AB x解得: PF P F BC AB 732.2732.3=-=2-3 如图所示,输电线ACB 架在两电线杆之间,形成一下垂线,下垂距离CD =f =1m ,两电线杆间距离AB =40m 。
电线ACB 段重P=400N ,可近视认为沿AB 直线均匀分布,求电线的中点和两端的拉力。
题2-3图以AC 段电线为研究对象,三力汇交 NF N F F F FF F F C A GA yC A x 200020110/1tan sin ,0,cos ,0=======∑∑解得:ααα2-4 图示为一拔桩装置。
工程力学练习册学校学院专业学号教师姓名第一章静力学基础1-1 画出下列各图中物体A,构件AB,BC或ABC的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。
(a)(b)(c)(d)(e)(f)(g)1-2 试画出图示各题中AC杆(带销钉)和BC杆的受力图(a)(b)(c)(a)1-3 画出图中指定物体的受力图。
所有摩擦均不计,各物自重除图中已画出的外均不计。
(a)(b)(c)(d)(e)(f)(g)第二章 平面力系2-1 电动机重P=5000N ,放在水平梁AC 的中央,如图所示。
梁的A 端以铰链固定,另一端以撑杆BC 支持,撑杆与水平梁的夹角为30 0。
如忽略撑杆与梁的重量,求绞支座A 、B 处的约束反力。
题2-1图∑∑=︒+︒==︒-︒=PF F FF F F B A yA B x 30sin 30sin ,0030cos 30cos ,0解得: N P F F B A 5000===2-2 物体重P=20kN ,用绳子挂在支架的滑轮B 上,绳子的另一端接在绞车D 上,如图所示。
转动绞车,物体便能升起。
设滑轮的大小及轴承的摩擦略去不计,杆重不计,A 、B 、C 三处均为铰链连接。
当物体处于平衡状态时,求拉杆AB 和支杆BC 所受的力。
题2-2图∑∑=-︒-︒-==︒-︒--=030cos 30sin ,0030sin 30cos ,0P P F FP F F F BC yBC AB x解得: PF P F BC AB 732.2732.3=-=2-3 如图所示,输电线ACB 架在两电线杆之间,形成一下垂线,下垂距离CD =f =1m ,两电线杆间距离AB =40m 。
电线ACB 段重P=400N ,可近视认为沿AB 直线均匀分布,求电线的中点和两端的拉力。
题2-3图以AC 段电线为研究对象,三力汇交 NF N F F F FF F F C A GA yC A x 200020110/1tan sin ,0,cos ,0=======∑∑解得:ααα2-4 图示为一拔桩装置。
材料⼒学习题第六章应⼒状态分析答案详解第6章应⼒状态分析⼀、选择题1、对于图⽰各点应⼒状态,属于单向应⼒状态的是(A )。
20(MPa )20d20(A )a 点;(B )b 点;(C )c 点;(D )d 点。
2、在平⾯应⼒状态下,对于任意两斜截⾯上的正应⼒αβσσ=成⽴的充分必要条件,有下列四种答案,正确答案是( B )。
(A ),0x y xy σστ=≠;(B ),0x y xy σστ==;(C ),0x y xy σστ≠=;(D )x y xy σστ==。
3、已知单元体AB 、BC ⾯上只作⽤有切应⼒τ,现关于AC ⾯上应⼒有下列四种答案,正确答案是( C )。
(A )AC AC /2,0ττσ==;(B )AC AC /2,/2ττσ==;(C )AC AC /2,/2ττσ==;(D )AC AC /2,/2ττσ=-=。
4、矩形截⾯简⽀梁受⼒如图(a )所⽰,横截⾯上各点的应⼒状态如图(b )所⽰。
关于它们的正确性,现有四种答案,正确答案是( D )。
(b)(a)(A)点1、2的应⼒状态是正确的;(B)点2、3的应⼒状态是正确的;(C)点3、4的应⼒状态是正确的;(D)点1、5的应⼒状态是正确的。
5、对于图⽰三种应⼒状态(a)、(b)、(c)之间的关系,有下列四种答案,正确答案是( D )。
τ(a) (b)(c)(A)三种应⼒状态均相同;(B)三种应⼒状态均不同;(C)(b)和(c)相同;(D)(a)和(c)相同;6、关于图⽰主应⼒单元体的最⼤切应⼒作⽤⾯有下列四种答案,正确答案是( B )。
(A) (B) (D)(C)解答:maxτ发⽣在1σ成45o的斜截⾯上7、⼴义胡克定律适⽤范围,有下列四种答案,正确答案是( C )。
(A)脆性材料;(B)塑性材料;(C)材料为各向同性,且处于线弹性范围内;(D)任何材料;8、三个弹性常数之间的关系:/[2(1)]G E v =+ 适⽤于( C )。
应力状态分析与强度理论基 本 概 念 题一、选择题1. 三种应力状态分别如图(a )、(b )、(c )所示,则三者间的关系为( )。
A .完全等价B .完全不等价C .图(b )、图(c )等价D .图(a )、图(c )等价题1图2. 已知应力情况如图所示,则图示斜截面上的应力为( )。
(应力单位为 MPa)。
A .70-=ασ,30-=ατB .0=ασ,30=ατC .70-=ασ,30=ατD .0=ασ,30-=ατ3. 在纯剪切应力状态中,其余任意两相互垂直截面上的 正应力,必定是( )。
A .均为正值B .一为正值一为负值C .均为负值 题2图D .均为零值4. 单元体的应力状态如图所示,由x 轴至1σ方向的夹角为( )。
A .︒5.13 B .︒-5.76 C .︒5.76 D .︒-5.13题4图 题5图5. 单元体的应力状态如图所示,则主应力1σ、2σ分别为( )。
(应力单位MPa). -33-A .901=σ,102-=σB .1001=σ,102-=σC .901=σ,02=σD .1001=σ,02=σ 6. 如图6所示单元体最大剪应力max τ为( )。
A .100 MPaB .50 MPaC .25 MPaD .0题6图 题7图7. 单元体如图所示,关于其主应力有下列四种答案,正确的是( )。
A .1σ>2σ,03=σ B .3σ<2σ<0,03=σ01=σ C .1σ>0,2σ= 0,3σ<0,1σ<3σ D .1σ>0,2σ= 0,3σ<0,1σ>3σ8. 已知应力圆如图7-22所示,图(a )、(b )、(c )、(d )分别表示单元体的应力状态和A 截面的应力,则与应力圆所对应的单元体为( )。
A .图(a )B .图(b )C .图(c )D .图(d )题8图9. 在图示四种应力状态中,其应力圆具有相同的圆心和相同的半径是( )。
-34-题9图A .图(a )、图(d )B .图(b )、图(c )C .图(a )、图(b )、图(c ) 、图(d )D .图(a )、图(d )、图(b )、图(c )10. 如图所示,较大体积的钢块上开有一贯穿的槽,槽内嵌入一铝质立方体,铝块受到均布压力P 作用,假设钢块不变形,铝块处于( )。
西北农林科技⼤学材料⼒学试题西北农林科技⼤学本科课程考试试题(卷)2010—2011学年第2学期《材料⼒学》课程A卷专业班级:命题教师:审题教师:学⽣姓名:学号:考试成绩:⼀、填空题(每空1分,共10分)得分:分1.在材料⼒学中,杆件变形的四种基本形式有:、、、。
2. 标距为100mm的标准试样,直径为10mm,拉断后测得伸长后的标距为123mm,缩颈处的最⼩直径为7mm,则该材料的伸长率δ=,断⾯收缩率ψ=。
3. 从强度⾓度出发,截⾯积相同的矩形杆件和圆形杆件,更适合做承受弯曲变形为主的梁。
4.某点的应⼒状态如图⽰,则主应⼒为:σ1=;σ2=。
5.平⾯图形对过其形⼼轴的静矩0(请填⼊=,>, <)⼆.单项选择题(每⼩题2分,共20分)得分:分1. 图⽰为⼀端固定的橡胶板条,若在加⼒前在板表⾯划条斜直线AB,那么加轴向拉⼒后AB线所在位置是( ) ?(其中ab∥AB∥ce)(A) ab (B) ae (C) ce (D) ed2. 受扭圆轴,上⾯作⽤的扭矩T 不变,当直径减⼩⼀半时,该截⾯上的最⼤切应⼒与原来的最⼤切应⼒之⽐为( ):(A) 2 (B) 4 (C) 6 (D) 83.根据切应⼒互等定理,图⽰的各单元体上的切应⼒正确的是()。
4. 在平⾯图形的⼏何性质中,()的值可正、可负、也可为零。
A.静矩和惯性矩; B.极惯性矩和惯性矩; C.惯性矩和惯性积; D.静矩和惯性积。
5.受⼒情况相同的三种等截⾯梁,⽤(σmax )1、(σmax )2、(σmax )3分别表⽰三根梁内横截⾯上的最⼤正应⼒,则下列说法正确的是 ( )。
(A) (σmax )1 = (σmax )2 = (σmax )3 (B) (σmax )1< (σmax )2 = (σmax )3 (C) (σmax )1 = (σmax )2 < (σmax )3 (D) (σmax )1 < (σmax )2 < (σmax )36. 在图⽰矩形截⾯上,剪⼒为Fs,欲求m-m 线上的切应⼒,则公式*s zzF S BI τ?=中, 下列说法正确的是( )(A)*z S 为截⾯的阴影部分对Z′轴的静矩, B=δ(B)*Z S 为截⾯的整个部分对Z′轴的静矩, B =δ (C)*Z S 为截⾯的整个部分对Z 轴的静矩, B=δ(D)*z S 为截⾯的阴影部分对Z 轴的静矩, B =δτττ20kN1020kNA B C D7. 已知梁的EI z 为常数,长度为l ,欲使两的挠曲线在x=l /3处出现⼀拐点,则⽐值m 1/m 2= ( )。