2011高考数学二轮复习 专题三:第二讲《数列求和及综合应用》 文 课件
- 格式:ppt
- 大小:942.50 KB
- 文档页数:26
第2讲数列求和及其综合应用错位相减法求和[学生用书P34]共研典例类题通法错位相减法适用于由一个等差数列和一个等比数列对应项的乘积构成的数列的求和,其依据是:c n =a n b n ,其中{a n }是公差为d 的等差数列,{b n }是公比为q (q ≠1)的等比数列,则qc n =qa n b n =a n b n +1,此时c n +1-qc n =(a n +1-a n )·b n +1=db n +1,这样就把对应相减的项变成了一个等比数列,从而达到求和的目的.(2016·高考山东卷)已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n=b n +b n +1.(1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n.求数列{c n }的前n 项和T n .【解】(1)由题意知当n ≥2时,a n =S n -S n -1=6n +5, 当n =1时,a 1=S 1=11,符合上式.所以a n =6n +5. 设数列{b n }的公差为d ,由⎩⎪⎨⎪⎧a 1=b 1+b 2,a 2=b 2+b 3,得⎩⎪⎨⎪⎧11=2b 1+d ,17=2b 1+3d ,可解得b 1=4,d =3. 所以b n =3n +1.(2)由(1)知c n =(6n +6)n +1(3n +3)n=3(n +1)·2n +1. 又T n =c 1+c 2+…+c n ,所以T n =3×[2×22+3×23+…+(n +1)×2n +1], 2T n =3×[2×23+3×24+…+(n +1)×2n +2],两式作差,得-T n =3×[2×22+23+24+ (2)+1-(n +1)×2n +2]=3×⎣⎢⎡⎦⎥⎤4+4(1-2n )1-2-(n +1)×2n +2=-3n ·2n +2, 所以T n =3n ·2n +2.应用错位相减法求和需注意的问题(1)错位相减法适用于求数列{a n ·b n }的前n 项和,其中{a n }为等差数列,{b n }为等比数列.(2)所谓“错位”,就是要找“同类项”相减.要注意的是相减后所得部分,求等比数列的和,此时一定要查清其项数.(3)为保证结果正确,可对得到的和取n =1,2进行验证. [跟踪训练](2016·兰州模拟)等差数列{a n }中,已知a n >0,a 1+a 2+a 3=15,且a 1+2,a 2+5,a 3+13构成等比数列{b n }的前三项.(1)求数列{a n },{b n }的通项公式; (2)求数列{a n ·b n }的前n 项和T n .[解] (1)设等差数列{a n }的公差为d ,则由已知得: a 1+a 2+a 3=3a 2=15,即a 2=5. 又(5-d +2)(5+d +13)=100, 解得d =2或d =-13(舍去),所以a 1=a 2-d =3,a n =a 1+(n -1)×d =2n +1. 又b 1=a 1+2=5,b 2=a 2+5=10,所以公比q =2, 所以b n =5×2n -1.(2)因为T n =5[3+5×2+7×22+…+(2n +1)×2n -1], 2T n =5[3×2+5×22+7×23+…+(2n +1)×2n ],两式相减得-T n =5[3+2×2+2×22+…+2×2n -1-(2n +1)×2n ]=5[(1-2n )2n -1], 则T n =5[(2n -1)2n +1].裂项相消法求和[学生用书P35]共研典例类题通法 1.常见的裂项类型 (1)1n (n +1)=1n -1n +1; (2)1n (n +k )=1k ⎝⎛⎭⎫1n -1n +k ;(3)1n 2-1=12⎝⎛⎭⎫1n -1-1n +1;(4)14n 2-1=12⎝⎛⎭⎫12n -1-12n +1;(5)n +1n (n -1)·2n =2n -(n -1)n (n -1)·2n =1(n -1)2n -1-1n ·2n. 2.裂项相消法求和的基本思想是把数列的通项公式a n 分拆成a n =b n +k -b n (k ≥1,k ∈N *)的形式,从而达到在求和时某些项相消的目的,在解题时要善于根据这个基本思想变换数列{a n }的通项公式,使之符合裂项相消的条件.(2016·海口调研测试)在等差数列{a n }中,公差d ≠0,a 1=7,且a 2,a 5,a 10成等比数列.(1)求数列{a n }的通项公式及其前n 项和S n ; (2)若b n =5a n ·a n +1,求数列{b n }的前n 项和T n .【解】(1)因为a 2,a 5,a 10成等比数列, 所以(7+d )(7+9d )=(7+4d )2, 又因为d ≠0,所以d =2,所以a n =2n +5,S n =(7+2n +5)n 2=n 2+6n .(2)由(1)可得b n =5(2n +5)(2n +7)=52⎝ ⎛⎭⎪⎫12n +5-12n +7, 所以T n =52⎝ ⎛⎭⎪⎫17-19+19-111+…+12n +5-12n +7=5n14n +49.裂项相消法的技巧在裂项时要注意把数列的通项分拆成的两项一定是某个数列中的相邻的两项,或者是等距离间隔的两项,只有这样才能实现逐项相消,只剩余有限的几项,从而求出其和.[跟踪训练](2016·石家庄模拟)已知等差数列{a n }中,2a 2+a 3+a 5=20,且前10项和S 10=100.(1)求数列{a n }的通项公式;(2)若b n =1a n a n +1,求数列{b n }的前n 项和.[解] (1)由已知得⎩⎪⎨⎪⎧2a 2+a 3+a 5=4a 1+8d =20,10a 1+10×92d =10a 1+45d =100, 解得⎩⎪⎨⎪⎧a 1=1,d =2.所以{a n }的通项公式为a n =1+2(n -1)=2n -1.(2)由(1)知,b n =1(2n -1)(2n +1)=12×⎝ ⎛⎭⎪⎫12n -1-12n +1,所以数列{b n }的前n 项和T n =12×⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫11-13+⎝⎛⎭⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1 =12×⎝ ⎛⎭⎪⎫1-12n +1=n 2n +1.分组转化求和[学生用书P35]共研典例类题通法 分组转化求和的三种类型分组转化求和是把数列之和分为几组,每组中的各项是可以利用公式(或其他方法)求和的,求出各组之和即得整体之和,这类试题一般有如下三种类型:(1)数列是周期数列,先求出每个周期内的各项之和,然后把整体之和按照周期进行划分,再得出整体之和;(2)奇偶项分别有相同的特征的数列(如奇数项组成等差数列、偶数项组成等比数列),按照奇数项和偶数项分组求和;(3)通项中含有(-1)n 的数列,按照奇数项、偶数项分组,或者按照n 为奇数、偶数分类求和.(2016·呼和浩特模拟)在数列{a n }中,a 1=3,a n =2a n -1+(n -2)(n ≥2,n ∈N *). (1)证明:数列{a n +n }是等比数列,并求{a n }的通项公式; (2)求数列{a n }的前n 项和S n .【解】(1)因为a n +n =2[a n -1+(n -1)],a n +n ≠0, 所以{a n +n }是首项为4,公比为2的等比数列,所以a n +n =4×2n -1=2n +1. 所以a n =2n +1-n .(2)S n =(22+23+24+…+2n +1)-(1+2+3+…+n )=2n +2-n 2+n +82.分组求和的常见方法 (1)根据等差、等比数列分组. (2)根据正号、负号分组.(3)根据数列的周期性分组.[题组通关]1.已知数列{a n }的通项公式是a n =(-1)n -1(n +1),则a 1+a 2+a 3+…+a 2017=( )A .1009B .1010C .-1009D .-1010B [解析] 因为a n =(-1)n -1(n +1),所以a 1+a 2+a 3+…+a 2017=(2-3)+(4-5)+…+(2016-2017)+2018=1008×(-1)+2018=1010.2.设数列{a n }的前n 项和为S n (n ∈N *),数列{a 2n -1}是首项为1的等差数列,数列{a 2n }是首项为2的等比数列,且满足S 3=a 4,a 3+a 5=a 4+2.(1)求数列{a n }的通项公式; (2)求S 2n .[解] (1)设等差数列的公差为d ,等比数列的公比为q ,则a 1=1,a 2=2,a 3=1+d ,a 4=2q ,a 5=1+2d ,所以⎩⎪⎨⎪⎧4+d =2q ,(1+d )+(1+2d )=2+2q ,解得d =2,q =3.所以a n =⎩⎪⎨⎪⎧n ,n =2k -1,2·3n 2-1,n =2k ,(k ∈N *).(2)S 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=(1+3+5+…+2n -1)+(2×30+2×31+…+2×3n -1) =(1+2n -1)n 2+2(1-3n )1-3=n 2-1+3n .等差、等比数列的综合问题[学生用书P36]共研典例类题通法解决等差数列、等比数列的综合问题,要从两个数列的特征入手,理清它们的关系;数列与不等式、函数、方程的交汇问题,可以结合数列的单调性、最值求解.已知数列{a n }满足a 1=12,a n +1a n +1-1-1a n -1=0,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =a n +1a n -1,数列{b n }的前n 项和为S n ,证明:S n <34.【解】(1)由已知a n +1a n +1-1-1a n -1=0,n ∈N *,得(a n +1-1)+1a n +1-1-1a n -1=0,即1+1a n +1-1-1a n -1=0,亦即1a n +1-1-1a n -1=-1(常数).所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n -1是以1a 1-1=-2为首项, -1为公差的等差数列.可得1a n -1=-2+(n -1)×(-1)=-(n +1),所以a n =nn +1.(2)证明:因为b n =a n +1a n -1=(n +1)2n (n +2)-1=1n (n +2)=12⎝⎛⎭⎪⎫1n -1n +2,所以S n =b 1+b 2+…+b n=12⎝⎛⎭⎫1-13+12⎝⎛⎭⎫12-14+12⎝⎛⎭⎫13-15+…+12⎝ ⎛⎭⎪⎫1n -1-1n +1+12⎝ ⎛⎭⎪⎫1n -1n +2 =12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2<12×⎝⎛⎭⎫1+12=34.解决数列综合问题的方法(1)等差数列与等比数列交汇的问题,常用“基本量法”求解,但有时灵活地运用性质,可使运算简便.(2)数列的项或前n 项和可以看作关于n 的函数,然后利用函数的性质求解数列问题.(3)数列中的恒成立问题可以通过分离参数,通过求数列的值域求解. [跟踪训练](2016·武汉模拟)已知S n 是公差不为0的等差数列{a n }的前n 项和,S 1,S 2,S 4成等比数列,且a 3=-52.(1)求数列{a n }的通项公式;(2)设b n =1(2n +1)a n ,求数列{b n }的前n 项和T n .[解] (1)设{a n }的公差为d (d ≠0), 因为S 1,S 2,S 4成等比数列,所以S 22=S 1S 4,即(2a 1+d )2=a 1(4a 1+6d ),化简得d 2=2a 1d .因为d ≠0,所以d =2a 1.① 因为a 3=-52,所以a 1+2d =-52.②联立①②,解得⎩⎪⎨⎪⎧a 1=-12d =-1,所以a n =-12+(n -1)×(-1)=-n +12.(2)因为b n =1(2n +1)a n =1(2n +1)⎝⎛⎭⎫-n +12=-2(2n +1)(2n -1)=12n +1-12n -1,所以T n =⎝⎛⎭⎫13-1+⎝⎛⎭⎫15-13+⎝⎛⎭⎫17-15+…+⎝ ⎛⎭⎪⎫12n +1-12n -1=-1+12n +1=-2n 2n +1. 课时作业[学生用书P120(独立成册)]1.设各项均为正数的等差数列{a n }的前n 项和为S n ,且a 4a 8=32,则S 11的最小值为( ) A .22 2B .442C .22D .44B [解析] 因为数列{a n }为各项均为正数的等差数列,所以a 4+a 8≥2a 4a 8=82,S 11=(a 1+a 11)×112=112(a 4+a 8)≥112×82=442,故S 11的最小值为442,当且仅当a 4=a 8=42时取等号.2.已知在数列{a n }中,a 1=-60,a n +1=a n +3,则|a 1|+|a 2|+|a 3|+…+|a 30|等于( ) A .445 B .765 C .1080D .3105B [解析] 因为a n +1=a n +3,所以a n +1-a n =3. 所以{a n }是以-60为首项,3为公差的等差数列. 所以a n =-60+3(n -1)=3n -63. 令a n ≤0,得n ≤21. 所以前20项都为负值. 所以|a 1|+|a 2|+|a 3|+…+|a 30| =-(a 1+a 2+…+a 20)+a 21+…+a 30 =-2S 20+S 30.因为S n =a 1+a n 2n =-123+3n 2×n ,所以|a 1|+|a 2|+|a 3|+…+|a 30|=765.3.已知数列{a n }满足a 1=1,a 2=3,a n +1a n -1=a n (n ≥2),则数列{a n }的前40项和S 40等于( )A .20B .40C .60D .80C [解析] 由a n +1=a na n -1(n ≥2),a 1=1,a 2=3,可得a 3=3,a 4=1,a 5=13,a 6=13,a 7=1,a 8=3,…,这是一个周期为6的数列,一个周期内的6项之和为263,又40=6×6+4,所以S 40=6×263+1+3+3+1=60.4.(2016·郑州模拟)设等比数列{a n }的各项均为正数,且a 1=12,a 24=4a 2a 8,若1b n=log 2a 1+log 2a 2+…+log 2a n ,则数列{b n }的前10项和为( )A .-2011B.2011C .-95D.95A [解析] 设等比数列{a n }的公比为q ,因为a 24=4a 2a 8,所以(a 1q 3)2=4a 1q ·a 1q 7,即4q 2=1,所以q =12或q =-12(舍),所以a n =⎝⎛⎭⎫12n =2-n ,所以log 2a n =log 22-n =-n ,所以1b n =-(1+2+3+…+n )=-n (1+n )2,所以b n =-2n (1+n )=-2⎝ ⎛⎭⎪⎫1n -1n +1,所以数列{b n }的前10项和为-2⎣⎡⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13⎦⎤+…+⎝⎛⎭⎫110-111=-2·⎝⎛⎭⎫1-111=-2011. 5.设b n =a n (a n +1)(a n +1+1)(其中a n =2n -1),数列{b n }的前n 项和为T n ,则T 5=( )A.3133B.3233C.3166D.1633C [解析] 由题意得,b n =2n -1(2n -1+1)(2n +1)=12n -1+1-12n +1,所以T n =⎝ ⎛⎭⎪⎫120+1-121+1+⎝ ⎛⎭⎪⎫121+1-122+1+…+ ⎝ ⎛⎭⎪⎫12n -1+1-12n +1=12-12n +1,所以T 5=12-133=3166.6.已知f (x ),g (x )都是定义在R 上的函数,g (x )≠0,f ′(x )g (x )>f (x )g ′(x ),且f (x )=a x g (x )(a>0,且a ≠1),f (1)g (1)+f (-1)g (-1)=52.若数列⎩⎨⎧⎭⎬⎫f (n )g (n )的前n 项和大于62,则n 的最小值为( )A .8B .7C .6D .9C [解析] 由⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )g 2(x )>0,知f (x )g (x )在R 上是增函数,即f (x )g (x )=a x 为增函数,所以a >1.又因为a +1a =52,所以a =2或a =12(舍).数列⎩⎨⎧⎭⎬⎫f (n )g (n )的前n 项和S n =21+22+…+2n =2(1-2n)1-2=2n +1-2>62.即2n >32,所以n >5.7.(2016·海口调研测试)设数列{a n }的前n 项和为S n ,且a 1=1,a n +a n +1=12n (n =1,2,3,…),则S 2n +3=________.[解析] 依题意得S 2n +3=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 2n +2+a 2n +3)=1+14+116+…+14n +1=1-14n +21-14=43⎝ ⎛⎭⎪⎫1-14n +2. [答案]43⎝⎛⎭⎫1-14n +28.若等比数列的各项均为正数,前4项的和为9,积为814,则前4项倒数的和为________.[解析] 设等比数列的首项为a 1,公比为q ,则第2,3,4项分别为a 1q ,a 1q 2,a 1q 3,依题意得a 1+a 1q +a 1q 2+a 1q 3=9,a 1·a 1q ·a 1q 2·a 1q 3=814⇒a 21q 3=92,两式相除得a 1+a 1q +a 1q 2+a 1q 3a 21q 3=1a 1+1a 1q +1a 1q 2+1a 1q3=2. [答案]29.数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 2017=________.[解析] 因为a n +a n +1=12(n ∈N *),所以a 1=12-a 2=12-2,a 2=2,a 3=12-2,a 4=2,…,故a 2n =2,a 2n -1=12-2,所以S 2017=1009a 1+1008a 2=1009×⎝⎛⎭⎫12-2+1008×2=10052. [答案]1005210.已知数列{a n }中,a 1=1,a 2=2,设S n 为数列{a n }的前n 项和,对于任意的n >1,n ∈N *,S n +1+S n -1=2(S n +1)都成立,则S 10=________.[解析]因为⎩⎪⎨⎪⎧S n +1+S n -1=2S n +2,S n +2+S n =2S n +1+2,所以a n +2+a n =2a n +1,所以数列{a n }从第二项开始为等差数列,当n =2时,S 3+S 1=2S 2+2,所以a 3=a 2+2=4,所以S 10=1+2+4+6+…+18=1+9(2+18)2=91. [答案]9111.(2016·东北四市联考)已知数列{a n }满足a 1=511,a 6=-12,且数列{a n }的每一项加上1后成为等比数列.(1)求a n ;(2)令b n =|log 2(a n +1)|,求数列{b n }的前n 项和T n .[解] (1)由题意数列{a n +1}是等比数列,设公比为q ,a 1+1=512,a 6+1=12=512×q 5, 解得q =14. 则数列{a n +1}是以512为首项,14为公比的等比数列, 所以a n +1=211-2n ,a n =211-2n -1.(2)由(1)知b n =|11-2n |,当n ≤5时,T n =10n -n 2,当n ≥6时,T n =n 2-10n +50,所以T n =⎩⎪⎨⎪⎧10n -n 2,n ≤5n 2-10n +50,n ≥6. 12.(2016·哈尔滨模拟)已知数列{a n }是等比数列,a 2=4,a 3+2是a 2和a 4的等差中项.(1)求数列{a n }的通项公式;(2)设b n =2log 2a n -1,求数列{a n b n }的前n 项和T n .[解] (1)设数列{a n }的公比为q ,因为a 2=4,所以a 3=4q ,a 4=4q 2.因为a 3+2是a 2和a 4的等差中项,所以2(a 3+2)=a 2+a 4.即2(4q +2)=4+4q 2,化简得q 2-2q =0.因为公比q ≠0,所以q =2.所以a n =a 2q n -2=4×2n -2=2n (n ∈N *).(2)因为a n =2n ,所以b n =2log 2a n -1=2n -1,所以a n b n =(2n -1)2n ,则T n =1×2+3×22+5×23+…+(2n -3)2n -1+(2n -1)2n ,①2T n =1×22+3×23+5×24+…+(2n -3)2n +(2n -1)·2n +1,②由①-②得,-T n =2+2×22+2×23+…+2×2n -(2n -1)2n +1=2+2×4(1-2n -1)1-2-(2n -1)2n +1 =-6-(2n -3)2n +1,所以T n =6+(2n -3)2n +1.13.数列{a n }满足a n +1=a n 2a n +1,a 1=1. (1)证明:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列; (2)求数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和S n ,并证明1S 1+1S 2+…+1S n >n n +1. [解] (1)证明:因为a n +1=a n 2a n +1,所以1a n +1=2a n +1a n ,化简得1a n +1=2+1a n , 即1a n +1-1a n =2,故数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,2为公差的等差数列. (2)由(1)知1a n =2n -1,所以S n =n (1+2n -1)2=n 2. 1S 1+1S 2+…+1S n =112+122+…+1n 2>11×2+12×3+…+1n (n +1)=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1. 14.(选做题)已知函数f (x )=2sin(ωx +φ)(ω>0,|φ|<π)的图象经过点⎝⎛⎭⎫π12,-2,⎝⎛⎭⎫7π12,2,且在区间⎝⎛⎭⎫π12,7π12上为单调函数. (1)求ω,φ的值;(2)设a n =nf ⎝⎛⎭⎫n π3(n ∈N *),求数列{a n }的前30项和S 30. [解] (1)由题可得ωπ12+φ=2k π-π2,k ∈Z ,7ωπ12+φ=2k π+π2,k ∈Z , 解得ω=2,φ=2k π-2π3,k ∈Z , 因为|φ|<π,所以φ=-2π3. (2)因为a n =2n sin ⎝ ⎛⎭⎪⎫2n π3-2π3(n ∈N *),数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫2sin ⎝ ⎛⎭⎪⎫2n π3-2π3(n ∈N *)的周期为3,前三项依次为0,3,-3,所以a 3n -2+a 3n -1+a 3n =(3n -2)×0+(3n -1)×3+3n ×(-3)=-3(n ∈N *), 所以S 30=(a 1+a 2+a 3)+…+(a 28+a 29+a 30)=-10 3.。
第二讲 数列的综合应用[考情分析]数列在解答题中的考查常以数列的相关项以及关系式,或数列的前n 项和与第n 项的关系入手,结合数列的递推关系式与等差数列或等比数列的定义展开,求解数列的通项、前n 项和,有时与参数的求解、数列不等式的证明等加以综合.试题难度中等.[真题自检]1.(2017·高考全国卷Ⅱ)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a 3+b 3=5,求{b n }的通项公式;(2)若T 3=21,求S 3.解析:设{a n }的公差为d ,{b n }的公比为q ,则a n =-1+(n -1)d ,b n =qn -1.由a 2+b 2=2得d +q =3. ①(1)由a 3+b 3=5得2d +q 2=6. ②联立①和②解得⎩⎪⎨⎪⎧d =3,q =0(舍去),⎩⎪⎨⎪⎧d =1,q =2.因此{b n }的通项公式为b n =2n -1.(2)由b 1=1,T 3=21得q 2+q -20=0,解得q =-5,q =4.当q =-5时,由①得d =8,则S 3=21. 当q =4时,由①得d =-1,则S 3=-6.2.(2017·高考全国卷Ⅲ)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n .(1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫an 2n +1的前n 项和.解析:(1)因为a 1+3a 2+…+(2n -1)a n =2n ,故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1).两式相减得(2n -1)a n =2, 所以a n =22n -1(n ≥2).又由题设可得a 1=2,符合上式, 从而{a n }的通项公式为a n =22n -1.(2)记{an2n +1}的前n 项和为S n .由(1)知an2n +1=2+-=12n -1-12n +1.则S n =11-13+13-15+…+12n -1-12n +1=2n2n +1.3.(2016·高考全国卷Ⅲ)已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0.(1)求a 2,a 3;(2)求{a n }的通项公式.解析:(1)由题意可得a 2=12,a 3=14.(2)由a 2n -(2a n +1-1)a n -2a n +1=0得2a n +1(a n +1)=a n (a n +1).因此{a n }的各项都为正数,所以an +1an =12.故{a n }是首项为1,公比为12的等比数列,因此a n =12n -1.4.(2016·高考全国卷Ⅰ)已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=13,a n b n +1+b n +1=nb n .(1)求{a n }的通项公式; (2)求{b n }的前n 项和.解析:(1)由已知,a 1b 2+b 2=b 1,b 1=1,b 2=13,得a 1=2.所以数列{a n }是首项为2,公差为3的等差数列,通项公式为a n =3n -1.(2)由(1)知, a n b n +1+b n +1=nb n ,得b n +1=bn3,因此{b n }是首项为1,公比为13的等比数列.记{b n }的前n 项和为S n ,。