《认识三角形》同步练习
- 格式:doc
- 大小:43.50 KB
- 文档页数:4
北师大版数学四年级下册同步练习第二单元《认识三角形和四边形》(一)学校:___________姓名:___________班级:___________一、选择题(16分)1.一个等腰三角形的顶角是底角的3倍,这个三角形的顶角是()。
A.36°B.120°C.108°D.148°2.下面说法错误的是()。
A.平行四边形容易变形B.平行四边形和梯形都有无数条高C.平行四边形是特殊的长方形D.长方形、正方形相邻的两条边互相垂直3.长方形有()组平行线。
A.1B.2C.3D.44.一个三角形两边的长分别是7cm、12cm,第三边的长可能是()。
A.3cm B.4cm C.5cm D.12cm5.下面能围成三角形的一组线段是()。
A.2厘米,3厘米,4厘米B.1厘米,1厘米,2厘米C.2厘米,2厘米,5厘米D.3厘米,3厘米,7厘米6.如果三角形的两边分别是7厘米和10厘米,那么第三边的长不可能是()。
A.5厘米B.8厘米C.14厘米D.18厘米7.关于正方形和长方形的共同特征,有如下的几种说法:①对边相等;①对边平行;①四条边都相等;①四个角的和是360 ;①都是轴对称图形,下面选项正确的是()。
A.①①①B.①①①C.①①①①D.①①①8.刘师傅把一根铁丝剪成3段正好可以围成一个三角形,其中两段铁丝分别长11厘米、17厘米,第3段铁丝的长度不可能是()。
A.10厘米B.8厘米C.6厘米D.20厘米二、填空题(16分)9.自行车架、相机三脚架等都做成三角形,这是运用了三角形的( )特性。
请再举一个利用这种特性的生活实例:( )。
10.算一算,比一比。
①C=( )°,三角形ABC是( )三角形,①B( )①C。
11.在直角三角形里,如果有一个锐角是55°,那么另一个锐角是( )°。
12.红领巾的一个底角是30°,它的顶角度数是( ),红领巾按角分是( )三角形。
4.【知识点】1 由____________________的三条线段____________相接所组成的图形叫做三角形,三角形有____________条边、____________个内角和____________个顶点. “三角形”用符号“____________”表示,顶点是A,B,C的三角形,可记作“____________”.2 三角形按内角大小分类,可分为________________、____________________、________________________.3 三角形任意两边之和____________第三边;三角形任意两边之差____________第三边.4 从三角形的一个顶点向它的对边所在的直线作____________,顶点和____________之间的线段叫做三角形的高线,简称三角形的高.三角形三条高所在的直线____________.5 在三角形中,连接一个顶点与它对边____________的线段,叫做这个三角形的中线,三角形的三条中线____________,这一点称为三角形的____________.6 在三角形中,一个内角的________________与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线.三角形的三条角平分线__________________.【例题讲解】1如图4-1-2,图中有几个三角形?把它们表示出来,并写出∠B的对边.2 如图4-1-4所示的图中共有多少个三角形?请写出这些三角形并指出所有以E为顶点的角.3 在△ABC中,∠A=21°,∠B=34°,则△ABC是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 锐角三角形或钝角三角形4 一个三角形的两边b=4,c=7,试确定第三边a的范围. 当各边均为整数时,有几个三角形?有等腰三角形吗?等腰三角形的各边长各是多少?5 下列四个图形中,线段BE是△ABC的高的是()6 如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( )A. 锐角三角形B. 钝角三角形C. 直角三角形D. 都有可能7 如图4-1-15,已知△ABC 的周长为24 cm ,AD 是BC 边上的中线,AD=85AB ,AD=5 cm ,△ABD 的周长是18 cm ,求AC 的长.8 如图4-1-17,在△ABC 中,AD 是BC 边上的中线,△ADC 的周长比△ABD 的周长多5 cm ,AB 与AC 的和为13 cm ,求AC 的长.9 如图4-1-19,在△ABC 中,∠B=60°,∠C=30°,AD 和AE 分别是△ABC 的高和角平分线,求∠DAE 的度数.10 如图4-1-21,△ABC 中,AD,AE 分别是△ABC 的高和角平分线,BF 是∠ABC 的平分线,BF 与AE 交于点O ,若∠ABC=40°,∠C=60°,求∠AEC ,∠BOE 的度数.【举一反三】1 如图4-1-3所示的图形中共有三角形( )A. 4个B. 5个C. 6个D. 8个2 如图4-1-5,三角形共有()A.3个B.4个C.5个D.6个3 下列说法正确的是()A. 一个钝角三角形一定不是等腰三角形,也不是等边三角形B. 一个等腰三角形一定是锐角三角形,或直角三角形C. 一个直角三角形一定不是等腰三角形,也不是等边三角形D. 一个等边三角形一定不是钝角三角形,也不是直角三角形4 三角形按边分类,可分为()A.不等边三角形、等边三角形B.等腰三角形、等边三角形C.不等边三角形、等腰三角形、等边三角形D.不等边三角形、等腰三角形5 若三角形中的两边长分别为9和2,第三边长为偶数,求三角形的周长.6 下列各图中,正确画出AC边上的高的是()7 如图4-1-14,△ABC中BC边上的高是()A.BDB.AEC.BED.CF8 如图4-1-16,在△ABC中(AB>BC),AC=2BC,BC边上的中线AD把△ABC的周长分成60和40两部分,求AC和AB的长.9 如图4-1-18,CD为△ABC的AB边上的中线,△BCD的周长比△ACD的周长多3 cm,BC=8 cm,求边AC的长.10 如图4-1-20,D是△ABC中BC上的一点,DE∥AC交AB于点E,DF∥AB交AC于点F,且∠ADE=∠ADF,AD是△ABC的角平分线吗?说明理由.11如图4-1-22,在△ABC中,∠ACB=90°,CD为AB边上的高,BE平分∠ABC,分别交CD,AC于点F,E,试说明:∠CFE=∠CEF.【知识操练】1 在△ABC中,∠C=90°,点D,E分别是边AC,BC的中点,点F在△ABC 内,连接DE,EF,FD.以下图形符合上述描述的是()2 至少有两边相等的三角形是()A.等边三角形B.等腰三角形C.等腰直角三角形D.锐角三角形3 下列说法正确的是()①等腰三角形是等边三角形;②三角形按边分可分为等腰三角形、等边三角形和不等边三角形;③等腰三角形至少有两边相等;④三角形按角分可分为锐角三角形、直角三角形和钝角三角形.A.①②B.①③④C.③④D.①②④4 以下列各组线段为边,能组成三角形的是()A.1 cm,2 cm,3 cmB.2 cm,5 cm,8 cmC.3 cm,4 cm,5 cmD.4 cm,5 cm,10 cm5 如图4-1-23,已知BD是△ABC的中线,AB=5,BC=3,则△ABD和△BCD的周长的差是()A. 2B. 3C. 6D. 不能确定6 如图4-1-24,AD⊥BC于点D,GC⊥BC于点C,CF⊥AB于点F.下列关于高的说法错误的是()A.△ABC中,AD是BC边上的高B.△GBC中,CF是BG边上的高C.△ABC中,GC是BC边上的高D.△GBC中,GC是BC边上的高7 如图4-1-25,AD是△ABC的中线,△ABC的面积为10 cm2,则△ABD的面积是()A. 5 cm2B. 6 cm2C. 7 cm2D. 8 cm28 如图4-1-26,在△ABC中,AD是高,AE是∠BAC的平分线,AF是BC边上的中线,则下列线段中,最短的是()A.AB B.AE C.AD D.AF9 如图4-1-27,已知∠1=∠2,∠3=∠4,则下列正确的结论有()①AD平分∠BAF;②AF平分∠DAC;③AE平分∠DAF;④AE平分∠BAC.A.1个B.2个C.3个D.4个10 如图4-1-28,在△ABC中,∠C=90°,D,E为AC上的两点,且AE=DE,BD平分∠EBC,则下列说法不正确的是()A.BC是△ABE的高B.BE是△ABD的中线C.BD是△EBC的角平分线D.∠ABE=∠EBD=∠DBC11 如图4-1-29,在△ABC中,AD,CE分别为BC,AB边上的高,若BC=6,AD=5,CE=4,则AB的长为____________.12 一个三角形的两边长分别是3和8,周长是偶数,那么第三边的边长是___________.13 一副三角尺如图4-1-9所示叠放在一起,则图中∠α的度数是____________.14 如图4-1-30,已知AE是△ABC的边BC上的高,AD是∠EAC的平分线,交BC于点D.若∠ACB=40°,则∠DAE=__________.15 已知a,b,c为△ABC的三边长,b,c满足(b-2)2+|c-3|=0,且a为方程|a-4|=2的解,求△ABC的周长,并判断△ABC的形状.16 如图4-1-10,点O是△ABC内的一点,试说明:OA+OB+OC>(AB+BC+CA).17 如图4-1-31,△ABC中,AD是高,AE,BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.。
中考数学复习专题练习认识三角形一、选择题:1、一定在△ABC内部的线段是()A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、二条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线2、有5根小木棒,长度分别为2cm、3cm、4cm、5cm、6cm,任意取其中的3根小木棒首尾相接搭三角形,可搭出不同的三角形的个数为()A.5个 B.6个 C.7个 D.8个3、如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3 B.4 C.6 D.54、如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( )A.15° B.25° C.30° D.10°5、如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为()A.20° B.25° C.30° D.40°6、一个多边形少加了一个内角时,它的度数和是1310°,则这个内角的度数为()A.120° B.130° C.140° D.150°7、已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为()A.20°或100° B.120° C.20°或120° D.36°8、一个正多边形的每个内角都等于140°,那么它是正()边形A.正六边形 B.正七边形 C.正八边形 D.正九边形9、如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米 B.150米 C.160米 D.240米10、如图,已知点D是△ABC的重心,连接BD并延长,交AC于点E,若AE=4,则AC的长度为()A.6 B.8 C.10 D.1211、.光线a照射到平面镜CD上,然后在平面镜AB和CD之间来回反射,光线的反射角等于入射角.若已知∠1=52°,∠3=70°,则∠2是( )A.52° B.61° C.65° D.70°12、如图,在四边形ABCD中,E、F分别是AB、AD的中点.若EF=2,BC=5,CD=3,则tanC等于()A. B. C. D.二、填空题:13、a、b、c为三角形的三条边,则= .14、如图,△ABC的两条高线AD、BE交于点F,∠BAD=45°,∠C=60°,则∠BFD的度数为15、如果将长度为a﹣2,a+5和a+2的三根线段首尾顺次相接可以得到一个三角形,a取值范围是.16、一个三角形的两边长为8和10,若另一边为a,当a为最短边时,a的取值范围是;当a为最长边时,a的取值范围是 .17、已知△ABC 的三边长 a、b、c,化简│a+b-c│-│b-a-c│的结果是 .18、将一副三角尺按如图所示的方式放置,使含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,则∠1的度数是.19、如图,∠2+∠3+∠4=320°,则∠1= .20、如图,七星形中∠A+∠B+∠C+∠D+∠E+∠F+∠G= .21、如图,将∠BAC沿DE向∠BAC内折叠,使AD与A′D重合,A′E与AE重合,若∠A=30°,则∠1+∠2= .22、如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD的度数为.23、如图,已知矩形ABCD,一条直线将该矩形ABCD分割成两个多边形,若这两个多边形的内角和分别为M和N,则M+N= _.24、如图,一个面积为50平方厘米正方形与另一个小正方形并排放在一下起,则△ABC面积是平方厘米.三、简答题:25、如图,在△ABC中,AB=AC,AC边上的中线把三角形的周长分为24cm和30cm两部分,求三角形各边的长.26、如图,AD为△ABC的中线,BE为△ABD的中线,(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;(2)作出△BED的BD边上的高;(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?27、(1)如图,在△ABC中,∠B=40°,∠C=80°,AD⊥BC于D,且AE平分∠BAC,求∠EAD的度数.(2)上题中若∠B=40°,∠C=80°改为∠C>∠B,其他条件不变,请你求出∠EAD与∠B、∠C之间的数列关系?并说明理由.28、如图,∠O=30°,任意裁剪的直角三角形纸板两条直角边所在直线与∠O的两边分别交于D、E两点.(1)如图1,若直角顶点C在∠O的边上,则∠ADO+∠OEB= 度;(2)如图2,若直角顶点C在∠O内部,求出∠ADO+∠OEB的度数;(3)如图3,如果直角顶点C在∠O外部,求出∠ADO+∠OEB的度数.29、如图(甲),D是△ABC的边BC的延长线上一点.∠ABC、∠ACD的平分线相交于P1.(1)若∠ABC=80°,∠ACB=40°,则∠P1的度数为;(2)若∠A=α,则∠P1的度数为;(用含α的代数式表示)(3)如图(乙),∠A=α,∠ABC、∠ACD的平分线相交于P1,∠P1BC、∠P1CD的平分线相交于P2,∠P2BC、∠P2CD的平分线相交于P3依此类推,则∠Pn的度数为(用n与α的代数式表示)30、阅读下列材料:某同学遇到这样一个问题:如图1,在△ABC中,AB=AC,BD是△ABC的高.P是BC边上一点,PM,PN分别与直线AB,AC垂直,垂足分别为点M,N.求证:.他发现,连接AP,有,即.由AB=AC,可得.他又画出了当点P在CB的延长线上,且上面问题中其他条件不变时的图形,如图2所示.他猜想此时BD,PM,PN之间的数量关系是:.请回答:(1)请补全以下该同学证明猜想的过程;证明:连接AP.∵,∴.∵AB=AC,∴.(2)参考该同学思考问题的方法,解决下列问题:在△ABC中,AB=AC=BC,BD是△ABC的高.P是△ABC所在平面上一点,PM,PN,PQ分别与直线AB,AC,BC垂直,垂足分别为点M,N,Q.①如图3,若点P在△ABC 的内部,则BD,PM,PN,PQ之间的数量关系是:;②若点P在如图4所示位置,利用图4探究得出此时BD,PM,PN,PQ之间数量关系是:.31、已知锐角△ABC中,CD、BE分别是AB、AC边上的高,M是线段BC的中点,连接DM、EM.(1)若DE=3,BC=8,求△DME的周长;(2)若∠A=60°,求证:∠DME=60°;(3)若BC2=2DE2,求∠A的度数.参考答案1、A.2、C.3、A.4、A.5、D.6、B.7、C.8、D.9、B.10、B.11、B.12、B.13、答案为:2a.14、答案为:60° 15、答案为:a>5.16、答案为:2<a≤8,10≤a<18.17、答案为:2b-2c. 18、答案为:75°.19、答案为:40°.20、答案为:180°.21、答案为:60°.22、答案为:40°.23、答案为:360°或540°或720°.24、答案为25.25、解:设AB=AC=2,则AD=CD=,(1)当AB+AD=30,BC+CD=24时,有2=30,∴ =10,2 =20,BC=24-10=14.三边长分别为:20 cm,20 cm,14 cm.(2)当AB+AD=24,BC+CD=30时,有=24,∴ =8,,BC=30-8=22.三边长分别为:16 cm,16 cm,22 cm.26、解:(1)∵∠BED是△ABE的一个外角,∴∠BED=∠ABE+∠BAD=15°+35°=50°。
探索与发现:三角形边的关系学校:___________姓名:___________班级:___________考号:___________一、选择题1.下面每组小棒,________能围成平行四边形.A.B.C.2.下面()图形的面积可以分成一个梯形和一个三角形面积之和。
A.B.C.3.下列哪一句话是正确的().A.平行线延长也可能相交.B.梯形是特殊的平行四边形.C.平行四边形两组对边分别平行.4.一个长方形的周长为a 厘米,宽边比长短3厘米,则这个长方形的长边的长度是()A.(a+3)÷4B.(a+a×2)÷2C.(a÷2﹣3)÷2D.(a÷2+3)÷2 5.不折叠,将一张平行四边形纸只剪一刀,剪不出()。
A.一个梯形和一个三角形B.两个梯形C.两个三角形D.一个长方形和一个三角形6.如图中长方形的个数是()A.3B.4C.5D.67.下面说法正确的是().A.同一平面内,不相交的两条直线一定互相平行B.梯形是特殊的平行四边形C.把一张正方形的纸对折再对折,打开后,折痕互相垂直D.平行四边形只可以画一条高8.下面图形中,一定有平行线的是()。
A.三角形B.四边形C.梯形二、填空题9.下图有( )个三角形,( )个平行四边形,( )个梯形。
10.新华体育场足球场地是一个长方形草坪,长100米,宽50米.一名运动员沿着足球场边跑了10圈,他跑了千米.11.一个正方形花坛,周长是51.2米,它的边长是多少米?(列方程解答)12.在图中,大正方形的周长是一个小正方形周长的2倍..(判断对错)13.正方形和长方形是特殊的( ),( )是特殊的长方形。
14.用一根31.4厘米的铁丝围成一个正方形,这个正方形的边长是厘米,如果围成一个圆形,这个圆的直径是厘米.三、判断题15.一个梯形可以由一个平行四边形和一个三角形组成。
( )16.平行四边形能分成两个相同的三角形。
北师大新版七年级下学期《4.1 认识三角形》同步练习卷一.选择题(共26小题)1.三角形按边分类可以用集合来表示,如图所示,图中小椭圆圈里的A表示()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形2.图中三角形的个数是()A.3个B.4个C.5个D.6个3.如图,图中三角形的个数共有()A.3个B.4个C.5个D.6个4.给出下列说法:(1)等边三角形是等腰三角形;(2)三角形按边的相等关系分类可分为等腰三角形、等边三角形和不等边三角形;(3)三角形按角的大小分类可分为锐角三角形、直角三角形和钝角三角形.其中,正确的有()个.A.1B.2C.3D.05.如图所示,有一条线段是△ABC(AC>AB)的中线,该线段是()A.线段AD B.线段AE C.线段AF D.线段MN6.在△ABC中,∠A是钝角,下列图中画BC边上的高线正确的是()A.B.C.D.7.下面四个图形中,线段BD是△ABC的高的是()A.B.C.D.8.如图,四个图形中,线段BE是△ABC的高的图是()A.B.C.D.9.如图,在△ABC中,AD,BE是两条中线,则△EFD和△BF A的面积之比是()A.1:2B.1:4C.1:3D.2:310.如图,在△ABC中,已知点D,E,F分别是BC,AD,CE的中点,且△ABC的面积为16,则△BEF的面积是()A.2B.4C.6D.811.下列各组数不可能是一个三角形的边长的是()A.7,8,9B.5,6,7C.3,4,5D.1,2,312.已知线段a=6cm,b=8cm,则下列线段中,能与a、b组成三角形的是()A.2cm B.12cm C.14cm D.16cm13.若三角形的两边长为2和3,则第三边长可以是()A.1B.3C.5D.714.下列长度的三条线段能组成三角形的是()A.4,5,9B.5,5,11C.1,2,3D.5,6,10 15.下列各组数可做为一个三角形三边长的是()A.4,6,8B.4,5,9C.1,2,4D.5,5,11 16.如图,在Rt△ABC中,∠C=90°,∠ABC和∠BAC的平分线交于一点O,∠ABO=30°,则∠AOB的度数是()A.100°B.125°C.135°D.130°17.如图,∠A=120°,且∠1=∠2=∠3和∠4=∠5=∠6,则∠BDC=()A.120°B.60°C.140°D.无法确定18.如图,在△ABC中,BD平分∠ABC,DE∥BC,且交AB于点E,∠A=60°,∠BDC =86°,则∠BDE的度数为()A.26°B.30°C.34°D.52°19.如图,在△ABC中,点D是∠ABC和∠ACB角平分线的交点,若∠BDC=110°,那么∠A=()A.40°B.50°C.60°D.70°20.如图,∠C=50°,∠B=30°,则∠CAD的度数是()A.80°B.90°C.100°D.110°21.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是()A.30°B.40°C.50°D.60°22.一副三角板,按如图所示叠放在一起,则图中∠α的度数是()A.75°B.105°C.110°D.120°23.在△ABC中,∠A,∠C与∠B的外角度数如图所示,则x的值是()A.60B.65C.70D.8024.如图,在Rt△ABC中,∠ACB=90°,点E、F为直角边BC、AC的中点,且AE=3,BF=4,则AB=()A.2B.3C.2D.525.在一个直角三角形中,有一个锐角等于35°,则另一个锐角的度数是()A.75°B.65°C.55°D.45°26.如图,在△ABC中,∠BAC=90°,AD⊥BC,垂足点为D,则下列结论中正确的个数为()①AB与AC互相垂直;②∠ADC=90°;③点C到AB的垂线段是线段AB;④线段AB的长度是点B到AC的距离;⑤线段AB是点B到AC的距离.A.5B.4C.3D.2二.填空题(共4小题)27.如图,△ABC中,点O是重心,过点O的两条线段BE⊥AD.若BD=10,BO=8,则AO的长为.28.如图,△ABC的中线BE、CD交于点G,则值为.29.已知△ABC中,∠ACB=90°,AC=6,BC=8,G为△ABC的重心,那么CG=.30.在Rt△ABC中,∠C=Rt∠,∠A=70°,则∠B=.北师大新版七年级下学期《4.1 认识三角形》2019年同步练习卷参考答案与试题解析一.选择题(共26小题)1.三角形按边分类可以用集合来表示,如图所示,图中小椭圆圈里的A表示()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形【分析】根据三角形的分类可直接得到答案.【解答】解:三角形根据边分类,∴图中小椭圆圈里的A表示等边三角形.故选:D.【点评】此题主要考查了三角形的分类,关键是掌握分类方法.按边的相等关系分类:不等边三角形和等腰三角形(底和腰不等的等腰三角形、底和腰相等的等腰三角形即等边三角形).2.图中三角形的个数是()A.3个B.4个C.5个D.6个【分析】三条线段首尾顺次相接组成的图形叫做三角形,根据图示得出三角形个数即可.【解答】解:图中三角形由△ABC,△ABE,△BEC,△BDC,△DEC,故选:C.【点评】此题考查三角形,在数三角形的个数时,注意不要忽略一些大的三角形.3.如图,图中三角形的个数共有()A.3个B.4个C.5个D.6个【分析】根据三角形的定义,找出图中所有的三角形,数出其个数即可得出结论.【解答】解:图中是三角形的有:△AOC、△BOD、△AOB、△ABC、△ABD.故选:C.【点评】本题考查了三角形,牢记三角形的定义是解题的关键.4.给出下列说法:(1)等边三角形是等腰三角形;(2)三角形按边的相等关系分类可分为等腰三角形、等边三角形和不等边三角形;(3)三角形按角的大小分类可分为锐角三角形、直角三角形和钝角三角形.其中,正确的有()个.A.1B.2C.3D.0【分析】根据三角形的分类、三角形的三边关系进行判断.【解答】解:(1)等边三角形是一特殊的等腰三角形,正确;(2)三角形按边分类可以分为不等边三角形和等腰三角形,错误;(3)三角形按角分类应分为锐角三角形、直角三角形和钝角三角形,正确.综上所述,正确的结论2个.故选:B.【点评】本题考查了三角形.注意:等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.5.如图所示,有一条线段是△ABC(AC>AB)的中线,该线段是()A.线段AD B.线段AE C.线段AF D.线段MN【分析】三角形一边的中点与此边所对顶点的连线叫做三角形的中线,逐一判断各选项即可.【解答】解:由图可得,F是BC的中点,根据三角形中线的定义,可知线段AF是△ABC的中线,故选:C.【点评】本题主要考查了三角形中线,三角形一边的中点与此边所对顶点的连线叫做三角形的中线.6.在△ABC中,∠A是钝角,下列图中画BC边上的高线正确的是()A.B.C.D.【分析】三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.根据概念可知.【解答】解:过点A作直线BC的垂线段,即画BC边上的高,所以画法正确的是D.故选:D.【点评】考查了三角形的高的概念,能够正确作三角形一边上的高.7.下面四个图形中,线段BD是△ABC的高的是()A.B.C.D.【分析】根据高的画法知,过点B作AC边上的高,垂足为E,其中线段BD是△ABC 的高.【解答】解:由图可得,线段BD是△ABC的高的图是D选项.故选:D.【点评】本题主要考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.8.如图,四个图形中,线段BE是△ABC的高的图是()A.B.C.D.【分析】根据三角形高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC的高,再结合图形进行判断.【解答】解:过点B作AC边上的高,垂足为E,则线段BE是△ABC的高的图是选项C.故选:C.【点评】本题主要考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.熟记定义是解题的关键.9.如图,在△ABC中,AD,BE是两条中线,则△EFD和△BF A的面积之比是()A.1:2B.1:4C.1:3D.2:3【分析】利用三角形的中位线定理可得DE:AB=1:2,再利用相似三角形的性质即可解决问题.【解答】解:∵CE=AE,CD=DB,∴ED∥AB,DE=AB,∴△DEF∽△ABF,∴=()2=,故选:B.【点评】本题考查三角形的面积,三角形的中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10.如图,在△ABC中,已知点D,E,F分别是BC,AD,CE的中点,且△ABC的面积为16,则△BEF的面积是()A.2B.4C.6D.8【分析】因为点F是CE的中点,所以△BEF的底是△BEC的底的一半,△BEF高等于△BEC的高;同理,D、E、分别是BC、AD的中点,△EBC与△ABC同底,△EBC的高是△ABC高的一半;利用三角形的等积变换可解答.【解答】解:解:如图,点F是CE的中点,∴△BEF的底是EF,△BEC的底是EC,即EF=EC,高相等;∴S△BEF=S△BEC,同理得,S△EBC=S△ABC,∴S△BEF=S△ABC,且S△ABC=16,∴S△BEF=4,即阴影部分的面积为4.故选:B.【点评】本题主要考查了三角形面积的等积变换:若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍.结合图形直观解答.11.下列各组数不可能是一个三角形的边长的是()A.7,8,9B.5,6,7C.3,4,5D.1,2,3【分析】在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【解答】解:A、7+8>9,能构成三角形;B、5+6>7,能构成三角形;C、3+4>5,能构成三角形;D、1+2=3,不能构成三角形.故选:D.【点评】本题主要考查了三角形的三边关系定理:任意两边之和大于第三边,只要满足两短边的和大于最长的边,就可以构成三角形.12.已知线段a=6cm,b=8cm,则下列线段中,能与a、b组成三角形的是()A.2cm B.12cm C.14cm D.16cm【分析】根据三角形的第三边大于两边之差小于两边之和即可判断.【解答】解:设三角形的第三边为m.由题意:8﹣6<m<6+8,即2<m<14,故选:B.【点评】本题考查三角形的三边关系,解题的关键是熟练掌握基本知识,属于中考常考题型.13.若三角形的两边长为2和3,则第三边长可以是()A.1B.3C.5D.7【分析】根据三角形三边关系定理求出第三边的范围,即可解答.【解答】解:∵三角形的两边长为3和2,∴第三边x的长度范围是3﹣2<x<3+2,即1<x<5,观察选项,只有选项B符合题意.故选:B.【点评】本题考查的是三角形的三边关系,掌握三角形三边关系定理:三角形两边之和大于第三边、三角形的两边差小于第三边是解题的关键.14.下列长度的三条线段能组成三角形的是()A.4,5,9B.5,5,11C.1,2,3D.5,6,10【分析】根据三角形的三边关系进行分析判断.【解答】解:根据三角形任意两边的和大于第三边,得A中,4+5=9,不能组成三角形;B中,5+5=10<11,不能组成三角形;C中,1+2=3,不能够组成三角形;D中,5+6=11>8,能组成三角形.故选:D.【点评】本题考查了能够组成三角形三边的条件:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.15.下列各组数可做为一个三角形三边长的是()A.4,6,8B.4,5,9C.1,2,4D.5,5,11【分析】在三角形中任意两边之和大于第三边,任意两边之差小于第三边,据此可得答案.【解答】解:A、4+6>8,能组成三角形;B、4+5=9,不能组成三角形;C、1+2<4,不能组成三角形;D、5+5<11,不能组成三角形.故选:A.【点评】本题考查了三角形三边关系,在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.16.如图,在Rt△ABC中,∠C=90°,∠ABC和∠BAC的平分线交于一点O,∠ABO=30°,则∠AOB的度数是()A.100°B.125°C.135°D.130°【分析】根据角平分线的定义以及三角形内角和定理,即可得到∠ABO和∠BAO的度数,再根据三角形内角和定理即可得出∠AOB的度数.【解答】解:∵BO平分∠ABC,∠ABO=30°,∴∠ABC=60°,又∵∠C=90°,∴∠BAC=30°,∵AO平分∠BAC,∴∠BAO=∠BAC=15°,∴△AOB中,∠AOB=180°﹣∠BAO﹣∠ABO=135°,故选:C.【点评】本题主要考查了三角形内角和定理以及角平分线的定义,解题时注意:三角形内角和是180°.17.如图,∠A=120°,且∠1=∠2=∠3和∠4=∠5=∠6,则∠BDC=()A.120°B.60°C.140°D.无法确定【分析】以及三角形内角和定理,即可得到∠ABC+∠ACB=180°﹣120°=60°,再根据∠1=∠2=∠3,∠4=∠5=∠6,即可得到∠DBC+∠DCB的度数,最后利用三角形内角和定理可得∠BDC的度数.【解答】解:在△ABC中,∵∠A=120°,∴∠ABC+∠ACB=180°﹣120°=60°,又∵∠1=∠2=∠3,∠4=∠5=∠6,∴∠DBC+∠DCB=×60°=40°,∴∠BDC=180°﹣40°=140°,故选:C.【点评】此题考查三角形的内角和,角平分线的定义,解题时注意:三角形内角和是180°.18.如图,在△ABC中,BD平分∠ABC,DE∥BC,且交AB于点E,∠A=60°,∠BDC =86°,则∠BDE的度数为()A.26°B.30°C.34°D.52°【分析】先根据三角形的一个外角等于与它不相邻的两个内角的和,求出∠ABD的度数,再根据角平分线的定义求出∠DBC的度数,然后根据两直线平行,内错角相等即可得解.【解答】解:∵∠BDC=∠A+∠ABD,∴∠ABD=∠BDC﹣∠A=86°﹣60°=26°,∵BD平分∠ABC,∴∠DBC=∠ABD=26°,又∵DE∥BC,∴∠BDE=∠DBC=26°.故选:A.【点评】本题主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,以及两直线平行,内错角相等的性质,准确识图是解题的关键.19.如图,在△ABC中,点D是∠ABC和∠ACB角平分线的交点,若∠BDC=110°,那么∠A=()A.40°B.50°C.60°D.70°【分析】求出∠ABC+∠ACB的度数即可解决问题.【解答】解:∵∠BDC=110°,∴∠DBC+∠DCB=70°,∵点D是∠ABC和∠ACB角平分线的交点,∴∠ABC+∠ACB=2(∠DBC+∠DCB)=140°,∴∠A=180°﹣140°=40°,故选:A.【点评】本题考查三角形的内角和定理,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.如图,∠C=50°,∠B=30°,则∠CAD的度数是()A.80°B.90°C.100°D.110°【分析】根据三角形的外角的性质即可解决问题.【解答】解:∵∠CAD=∠B+∠C,∠C=50°,∠B=30°,∴∠CAD=80°,故选:A.【点评】本题考查三角形的外角的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.21.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是()A.30°B.40°C.50°D.60°【分析】由∠A=80°,∠B=40°,根据三角形任意一个外角等于与之不相邻的两内角的和得到∠ACD=∠B+∠A,然后利用角平分线的定义计算即可.【解答】解:∵∠ACD=∠B+∠A,而∠A=80°,∠B=40°,∴∠ACD=80°+40°=120°.∵CE平分∠ACD,∴∠ACE=60°,故选:D.【点评】本题考查了三角形的外角定理,关键是根据三角形任意一个外角等于与之不相邻的两内角的和.22.一副三角板,按如图所示叠放在一起,则图中∠α的度数是()A.75°B.105°C.110°D.120°【分析】根据图形求出∠1,根据三角形的外角性质计算,得到答案.【解答】解:如图,∠1=90°﹣45°=45°,则∠α=60°+45°=105°,故选:B.【点评】本题考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.23.在△ABC中,∠A,∠C与∠B的外角度数如图所示,则x的值是()A.60B.65C.70D.80【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,列式计算即可得解.【解答】解:∵与∠ABC相邻的外角=∠A+∠C,∴x+65=x﹣5+x,解得x=70.故选:C.【点评】本题考查了三角形的外角性质,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.24.如图,在Rt△ABC中,∠ACB=90°,点E、F为直角边BC、AC的中点,且AE=3,BF=4,则AB=()A.2B.3C.2D.5【分析】设BE=EC=x,CF=F A=y,构建方程组求出x2,y2,再根据AB=计算即可.【解答】解:设BE=EC=x,CF=F A=y,∵∠C=90°,AE=3,BF=4,则有,解得x2=,y2=,∴AB===2,故选:C.【点评】本题考查解直角三角形,勾股定理等知识,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.25.在一个直角三角形中,有一个锐角等于35°,则另一个锐角的度数是()A.75°B.65°C.55°D.45°【分析】根据直角三角形两锐角互余,列式进行计算即可得解.【解答】解:∵在一个直角三角形中,有一个锐角等于35°,∴另一个锐角的度数是90°﹣35°=55°.故选:C.【点评】本题主要考查了直角三角形两锐角互余的性质,熟记性质是解题的关键.26.如图,在△ABC中,∠BAC=90°,AD⊥BC,垂足点为D,则下列结论中正确的个数为()①AB与AC互相垂直;②∠ADC=90°;③点C到AB的垂线段是线段AB;④线段AB的长度是点B到AC的距离;⑤线段AB是点B到AC的距离.A.5B.4C.3D.2【分析】根据点到直线的距离:直线外一点到直线的垂线段的长度,叫做点到直线的距离;当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线进行分析.【解答】解:∵∠BAC=90°,∴AB与AC互相垂直;故①正确;∵AD⊥BC,∴∠ADC=90°,故②正确;点C到AB的垂线段是线段AC;故③错误;线段AB的长度是点B到AC的距离;故④正确;线段AB的长度是点B到AC的距离,故⑤错误;故选:C.【点评】本题主要考查了点到直线的距离,关键时注意点到直线的距离是一个长度,而不是一个图形,也就是垂线段的长度,而不是垂线段.二.填空题(共4小题)27.如图,△ABC中,点O是重心,过点O的两条线段BE⊥AD.若BD=10,BO=8,则AO的长为12.【分析】先根据勾股定理得到OD的长,再根据重心的性质即可得到AO的长.【解答】解:∵BE⊥AD,BD=10,BO=8,∴OD==6,∵AC、BC上的中线交于点O,∴AO=2OD=12.故答案为:12.【点评】此题主要考查了勾股定理的应用以及重心的性质,根据已知得出各边之间的关系进而求出是解题关键.28.如图,△ABC的中线BE、CD交于点G,则值为.【分析】根据三角形重心的性质即可求解.【解答】解:∵△ABC的中线BE、CD交于点G,∴CG:DG=2:1,∴==.故答案为:.【点评】考查了三角形的重心,重心的性质:重心到顶点的距离与重心到对边中点的距离之比为2:1.29.已知△ABC中,∠ACB=90°,AC=6,BC=8,G为△ABC的重心,那么CG=.【分析】根据勾股定理求出AB,根据直角三角形的性质求出CD,根据三角形的重心的性质计算即可.【解答】解:△ABC中,∠ACB=90°,AC=6,BC=8,∴AB==10,∵G为△ABC的重心,∴CD是△ABC的中线,∴CD=AB=5,∵G为△ABC的重心,∴CG =CD =,故答案为:.【点评】本题考查的是三角形的重心的概念和性质,勾股定理,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.30.在Rt△ABC中,∠C=Rt∠,∠A=70°,则∠B=20°.【分析】根据直角三角形两锐角互余列式计算即可得解.【解答】解:∵∠C=Rt∠,∠A=70°,∴∠B=90°﹣∠A=90°﹣70°=20°.故答案为:20°.【点评】本题考查了直角三角形两锐角互余的性质,是基础题,熟记性质是解题的关键.第21页(共21页)。
认识三角形同步练习一、选择题(共10小题,每小题4分,共40分)1.如图,下列说法错误的是()A.∠A,∠B,∠ACB是△ABC的内角B.∠BCD是与∠ACB相邻的外角C.∠A+∠BCD=180°D.△ABC的三条边分别是线段AB,BC,AC2.如图,在∠1、∠2、∠3和∠4这四个角中,属于△ABC外角的有()A.1个B.2个C.3个D.4个3.下列说法正确的有( )①等腰三角形是等边三角形;②三角形按边分类可分为等腰三角形,等边三角形和不等边三角形;③三角形的外角与和它相邻的内角互补;④三角形按角分类应分为锐角三角形,直角三角形和钝角三角形.A.①②B.①③④C.③④D.①②④4.已知△ABC的一个外角为50°,则△ABC一定是( )A.锐角三角形B.钝角三角形C.直角三角形D.锐角或钝角三角形5.已知△ABC的周长为13 cm,AB与BC的长度之和为8 cm,AC与BC的长度之差为2 cm,那么这个三角形按边分类是( )A.不等边三角形B.等腰三角形C.等边三角形D.等腰直角三角形6.下列说法正确的有( )①等腰三角形是等边三角形;②三角形按边分类可分为等腰三角形、等边三角形和不等边三角形;③三角形的外角与和它相邻的内角互补;④三角形按角分类可分为锐角三角形、直角三角形和钝角三角形.A.①②B.①③④C.③④D.①②④7.已知a、b、c是一个三角形的三边长,且满足(a-b)·(b-c) ·(a-c)=0,则这个三角形是( )A.直角三角形B.等腰三角形C.等边三角形D.钝角三角形8.如果一条边是两个三角形的公共边,则称这两个三角形为“共边三角形”,图中以BC为公共边的“共边三角形”有( )A.3对B.4对C.5对D.6对9.已知△ABC的三边a,b,c满足(a-b)2+|b-c|=0,则△ABC的形状是()A.钝角三角形B.直角三角形C.等边三角形D.以上都不对三角形的中线、角平分线和高一、选择题(共10小题,每小题4分,共40分)1.如图,D、E分别是△ABC的边AC、BC的中点,那么下列说法中不正确的是( )A.DE是△BCD的中线B.BD是△ABC的中线C.AD=DC,BE=EC D.AD=EC,DC=BE2.如图,已知P是△ABC的重心,连结AP并延长交BC于点D,若△ABC的面积为20,则△ADC的面积为()A.10 B.8 C.6 D.53.如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,若△DEF的面积是2,那么△ABC的面积为( )A.12 B.14 C.16 D.184.如图,在△ABC中,∠B=67°,∠C=33°,AD是△ABC的角平分线,则∠CAD的度数为( )A.40° B.45° C.80° D.85°5. 如图所示,AD是△ABC的角平角线,AE是△ABD的角平分线,若∠BAC=80°,则∠EAD的度数是( )A.20°B.30°C.45°D.60°6.如图,在△ABC中,∠ABC和∠ACB的平分线交于点O,若∠BOC=120°,则∠A等于( )A.30°B.45 C.60°D.70°7.如果一个三角形的三条高的交点恰是这个三角形的一个顶点,那么这个三角形是() A.锐角三角形 B.钝角三角形C.直角三角形D.等边三角形8.下列线段一定在三角形内部的是()①三角形的三条中线;②三角形的三条高;③三角形的三条角平分线.A.①②B.①③C.②③D.①②③9.下列说法正确的是( )A.三角形的角平分线是射线B.过三角形的顶点,且过对边中点的直线是三角形的中线C.直角三角形同一直角边上的中线、高及这条边所对的角的平分线中,高最短D.三角形的高、中线、角平分线一定在三角形的内部10. 如图,在△ABC中,AD是BC边上的高,AE,BF分别是∠BAC,∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A.75° B.80° C.85° D.90°11.(6分) 已知AD为△ABC的中线,AB=5 cm,且△ACD的周长比△ABD的周长少2 cm,则AC的长度是多少?12.(8分)如图,AD是△ABC的角平分线,DE∥AB,DF∥AC,EF交AD于点O.请问:DO是∠EDF的角平分线吗?如果是,请给予证明;如果不是,请说明理由.13.(8分) 如图,已知AD是△ABC的边BC上的中线.(1)作出△ABD的边BD上的高;(2)若△ABD的面积为6,且BD边上的高为3,求BC的长.。
北师大版小学四年级下册数学第二单元《认识三角形和四边形——探索与发现--三角形内角和》同步检测3(附答案)一、填一填。
1.三角形的内角和是( )度。
2.在一个三角形中,最大的一个角是85°,这是一个( )三角形。
3.在一个等边三角形中,三个角都是( )度,它是( )三角形。
4.在一个等腰直角三角形中,三个角的度数分别是( ),( )和( )。
5.在一个三角形中,有两个角分别是25°和65°,这是一个( )三角形。
二、火眼金睛。
1.一个三角形的两个锐角之和一定小于90°。
( )2.任何一个三角形都不可能有两个钝角。
( )3.在一个三角形中,两个角的度数和可能大于第三个角的度数。
( )4.等腰直角三角形的一个底角是50°。
( )5.一个直角三角形的两个锐角可能是36°和64°。
( )三、选一选。
1.在一个三角形中,∠l=62°,∠2=45°,另一个角是( )。
A.73° B.83° C.63°2.在三角形中,∠l=50°,∠2=40°,这个三角形是( )。
A.锐角三角形 B.直角三角形 C.钝角三角形3.等腰三角形中,有一个内角是40°,另外两个内角( )。
A.一定都是70° B.一个是40°,另一个是l00°C.都是70°或者一个是40°,另一个是l00°4.把一个大三角形分成两个小三角形,每个小三角形的内角和是( )。
A.90° B.180° C.360°四、看图求出下列各角的度数。
1.2∠B=180°- ( )-( )=( )或∠B=180°-( + ) =( )2.∠B=90°-( )=( )3.3∠C=180°-( )-( )=( )五、根据所给条件求出各角的度数。
5.1 认识三角形同步练习一、选择题1.如图所示是小强用三根火柴组成的图形,其中符合三角形概念的是()2.下面各组线段中,能组成三角形的是()A.5,6,11 B.8,8,16 C.4,5,10 D.6,9,143.若三角形的三边长分别为1,a,8,且a为整数,则a的值为()A.6 B.7 C.8 D.94.两根木棒长分别为5cm和7cm,要选择第三根,将它们钉成一个三角形,•如果第三根木棒长为偶数,则组成方法有()A.3种 B.4种 C.5种 D.6种5.在等腰三角形ABC中,它的两边长分别为8cm和3cm,则它的周长为()A.19cm B.19cm和14cm C.11cm D.10cm6.已知三角形两边长分别为4和9,则此三角形的周长L的取值范围是()A.5<L<13 B.4<L<9 C.18<L<26 D.14<L<227.在建筑工地我们经常看见如图1所示用木条EF固定矩形门框ABCD的情形,这种做法根据() A.两点之间线段最短 B.两点确定一条直线C.三角形的稳定性 D.矩形的四个角都是直角8.如图2所示,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性;B.两点之间线段最短;C.两点确定一条直线;D.垂线段最短9.如图3所示,以点A为顶点的三角形有_______个,它们分别是__________.10.如图4所示,以AE为边的三角形有________个,它们分别是________.(1) (2) (3) (4)11.如图5所示,在△ABC中,∠BAC=80°,∠B=35°,AD平分∠BAC,则∠ADC的度数为()A.90° B.95° C.75° D.55°(5) (6) (7) (8)12.如图6所示,在△ABC中,∠ABC=40°,AD,CD•分别平分∠BAC,•∠ACB,•则∠ADC等于()A.110° B.100° C.190° D.120°13.如图7所示,D,E分别为△ABC的边AC,BC的中点,则下列说法中不正确的是()A.DE是△BDC的中线 B.图中∠C的对边是DEC.BD是△ABC的中线 D.AD=DC,BE=EC14.如图8所示,BD平分∠ABC,DE∥BC,且∠D=30°,则∠AED的度数为()A.50° B.60° C.70° D.80°15.如图9所示,在锐角三角形ABC中,CD,BE分别是AB,AC边上的高,且CD,BE•交于一点P,若∠A=50°,则∠BPC的度数是()A.150° B.130° C.120° D.100°16.在如图10所示的方格纸中,每个方格都是边长为1的正方形,点A,B是方格纸中的两个格点(即正方形的格点),在这个5×5的方格纸中,找出格点C使△ABC的面积为2个平方单位,则满足条件的格点C的个数是()A.5个 B.4个 C.3个 D.2个(9) (10) (11) (12)17.如图11所示,∠1+∠2+∠3+∠4+∠5的度数为()A.180° B.360° C.220° D.300°18.如图12所示,△ABC为直角三角形,∠ACB=90°,与∠1互余的角有()A.∠B B.∠A C.∠BCD和∠A D.∠BCD19.三角形中,最大的内角不能小于()A.30° B.60° C.90° D.45°二、填空题1.如图1所示,在△ABC中,∠C=90°,∠B=30°,AD是∠BAC的平分线,已知DB=4,那么AD=_______.(1) (2) (3) (4)2.如图2所示,在Rt△ABC中,∠ACB=90°,∠A<∠B,CM是斜边AB的中线,•将△ACM沿直线CM 折叠,点A落在点D处,如果CD恰好与AB垂直,那么∠A等于_______.3.若一个三角形三条高线的交点在这个三角形的一个顶点上,•则这个三角形是__________三角形.4.如图3所示,△ABC中,BD=DE=EC,则AD,AE分别是________的中线.5.如图4所示,若∠ACB=90°,CD⊥AB于D,则AC边上的高是______,CD是____边上的高.6.如图5所示,∠1=∠2=∠3=∠4,则AE是________的角平分线.(5) (6) (7) (8)7.已知△ABC中,AB=5cm,BC=8cm,若AD是BC边上的中线,则中线AD•的取值范围是________.8.若一个三角形的两边长是2和9,则第三边长a的取值范围是_______.9.在△ABC 中,AB=AC=5,则BC 边长度的取值范围是________.10.•四条线段的长度分别为5cm ,•6cm ,•8cm ,•13cm ,•以其中任意三条为边可构成_____个三角形,它们的边长分别是_____________.11.用10根火柴摆一个三角形,能摆出_____种.12.如图6所示,以∠1为内角的三角形有_______.13.如图7所示,AB ∥CD ,∠E=130°,∠F=70°,则∠1+∠2=_______,∠3+•∠4=_______.14.如图8所示,平面上放着等距离的10个点,把这些点作为三角形的顶点,•可作_____个等边三角形.15.如果直角三角形的斜边与一条直角边的长分别是13cm 和5cm ,•那么这个直角三角形的面积是_______cm .16.等腰三角形的两边长分别为5cm•和2cm ,则它的周长是_____c m 2.三、解答题1.如图1所示,∠CPA=∠A+∠B+∠C 成立吗?说明理由.2.已知,如图2所示,在△ABC 中,AD ⊥BC 于D ,AE 平分∠BAC ,若∠B=28°,•∠DAE=16°,求∠C 的度数.3.如图3所示,CE 平分∠ACD ,F 为CA 延长线上一点,FG ∥CE•交AB•于G ,•∠ACD=100°, ∠AGF=20°,求∠B 的度数.4.如图所示,AB ∥CD ,AD ∥BC ,∠1=65°,∠2=55°,求∠C 的度数.5.已知等腰三角形的一边长为4cm ,另一边长为7cm ,求三角形的周长.6.若三角形的三边长满足a>b>c ,且b=7cm ,c=5cm ,求a 的取值范围.四、拓展创新1.如图所示,已知∠xOy=90°,点A ,B 分别在射线Ox ,Oy 上移动,BE是∠ABy 的平分线,BE 的反向延长线与∠OAB 的平分线交于点C ,试问∠ACB 的大小是否发生变化?(1) (2)(3)(4)2.某市政府为使四个小区(用A,B,C,D表示)(如图所示)的孩子能就近上学,•想在附近修建一所小学校H.问H•建在何处才能使四个小区的孩子上学走的路的总和最小?3.小聪画了一个△ABC,用尽量得三边的长之后,他发现△ABC的周长是偶数,•且AB-AC=2,AB:AC=3:2,你能猜出小聪量得的第三边BC的长吗?4.如图所示,在△ABC中,D是BA上一点,则AB+2CD>AC+BC成立吗?•说明你的理由.5.如图所示,按规定,一块模板中AB,CD的延长线应相交成85°的角,因交点不在板上,不便测量,工人师傅连接AC,测得∠BAC=32°,∠DCA=65°,此时AB,CD的延长线相交成的角是否符合规定?为什么?6. 如图所示,AB⊥BC,DC⊥BC,若∠DBC=45°,∠A=70°,求∠D,∠AED,∠BFE的度数.7.已知△ABC有两条边长分别为2和7,另一边长是关于x的方程2x-1=4x-k+3的解,求k的取值范围.。
北师大版四年级下册数学第二单元认识三角形和四边形同步练习题一.选择题1.图中,最短的是线段()。
A.ABB.ADC.AE2.如图,下面的说法中错误的是()。
A.三角形ABE是一个等边三角形B.三角形AEC是一个钝角三角形C.三角形CDF是一个直角三角形D.三角形ABE是一个钝角三角形3.一个三角形的两个内角之和大于第三个内角,那么该三角形是()。
A.锐角三角形B.直角三角形C.钝角三角形D.以上三角形都有可能4.一个三角形的两条边分别是7厘米和12厘米,第三条边的长度不可能是()厘米。
A.7B.12C.5D.135.在一个三角形中,如果两个锐角的和小于90°,那么这个三角形一定是()三角形。
A.锐角B.直角C.钝角6.一个三角形两边分别是12厘米和6厘米,第三边可能是()厘米。
A.3B.7C.19二.判断题1.等边三角形是特殊的等腰三角形。
()2.三角形最小的一个角是30°,这个三角形一定是锐角三角形。
()3.所有的等腰三角形都是锐角三角形。
()4.三根长4厘米、4厘米、8厘米的木棍可以围成个等腰三角形。
()5.三角形共有一条高。
()6.在一个三角形中,已知两个内角分别是55°和33°,这个三角形一定是锐角三角形。
()三.填空题1.把下面的三角形切一刀,还剩()个角。
2.某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块形状完全一样的玻璃,那么最省事的办法是带第( )块去。
这是因为。
3.由三条()围成的图形叫做三角形。
一个三角形有()条边,()个角,()个顶点。
三角形具有()性。
4.图中有()个三角形,其中有()个直角三角形,()个钝角三角形,有()个锐角三角形。
5.1周角=_____平角=_____直角=_____度。
6.在一个三角形中,∠1=42°,∠2=50°,则∠3=()°。
四.计算题1.计算下面图形中角的度数。
第01课三角形认识1。
三角形定义:在同一平面内,由条线段形成的图形叫做三角形。
三角形有个内角,对外角。
2.三角形分类:(1)按角度分类:、、。
(2)按边分类:、.3.三角形三边关系定理:4.三角形的高线:过顶点作的,顶点与的长度叫做三角形的高线。
任意三角形有条高线,它们的交点叫做。
位置:5.三角形的中线:顶点与中点的线段叫做三角形的中线。
任意三角形有条中线,它们的交点叫做。
中线的性质:。
6。
三角形的角平分线:三角形内角的平分线与此内角的的交点的线段叫做三角形的角平分线。
任意三角形有条角平分线,它们的交点叫做。
7.三角形的稳定性:8。
三角形内角和度数为:;外角和度数为。
9.三角形内角与外角的关系:(1);(2)。
10.与三角形角平分线有关的公式:两内角平分线形成的夹角与第三个内角之间的关系三角形两外角平分线形成的夹角与第三个内角的关系三角形一个内角与一个外角平分线形成的夹角与第三个内角关系已知OB、OC平分∠ABC、∠ACB,则∠BOC与∠A的关系已知PB、PC是△ABC外角∠CBD、∠BCE平分线,则∠BPC与∠A关系已知PB、PC是△ABC一内角和一外角的平分线,则∠BPC与∠A关系结论:结论:结论:多边形内角和:1.在同一平面内,有条线段形成的图形,叫做多边形.多边形分为多边形和多边形。
2。
从多边形一个顶点引出的对角线条数公式为;多边形对角线条数总数公式: .从多边形一个顶点引出的对角线将多边形分成的三角形个数公式为。
3.多边形内角和度数公式:;外角和度数:.4。
相等,相等的多边形叫做正多边形。
5.正多边形每个外角度数公式: ;每个内角度数公式:。
【例1】已知三角形三边分别为4,2a—1,8,求a的取值范围。
【例2】已知等腰三角形的周长为48cm,一腰上的中线将此三角形的周长分为1:3,求此三角形的三边长。
【例3】已知等腰三角形一个内角是另一个内角的2倍少100,则这个三角形的内角度数为。
【例4】如图,已知在△ABC中,∠C=760,∠B=480,AD⊥BC于D点,AE平分∠BAC.求∠DAE的度数。
三角形
1.口算
(1)70×101(2)0.85×10
(3)90+9.9(4)0÷1
(5)24×25(6)2.2+2.5
(7)4.5-2(8)9-0.01
2.填空
(1)由()条()围成的图形叫做三角形,三角形具有()性。
(2)三角形按角可分为()、()和()。
(3)()都是()的三角形叫做锐角三角形,两条边相等的三角形叫做()。
(4)有一个三角形的三个角中,有两个角的和是90°这个三角形既是(),也是()。
(5)有一个三角形的三个角中,有两个角分别是40°和55°,另一个角是()。
3.判断下面图形,哪些是三角形,哪些不是三角形。
4.下面的说法对吗?
(1)是直角三角形()
(2)是钝角三角形()
(3)是锐角三角形()
(4)是等腰三角形()
5.画出下面每个三角形的高
6.根据下面给出的条件画三角形
(1)两条边分别长3厘米和6厘米,它们的夹角是60°。
(2)两条边长各是5.5厘米,夹角是90°。
7.用简便方法计算下面各题
(1)84.67-(14.67+15.3)
(2)4.02-3.5+0.98
(3)7.28-4.8-2.2+6.72
(4)(6.6-2.91)+(3.4-1.09)
8.下图是由等腰三角形和钝角三角形组成的,等腰三角形中AB=BC,填上适当的度数。
∠ACB=()
∠ABD=()
∠ADC=()
∠ACD=()
答案
1.(1)7070(2)8.5(3)99.9(4)0(5)600(6)5(7)2.2(8)8.99
2.(1)三;线段;稳定(2)锐角三角形;直角三角形;钝角三角形(3)三个角;锐角;等腰三角形(4)直角三角形;锐角三角形(5)85°
3.(1)×(2)×(3)×(4)×(5)√
4.(1)×(2)×(3)×(4)√
5.略
6.略
7.(1)54.7(2)1.5(3)7(4)6
8.78°;24°;73°;102°
金太阳教育工作室丰富的资源最快的更新优质的服务。