高中数学 不等式专题训练
- 格式:doc
- 大小:1.94 MB
- 文档页数:10
【高中数学竞赛真题•强基计划真题考前适应性训练】专题06不等式真题专项训练(全国竞赛+强基计划专用)一、单选题1.(2020·北京·高三强基计划)若正实数x ,y ,z ,w 满足x y w ≥≥和2()x y z w +≤+,则w z x y+的最小值等于()A .34B .78C .1D .前三个答案都不对2.(2021·北京·高三强基计划)已知,,a b c +∈R ,且111()3a b c a b c ⎛⎫+-+-= ⎪⎝⎭,则()444444111ab c a b c ⎛⎫++++ ⎪⎝⎭的最小值是()A.417+B.417-C .417D .以上答案都不对3.(2021·北京·高三强基计划)若a ,b ,c 为非负实数,且22225a b c ab bc ca ++---=,则a b c ++的最小值为()A .3B .5C .7D .以上答案都不对二、填空题4.(2021·北京·高三强基计划)在锐角ABC 中,tan tan 2tan tan 3tan tan A B B C C A ++的最小值是_________.5.(2021·全国·高三竞赛)已知正实数122020,,,a a a 满足1220201a a a +++= ,则222202012122320201a a a a a a a a a ++++++ 的最小值为________.6.(2022·浙江·高二竞赛)设a ,b ,c ,d +∈R ,1abcd =,则21914a a+∑∑的最小值为______.7.(2021·全国·高三竞赛)设正实数122020,,,a a a 满足202011i i a ==∑,则120201min1i ii kk a a ≤≤=+∑最大值为_________.8.(2021秋·天津河北·高三天津外国语大学附属外国语学校校考阶段练习)设0,0,25y x y x >>+=,则当=x _______时,12y y x +取到最大值.三、解答题9.(2023·全国·高三专题练习)设0()R[]nii i f x a x x ==∈∑,满足00,1,2,,.i a a i n ≤≤= 又设()0,1,,2i b i n = 满足22[()]ni i i f x b x ==∑,证明:()2111.2n b f +⎡⎤≤⎣⎦10.(2023·全国·高三专题练习)设0()nii i f x a x ==∑,1()n ii i g x c x +==∑是两个实系数非零多项式,且存在实数r 使得()()().g x x r f x =-记{}{}001max ,max i i i n i n a a c c ≤≤≤≤+==,证明:()1.a n c ≤+11.(2021·全国·高三竞赛)已知:a ,b ,0,2c a b c ≥++=,求证:11()1()1()bc ca ababc a b abc b c abc c a ++≤++++++.12.(2021·全国·高三竞赛)求所有的正实数a ,使得存在实数x 满足22sin cos22x x a a +≥.13.(2022·新疆·高二竞赛)(1)若实数x ,y ,z 满足2221++=x y z,证明:||||||-+-+-≤x y y z z x ;(2)若2023个实数122023,,, x x x 满足2221220231+++= x x x ,求12232022202320231-+-++-+- x x x x x x x x 的最大值.14.(2021·全国·高三竞赛)设m 为正整数,且21n m =+,求所有的实数组12,,,n x x x ,使得22221221i i nmx x x x x =++++ ,对所有1,2,,i n = 成立.15.(2021·全国·高三竞赛)求最大的正实数λ,使得对任意正整数n 及正实数01,,,n x x x ,均有010111.nnk k k kx x x x λ==≥+++∑∑ .16.(2021·全国·高三竞赛)已知01({0,1,,10})i x i <<∈ 证明:存在,{0,1,2,,10}i j ∈ ,使得()1030i j j i x x x x <-<.17.(2021·全国·高三专题练习)已知:0a >,0b >,1a b +=.2<.18.(2021·全国·高三专题练习)已知a ,b 为正数,且a b ¹,证明2112a b a b+>>>+.19.(2022·湖北武汉·高三统考强基计划)设()1,,2n x x n ⋅⋅⋅≥皆为正数,且满足1211112022202220222022n x x x ++⋅⋅⋅+=+++2022≥20.(2023·全国·高三专题练习)实数,,a b c 和正数λ使得()32f x x ax bx c =+++有三个实数根123,,x x x .且满足:(1)21x x λ-=;(2)()31212x x x >+,求332279a c abλ+-的最大值.21.(2021·全国·高三竞赛)设,1,2,,i a i n +∈=R ,记:121kk k ni i i kD C aa a =+++∑ ,其中求和是对1,2,…,n 的所有kn C 个k 元组合12,,,k i i i 进行的,求证:1.(1,2,,1)k k D D k n +≥=- .22.(2021·全国·高三竞赛)已知12,,,n a a a R ∈L ,且满足222121n a a a +++= ,求122311n n n a a a a a a a a --+-++-+-L 的最大值.23.(2021·全国·高三竞赛)已知正实数12,,,(2)n a a a n > 满足121n a a a +++= .证明:23131212121222(1)n n n n a a a a a a a a a a n a n a n n -+++≤+-+-+-- .24.(2021·浙江金华·高三浙江金华第一中学校考竞赛)数列{}n a 定义为11a =,()11111nn k k a a n n +==+≥∑.证明,存在正整数n ,使得2020n a >.25.(2021·全国·高三竞赛)给定正整数3n ≥.求最大的实数M .使得211nk k k k a M a a =+⎛⎫≥ ⎪+⎝⎭∑对任意正实数12,,,n a a a 恒成立,其中11n a a +=.26.(2019·河南·高二校联考竞赛)锐角三角形ABC 中,求证:cos()cos()cos()8cos cos cos B C C A A B A B C --- .27.(2022·贵州·高二统考竞赛)正数a ,b 满足+=1a b ,求证:2332211318a b a b ⎛⎫⎛⎫⎛⎫-- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.28.(2022·江苏南京·高三强基计划)已知整数1n >,证明:11!32nnn n n ++⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭.29.(2022·浙江杭州·高三学军中学校考竞赛)设实数12,,,n a a a 满足11(1)(1)n ni i i i a a ==+=-∏∏,求1ni i a =∑的最小值.30.(2021·浙江·高二竞赛)设x ,y ,0z >1=,证明4224224225552221()()()x y z y z x z y x x y z y z x z y x +++++≥+++.。
一.不等式的性质:二.不等式大小比拟的常用方法:1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商〔常用于分数指数幂的代数式〕;3.分析法;4.平方法;5.分子〔或分母〕有理化; 6.利用函数的单调性;7.寻找中间量或放缩法;8.图象法。
其中比拟法〔作差、作商〕是最根本的方法。
三.重要不等式1.〔1〕假设R b a ∈,,那么ab b a 222≥+ (2)假设R b a ∈,,那么222b a ab +≤〔当且仅当b a =时取“=〞〕2. (1)假设*,R b a ∈,那么ab b a ≥+2(2)假设*,R b a ∈,那么ab b a 2≥+〔当且仅当b a =时取“=〞〕(3)假设*,R b a ∈,那么22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=〞〕 3.假设0x >,那么12x x+≥ (当且仅当1x =时取“=〞〕; 假设0x <,那么12x x+≤- (当且仅当1x =-时取“=〞〕 假设0>ab ,那么2≥+ab ba (当且仅当b a =时取“=〞〕4.假设R b a ∈,,那么2)2(222b a b a +≤+〔当且仅当b a =时取“=〞〕 注:〔1〕当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大〞.〔2〕求最值的条件“一正,二定,三取等〞(3)均值定理在求最值、比拟大小、求变量的取值X 围、证明不等式、解决实际问题方面有广泛的应用.2ab a +b ≤ab ≤a +b2 ≤a 2+b 22应用一:求最值例1:求以下函数的值域〔1〕y =3x 2+12x 2 〔2〕y =x +1x解题技巧:技巧一:凑项 例1:54x <,求函数14245y x x =-+-的最大值。
评注:此题需要调整项的符号,又要配凑项的系数,使其积为定值。
ab ;⑥若a<b<0,贝贝—>—;cdab3.不等式一.不等式的性质:1■同向不等式可以相加;异向不等式可以相减:若a>b,c>d,则a+c>b+d(若a>b,c<d,则a-c>b-d),但异向不等式不可以相加;同向不等式不可以相减;2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若a>b>0,c>d>0,则ac>bd(若a>b>0,0<c<d,则a>—);3•左右同正不等式:两边可以同时乘方或开方:若a>b>0,则a n>—或%疮>n b;4.若ab>0,a>b,则1<1;若ab<0,a>b,则1>1。
如abab(1) 对于实数a,b,c中,给岀下列命题:①若a>b,则ac2>bc2;②若ac2>bc2,则a>b;③若a<b<0,贝Ua2>ab>b2;④若a<b<0,贝』<—;⑦若c>a>b>0,贝卩a>b;⑧若a>b丄>,则a>0,b<0oc一ac一bab其中正确的命题是(答:②③⑥⑦⑧);(2) __________________________________________________ 已知-1<x+y<1,1<x一y<3,则3x一y的取值围是(答:1<3x-y<7);c(3) 已知a>b>c,且a+b+c=0,则_的取值围是二.不等式大小比较的常用方法:1.作差:作差后通过分解因式、配方等手段判断差的符号得岀结果2•作商(常用于分数指数幂的代数式);3•分析法;4. 平方法;答:5. 分子(或分母)有理化;6. 利用函数的单调性;7.寻找中间量或放缩法;8.图象法。
高中数学不等式练习题及参考答案2023不等式是高中数学中重要的概念之一,也是很多考试中必考的内容。
为帮助大家复习巩固,本文整理了十道高中数学不等式练习题及参考答案,供大家练习参考。
1. 已知 $x>0$,求证:$\frac{1}{1+x}+\frac{1}{1+\frac{1}{x}}>1$【参考答案】$\frac{1}{1+x}+\frac{1}{1+\frac{1}{x}}=\frac{1}{1+x}+\frac{x}{x+1}=\frac{x+1}{x+1}=1$。
2. 解不等式 $\frac{2-x}{x+1}\geq 1$。
【参考答案】$\frac{2-x}{x+1}\geq 1$,移项得 $\frac{1-x}{x+1}\geq 0$,即$\frac{x-1}{x+1}\leq 0$。
因此,$x\in(-\infty,-1]\cup[1,+\infty)$。
3. 解不等式 $\log_{\frac{1}{2}}(x^2-3x+2)<2$。
【参考答案】$\log_{\frac{1}{2}}(x^2-3x+2)<2$,移项得 $x^2-3x+2>4$。
解得 $x\in(-\infty,1)\cup(3,+\infty)$。
4. 已知 $a+b=1$,$a>0$,$b>0$,求证:$a\cdot\log_{\frac{1}{a}}+b\cdot\log_{\frac{1}{b}}>2$。
【参考答案】By Jensen 不等式,$\frac{1}{2}(a\cdot\log_{\frac{1}{a}}+b\cdot\log_{\frac{1}{b}}) \geq\log_{\frac{1}{2}}(\frac{1}{2}(a+b))=\log_{\frac{1}{2}}\frac{1}{ 2} =1$。
所以,$a\cdot\log_{\frac{1}{a}}+b\cdot\log_{\frac{1}{b}}>2$。
高中数学不等式经典题型专题训练试题学校:___________姓名:___________班级:___________考号:___________说明:1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分100分。
考试时间120分钟。
2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。
考试结束后,只收第Ⅱ卷第Ⅰ卷(选择题)一.单选题(共10小题,每题2分,共20分)1.设a=sin14°+cos14°,b=sin16°+cos16°,,则a,b,c大小关系()A.a<b<c B.b<a<c C.c<b<a D.a<c<b2.已知实数x,y满足条件,则目标函数z=2x-y()A.有最小值0,有最大值6B.有最小值-2,有最大值3C.有最小值3,有最大值6D.有最小值-2,有最大值63.若x是三角形的最小内角,则函数y=sinx+cosx+sinxcosx的最大值是()A.-1B.C.D.4.不等式x2-|x|-2<0的解集是()A.{x|-2<x<2}B.{x|x<-2或x>2}C.{x|-1<x<1}D.{x|x<-1或x>1}5.若不等式f(x)=ax2-x-c>0的解集为(-2,1),则函数y=f(x)的图象为()A.B.C.D.6.设a=0.20.3,b=0.20.2,c=log20.4,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.a<b<c D.b<c<a7.设0<b<a<1,则下列不等式中成立的是()A.a2<ab<1B.C.ab<b2<1D.2b<2a<28.对任意的锐角α,β,下列不等关系中正确的是()A.sin(α+β)>sinα+sinβB.sin(α+β)>cosα+cosβC.cos(α+β)<sinα+sinβD.cos(α+β)<cosα+cosβ9.若0<m<n,则下列结论正确的是()A.B.2m>2n C.D.log2m>log2n10.设a<b<0,则下列不等式中不成立的是()A.B.C.|a|>-b D.二.填空题(共10小题,每题2分,共20分)11.已知x>-1,y>0且满足x+2y=2,则的最小值为______.12.已知a,b∈R+,且2a+b=1则的最大值是______.13.已知向量,若⊥,则16x+4y的最小值为______.14.若x>0,y>0,且+=1,则x+y的最小值是______.15、在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x为______(m).16.已知x>-1,y>0且满足x+2y=2,则的最小值为______.17.若实数a+b=2,a>0,b>0,则的最小值为______.18.若x,y满足约束条件,则z=3x-y的最小值是______.19.若a,b∈R,且4≤a2+b2≤9,则a2-ab+b2的范围是______.20.已知f(x)=,不等式f(x)≥-1的解集是______.三.简答题(共10小题,共60分)21.(6分)已知x>0,y>0,(1)若2x+y=1,求+的最小值.(2)若x+8y-xy=0,求xy的最小值.22.(6分)设a,b,c均为正数,且a+b+c=1,证明:(1)ab+bc+ca≤;(2)++≥1.23.(6分)已知a,b,c均为正实数,且满足abc=1,证明:(1)a+b+c≥;(2)a2+b2+c2≥24.(6分)设函数f(x)=|x+3|-|x-4|①解不等式f(x)>3;②求函数f(x)的最小值.25.(6分)已知向量=(1+sin2x,sinx-cosx),=(1,sinx+cosx),函数f(x)=•.(Ⅰ)求f(x)的最大值及相应的x的值;(Ⅱ)在△ABC中,a,b,c分别是三个内角A,B,C所对边,若f()=2,a=2,求△ABC 面积的最大值.26.(6分)27.(4分)已知:x,y,z∈R,x2+y2+z2=1,则x-2y-3z的最大值为______.28.(4分)若a,b,c∈R+,且++=1,求a+2b+3c的最小值.29.(10分)某工厂生产一种产品的成本费共由三部分组成:①原材料费每件50元;②职工工资支出7500+20x元;③电力与机器保养等费用为x2-30x+600元:其中x是该厂生产这种产品的总件数.(I)把每件产品的成本费p(x)(元)表示成产品件数x的函数,并求每件产品的最低成本费;(Ⅱ)如果该厂生产的这种产品的数量x不超过170件且能全部销售,根据市场调查,每件产品的销售价为Q(x)(元),且Q(x)=1240-.试问生产多少件产品,总利润最高?并求出最高总利润.(总利润=总销售额-总的成本)30.(6分)已知定义在R上的函数f(x)=|x-1|+|x+2|的最小值为a.(1)求a的值;(2)若m,n是正实数,且m+n=a,求+的最小值.参考答案一.单选题(共__小题)1.设a=sin14°+cos14°,b=sin16°+cos16°,,则a,b,c大小关系()A.a<b<c B.b<a<c C.c<b<a D.a<c<b答案:D解析:解:由题意知,a=sin14°+cos14°==,同理可得,b=sin16°+cos16°=,=,∵y=sinx在(0,90°)是增函数,∴sin59°<sin60°<sin61°,∴a<c<b,故选D.2.已知实数x,y满足条件,则目标函数z=2x-y()A.有最小值0,有最大值6B.有最小值-2,有最大值3C.有最小值3,有最大值6D.有最小值-2,有最大值6答案:D解析:解:画出不等式组表示的平面区域如图中阴影部分所示.当目标函数z=2x-y过直线x=3与直线y=0的交点(3,0),目标函数取得最大值6;当目标函数z=2x-y过直线x=0与直线x-y+2=0的交点(0,2)时,目标函数取得最小值-2.故选D.3.若x是三角形的最小内角,则函数y=sinx+cosx+sinxcosx的最大值是()A.-1B.C.D.答案:D解析:解:y=sinx+cosx+sinxcosx=sinx(1+cosx)+1+cosx-1=(1+sinx)(1+cosx)-1≤[(1+sinx)2+((1+cosx)2]-1(当且仅当1+sinx=1+cosx时成立,此时sinx=cosx=)即y(max)=+故选D4.不等式x2-|x|-2<0的解集是()A.{x|-2<x<2}B.{x|x<-2或x>2}C.{x|-1<x<1}D.{x|x<-1或x>1}答案:A解析:解:原不等式化为|x|2-|x|-2<0因式分解得(|x|-2)(|x|+1)<0因为|x|+1>0,所以|x|-2<0即|x|<2解得:-2<x<2.故选A5.若不等式f(x)=ax2-x-c>0的解集为(-2,1),则函数y=f(x)的图象为()A.B.C.D.答案:B解析:解:∵不等式f(x)=ax2-x-c>0的解集为(-2,1),∴a<0,且-2,1是对应方程ax2-x-c=0的两个根,∴(-2,0),(1,0)是对应函数f(x)=ax2-x-c与x轴的两个交点,∴对应函数y=f(x)的图象为B.故选B.6.设a=0.20.3,b=0.20.2,c=log20.4,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.a<b<c D.b<c<a答案:A解析:解:∵函数y=0.2x是减函数,0.3>0.2,故有a=0.20.3<0.20.2=1,又a=0.20.3>0,可得b>a >0.由于函数y=log2x在(0,+∞)上是增函数,故c=log20.4<log21=0,即c<0.综上可得,b>a>c,故选A.7.设0<b<a<1,则下列不等式中成立的是()A.a2<ab<1B.C.ab<b2<1D.2b<2a<2答案:D解析:解:采用特殊值法,取a=,b=.则a2=,b2=,ab=,故知A,C错;对于B,由于函数y=是定义域上的减函数,∴,故B错;对于D,由于函数y=2x是定义域上的增函数,∴2b<2a<2,故D对.故选D.8.对任意的锐角α,β,下列不等关系中正确的是()A.sin(α+β)>sinα+sinβB.sin(α+β)>cosα+cosβC.cos(α+β)<sinα+sinβD.cos(α+β)<cosα+cosβ答案:D解析:解:对于AB中的α,β可以分别令为30°,60°则知道A,B均不成立对于C中的α,β可以令他们都等于15°,则知道C不成立cos(α+β)=cosαcosβ-sinαsinβ<cosα×1+cosβ×1=cosα+cosβ故选D9.若0<m<n,则下列结论正确的是()A.B.2m>2n C.D.log2m>log2n 答案:C解析:解:观察B,D两个选项,由于底数2>1,故相关的函数是增函数,由0<m<n,∴2m<2n,log2m<log2n,所以B,D不对.又观察A,C两个选项,两式底数满足0<<1,故相关的函数是一个减函数,由0<m<n,∴,所以A不对,C对.故答案为C.10.设a<b<0,则下列不等式中不成立的是()A.B.C.|a|>-b D.答案:D解析:解:∵a<b<0,∴,A正确,-a>-b>0,,B正确,|a|>|b|=-b,C正确;,故D不正确.故选D.二.填空题(共__小题)11.已知x>-1,y>0且满足x+2y=2,则的最小值为______.答案:3解析:解:∵x>-1,y>0且满足x+2y=2,∴x+1>0且x+1+2y=3,∴=()(x+1+2y)=[5++]≥(5+2)=3,当且仅当=即x=0且y=1时取等号,故答案为:3.12.已知a,b∈R+,且2a+b=1则的最大值是______.答案:解析:解:∵2a+b=1,∴4a2+b2=1-4ab,∴S==4ab+2-1,令=t>0,则S=4-,∵2a+b=1,∴1≥2⇒0<t≤故当t=时,S有最大值为:故答案为:.13.已知向量,若⊥,则16x+4y的最小值为______.答案:8解析:解:∵∴4(x-1)+2y=0即4x+2y=4∵=当且仅当24x=22y即4x=2y=2取等号故答案为814.若x>0,y>0,且+=1,则x+y的最小值是______.答案:25解析:解:∵x>0,y>0,且+=1,∴x+y=(x+y)(+)=17++≥17+2=25当且仅当=,即x=5,y=20时取等号,∴x+y的最小值是25,故答案为:25.15、在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x为______(m).答案:20解析:解:设矩形高为y,由三角形相似得:=,且x>0,y>0,x<40,y<40,⇒40=x+y≥2,仅当x=y=20m时,矩形的面积s=xy取最大值400m2.故答案为:20.16.已知x>-1,y>0且满足x+2y=2,则的最小值为______.答案:3解析:解:∵x>-1,y>0且满足x+2y=2,∴x+1>0且x+1+2y=3,∴=()(x+1+2y)=[5++]≥(5+2)=3,当且仅当=即x=0且y=1时取等号,故答案为:3.17.若实数a+b=2,a>0,b>0,则的最小值为______.答案:解析:解:∵实数a+b=2,a>0,b>0,则=+=++≥+2=+,当且仅当b=a=4-2时取等号.故答案为:.18.若x,y满足约束条件,则z=3x-y的最小值是______.答案:-4解析:解:由约束条件作出可行域如图,化目标函数z=3x-y为y=3x-z,由图可知,当直线y=3x-z过点C(0,4)时直线在y轴上的截距最大,z有最小值为-4.故答案为:-4.19.若a,b∈R,且4≤a2+b2≤9,则a2-ab+b2的范围是______.答案:[2,]解析:解:∵a,b∈R,且4≤a2+b2≤9;∴设a=rcosθ,b=rsinθ,且2≤r≤3,∴s=a2-ab+b2=r2cos2θ-r2sinθcosθ+r2sin2θ=r2(1-sinθcosθ)=r2(1-sin2θ),由三角函数的图象与性质,得;当sin2θ取最大值1且r取最小值2时,s取得最小值2,当sin2θ取最小值-1且r取最大值3时,s取得最大值;综上,a2-ab+b2的范围是[2,].故答案为:.20.已知f(x)=,不等式f(x)≥-1的解集是______.答案:{x|-4≤x≤2}解析:解:∵已知f(x)=,故由不等式f(x)≥-1可得①,或②.解①可得-4<x≤0,解②可得0<x≤2.综上可得,不等式的解集为{x|-4≤x≤2},故答案为{x|-4≤x≤2}.三.简答题(共__小题)21.已知x>0,y>0,(1)若2x+y=1,求+的最小值.(2)若x+8y-xy=0,求xy的最小值.答案:解:(1)+=(+)(2x+y)=2+++1=3++≥3+2,当且仅当2x2=y2等号成立,∴+的最小值为3+2.(2)∵x+8y-xy=0,∴xy=x+8y≥2,当且仅当x=8y时等号成立.∴≥4,∴xy≥32,∴xy的最小值为32.解析:解:(1)+=(+)(2x+y)=2+++1=3++≥3+2,当且仅当2x2=y2等号成立,∴+的最小值为3+2.(2)∵x+8y-xy=0,∴xy=x+8y≥2,当且仅当x=8y时等号成立.∴≥4,∴xy≥32,∴xy的最小值为32.22.设a,b,c均为正数,且a+b+c=1,证明:(1)ab+bc+ca≤;(2)++≥1.答案:证明:(1)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,可得a2+b2+c2≥ab+bc+ca,(当且仅当a=b=c取得等号)由题设可得(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1,即有3(ab+bc+ca)≤1,则ab+bc+ca≤;(2)+b≥2a,+c≥2b,+a≥2c,故+++(a+b+c)≥2(a+b+c),即有++≥a+b+c.(当且仅当a=b=c取得等号).故++≥1.解析:证明:(1)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,可得a2+b2+c2≥ab+bc+ca,(当且仅当a=b=c取得等号)由题设可得(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1,即有3(ab+bc+ca)≤1,则ab+bc+ca≤;(2)+b≥2a,+c≥2b,+a≥2c,故+++(a+b+c)≥2(a+b+c),即有++≥a+b+c.(当且仅当a=b=c取得等号).故++≥1.23.已知a,b,c均为正实数,且满足abc=1,证明:(1)a+b+c≥;(2)a2+b2+c2≥.答案:证明:∵a,b,c∈R+∴a+b≥2,b+c≥2,a+c≥2∴2a+2b+2c≥2+2+2∴a+b+c≥++∵abc=1,∴a+b+c≥++;(2)∵a2+b2≥2ab,b2+c2≥2bc,a2+c2≥2ac,∴2a2+2b2+2c2≥2ab+2bc+2ac,∴a2+b2+c2≥ab+bc+ac,∵ab+bc+ac=≥=++,∴a2+b2+c2≥++.解析:证明:∵a,b,c∈R+∴a+b≥2,b+c≥2,a+c≥2∴2a+2b+2c≥2+2+2∴a+b+c≥++∵abc=1,∴a+b+c≥++;(2)∵a2+b2≥2ab,b2+c2≥2bc,a2+c2≥2ac,∴2a2+2b2+2c2≥2ab+2bc+2ac,∴a2+b2+c2≥ab+bc+ac,∵ab+bc+ac=≥=++,∴a2+b2+c2≥++.24.设函数f(x)=|x+3|-|x-4|①解不等式f(x)>3;②求函数f(x)的最小值.答案:解:①不等式f(x)>3,即|x+3|-|x-4|>3.而|x+3|-|x-4|表示数轴上的x对应点到-3对应点和4对应点的距离之差,数轴上的2对应点到-3对应点和4对应点的距离之差为3,故不等式的解集为{x|x>2}.…(3分)②f(x)=|x+3|-|x-4|表示数轴上的x对应点到-3对应点和4对应点的距离之差,可得函数f(x)的最小值为-7.(7分)解析:解:①不等式f(x)>3,即|x+3|-|x-4|>3.而|x+3|-|x-4|表示数轴上的x对应点到-3对应点和4对应点的距离之差,数轴上的2对应点到-3对应点和4对应点的距离之差为3,故不等式的解集为{x|x>2}.…(3分)②f(x)=|x+3|-|x-4|表示数轴上的x对应点到-3对应点和4对应点的距离之差,可得函数f(x)的最小值为-7.(7分)25.已知向量=(1+sin2x,sinx-cosx),=(1,sinx+cosx),函数f(x)=•(Ⅰ)求f(x)的最大值及相应的x的值;(Ⅱ)在△ABC中,a,b,c分别是三个内角A,B,C所对边,若f()=2,a=2,求△ABC 面积的最大值.答案:解:(Ⅰ)∵=(1+sin2x,sinx-cosx),=(1,sinx+cosx),∴f(x)=•=1+sin2x+sin2x-cos2x,=1+sin2x-cos2x,=1+sin(2x-),∴当2x-=2kπ+即x=+kπ,k∈Z时,函数取得最大值1+.(Ⅱ)由(I)知f()=2时,sin(A-)=,∴A-=2kπ+或A-=2kπ+,即A=+2kπ或A=π+2kπ,k∈Z,∵A是三角形的一个内角,∴A=,即△ABC是直角三角形.∵a=2,∴b2+c2=4,∴S△ABC=bc≤=1(当且仅当b=c=时,取得最大值),∴△ABC面积的最大值为1.解析:解:(Ⅰ)∵=(1+sin2x,sinx-cosx),=(1,sinx+cosx),∴f(x)=•=1+sin2x+sin2x-cos2x,=1+sin2x-cos2x,=1+sin(2x-),∴当2x-=2kπ+即x=+kπ,k∈Z时,函数取得最大值1+.(Ⅱ)由(I)知f()=2时,sin(A-)=,∴A-=2kπ+或A-=2kπ+,即A=+2kπ或A=π+2kπ,k∈Z,∵A是三角形的一个内角,∴A=,即△ABC是直角三角形.∵a=2,∴b2+c2=4,∴S△ABC=bc≤=1(当且仅当b=c=时,取得最大值),∴△ABC面积的最大值为1.26、解:由柯西不等式:(1+3+5)²≤(a+b+c)()因为:a+b+c=12所以(1+3+5)²≤12*()81≤12*()≤当且仅当==时取等号即:最小值为27.已知:x,y,z∈R,x2+y2+z2=1,则x-2y-3z的最大值为______.答案:解:由已知x,y,z∈R,x2+y2+z2=1,和柯西不等式(a2+b2+c2)(e2+f2+g2)≥(ae+bf+cg)2则构造出[12+(-2)2+(-3)2](x2+y2+z2)≥(x-2y-3z)2.即:(x-2y-3z)2≤14即:x-2y-3z的最大值为.故答案为.解析:解:由已知x,y,z∈R,x2+y2+z2=1,和柯西不等式(a2+b2+c2)(e2+f2+g2)≥(ae+bf+cg)2则构造出[12+(-2)2+(-3)2](x2+y2+z2)≥(x-2y-3z)2.即:(x-2y-3z)2≤14即:x-2y-3z的最大值为.故答案为.28.若a,b,c∈R+,且,求a+2b+3c的最小值.答案:解:∵a,b,c∈R+,,∴=1+1+1,当且仅当a=2b=3c=3时取等号.即a+2b+3c≥9,∴a+2b+3c的最小值为9.解析:解:∵a,b,c∈R+,,∴=1+1+1,当且仅当a=2b=3c=3时取等号.即a+2b+3c≥9,∴a+2b+3c的最小值为9.29.某工厂生产一种产品的成本费共由三部分组成:①原材料费每件50元;②职工工资支出7500+20x元;③电力与机器保养等费用为x2-30x+600元:其中x是该厂生产这种产品的总件数.(I)把每件产品的成本费p(x)(元)表示成产品件数x的函数,并求每件产品的最低成本费;(Ⅱ)如果该厂生产的这种产品的数量x不超过170件且能全部销售,根据市场调查,每件产品的销售价为Q(x)(元),且Q(x)=1240-.试问生产多少件产品,总利润最高?并求出最高总利润.(总利润=总销售额-总的成本)答案:解:(I)P(x)=50++=+x+40.由基本不等式得P(x)≥2+40=220.当且仅当=x,即x=90时,等号成立.所以P(x)=+x+40.每件产品的最低成本费为220 元.(Ⅱ)设总利润为y=f(x)=xQ(x)-xP(x)=,f′(x)==(x-100)(x+120)当0<x<100时,f′(x)>0,当x>100时,f′(x)<0.所以f(x)在(0,100)单调递增,在(100,170)单调递减,所以当x=100时,ymax=f(100)=故生产100件产品时,总利润最高,最高总利润为.解析:解:(I)P(x)=50++=+x+40.由基本不等式得P(x)≥2+40=220.当且仅当=x,即x=90时,等号成立.所以P(x)=+x+40.每件产品的最低成本费为220 元.(Ⅱ)设总利润为y=f(x)=xQ(x)-xP(x)=,f′(x)==(x-100)(x+120)当0<x<100时,f′(x)>0,当x>100时,f′(x)<0.所以f(x)在(0,100)单调递增,在(100,170)单调递减,所以当x=100时,ymax=f(100)=故生产100件产品时,总利润最高,最高总利润为.30.已知定义在R上的函数f(x)=|x-1|+|x+2|的最小值为a.(1)求a的值;(2)若m,n是正实数,且m+n=a,求+的最小值.答案:解:(1)由|x-1|+|x+2|的几何意义表示了数轴上点x到点1与到点-2的距离之和,如图:则x在[-2,1]上时,函数f(x)=|x-1|+|x+2|取得最小值a=3.即a=3.(2)由题意,m+n=3,则+=+=+++=1++≥1+2=1+.(当且仅当=时,等号成立).即+的最小值为1+.解析:解:(1)由|x-1|+|x+2|的几何意义表示了数轴上点x到点1与到点-2的距离之和,如图:则x在[-2,1]上时,函数f(x)=|x-1|+|x+2|取得最小值a=3.即a=3.(2)由题意,m+n=3,则+=+=+++=1++≥1+2=1+.(当且仅当=时,等号成立).即+的最小值为1+.。
[基础训练A 组]一、选择题(六个小题,每题5分,共30分)1.若02522>-+-x x ,则221442-++-x x x 等于( )A .54-xB .3-C .3D .x 45-2.函数y =log 1(x +11+x +1) (x > 1)的最大值是 ( )A .-2B .2C .-3D .33.不等式xx --213≥1的解集是 ( ) A .{x|43≤x ≤2} B .{x|43≤x <2} C .{x|x >2或x ≤43} D .{x|x <2} 4.设a >1>b >-1,则下列不等式中恒成立的是 ( )A .ba 11< B .b a 11> C .a >b 2 D .a 2>2b 5.如果实数x,y 满足x 2+y 2=1,则(1-xy) (1+xy)有 ( )A .最小值21和最大值1 B .最大值1和最小值43 C .最小值43而无最大值 D .最大值1而无最小值 6.二次方程x 2+(a 2+1)x +a -2=0,有一个根比1大,另一个根比-1小,则a 的取值范围是 ( )A .-3<a <1B .-2<a <0C .-1<a <0D .0<a <2二、填空题(五个小题,每题6分,共30分) 1.不等式组⎩⎨⎧->-≥32x x 的负整数解是____________________。
2.一个两位数的个位数字比十位数字大2,若这个两位数小于30,则这个两位数为____________________。
3.不等式0212<-+xx 的解集是__________________。
4.当=x ___________时,函数)2(22x x y -=有最_______值,其值是_________。
5.若f(n)=)(21)(,1)(,122N n nn n n n g n n ∈=--=-+ϕ,用不等号 连结起来为____________.三、解答题(四个小题,每题10分,共40分)1.解log (2x – 3)(x 2-3)>02.不等式049)1(220822<+++++-m x m mx x x 的解集为R,求实数m 的取值范围。
高考数学解不等式基本训练题及参考答案一、选择题(1)不等式6x 2+5x <4的解集为( ) A (-∞,-34)∪(21,+∞) B (- 34,21) C (- 21,43) D (-∞,-21)∪(34,+∞) (2)a >0,b >0,不等式a >x1>-b 的解集为( ) A -b 1 <x <0或0<x <a 1 B - a 1<x <b1 C x <-b 1或x >a 1 D - a 1<x <0或0<x <b 1 (3)不等式11+x (x -1)(x -2)2(x -3)<0的解集是( ) A (-1,1)∪(2,3) B (-∞,-1)∪(1,3)C (-∞,-1)∪(2,3)D R(4)若a >0,且不等式ax 2+bx +c <0无解,则左边的二次三项式的判别式()A Δ<0B Δ=0C Δ≤0D Δ>0(5)A={x |x 2+(p +2)x +1=0,x ∈R },且R *∩A=∅,则有( )A p >-2B p ≥0C -4<p <0D p >-4(6)θ在第二象限,cos θ=524+-m m ,sin θ=53-+m m ,则m 满足( ) A m <-5或m >3 B 3<m <9 C m =0或m =8 D m =8(7)已知不等式l o g a (x 2-x -2)>l o g a (-x 2+2x +3)在x =49时成立,则不等式的解集为 A {x |1<x <2} B {x |2<x <25} C {x |1<x <25} D {x |2<x <5} (8)设0<b <21,下列不等式恒成立的是( ) A b 3>b 21B l o g b (1-b )>1 C cos(1+b )>cos(1-b ) D (1-b )n <b n ,n ∈N (9)若不等式x 2-l o g a x <0在(0,21)内恒成立,则a 满足( ) A 16≤a <1 B 16<a <1 C 0<a ≤161 D 0<a <161 (10)不等式112+<-x x 的解集是( )A [0,1]B [0,+∞]C (1,+∞)D -1,1] (11)不等式112)21(--<x x 的解集是( ) A B (1,2) C (2,+∞) D (1,+∞) (12)不等式(x -1)2+x ≥0的解集是( ) A {x |x >1} B {x |x ≥1或x =-2} C {x |x ≥1} D {x |x ≥-2且x ≠1}(13)函数f (x )=822--x x 的定义域为A ,函数g(x )=a x --11的定义域为B ,则使A ∩B=∅,实数a 的取值范围是( ) A {a |-1<a <3} B {a |-2<a <4}C {a -2≤a ≤4}D {a |-1≤a ≤3}(14)关于x 的不等式22x a -<2x +a (a >0)的解集为( ) A (0,a ) B (0,a ] C ∞)∪(-∞,-54 a ) D ∅ 二.填空题(15)不等式1≤|x -2|≤7的解集是(16)不等式x1>a 的解集是 (17)不等式lg|x -4|<-1的解集是(18)不等式xb c -<a (a >0,b >0,c >0)的解集是 (19)若不等式43)1(22+++--x x a ax x <0的解为-1<x <5,则a = (20)不等式1lg -x <3-lg x 的解集是(21)函数f (x )=l o g 2(x 2-4),g(x )=2k x 2-(k <-1),则f (x )g(x )的定义域为 三、解答题(22)解下列不等式(1)(x +4)(x +5)2>(3x -2)(x +5)2;(2)1)3()4)(1(2+---x x x x ≤0;(3)45820422+-+-x x x x ≥3(23)设不等式(2x -1)>m (x 2-1)对满足|m |≤2的一切实数m 的值都成立,求x 的取值范围解不等式练习题参考答案:1.B 2.C 3.B 4.C 5.B 6.D 7.B8.C 9.A 10.A 11.D 12.B 13.D 14.B15.[-5,1]∪[3,9]16.a =0时x >0;a >0时,0<x <a 1;a <0时,x <a 1或x >0 17.{x |4<x <1041或1039<x <4} 18.{x |x <b 或x >b -ac } 19.4 20.10≤x <100 21.[2k -2)∪(2,+∞) 22.解:(1)当x ≠-5时,(x +5)2>0,两边同除以(x +5)2得x +4>3x -2, 即x <3且x ≠-5;∴x ∈(-∞,-5)∪(-5,3)(2)当x ≠4时,原不等式⇔(x -1)(x -3)(x +1)≤0(x ≠-1) ⇔1≤x ≤3或x <-1,当x =4时,显然左边=0,不等式成立故原不等式的解集为{x |1≤x ≤3或x <-1或x =4}(3)原不等式可化为451820422+-+-x x x x -3≥00456522≥+-+-⇔x x x x 0)4)(1()3)(2(≥----⇔x x x x ∴x ∈(-∞,1)∪[2,3]∪(4,+∞) 23.解:①若x 2-1=0,即x =±1,且2x -1>0,即x >21时,此时x =1,原不等式对|m |≤2恒成立;②若x 2-1>0,要使1122--x x >m ,对|m |≤2恒成立,只要1122--x x >2,即 ⎩⎨⎧->->-22120122x x x 得1<x 23 ③若x 2-1<0时,要使1122--x x <m ,对|m |≤2恒成立,只要1122--x x <-2,即 ⎩⎨⎧+->-<-22120122x x x 得271+-<x <1 综合①②③得,所求x 的范围为271+-<x 23。
高中数学不等式证明题目训练卷及答案一、选择题1、若\(a > b > 0\),则下列不等式中一定成立的是()A \(a +\frac{1}{b} > b +\frac{1}{a}\)B \(\frac{b + 1}{a + 1} >\frac{b}{a}\)C \(a \frac{1}{b} > b \frac{1}{a}\)D \(\frac{2a + b}{a + 2b} >\frac{a}{b}\)答案:A解析:因为\(a > b > 0\),所以\(a b > 0\)。
A 选项:\((a +\frac{1}{b})(b +\frac{1}{a})=(a b) +(\frac{1}{b} \frac{1}{a})=(a b) +\frac{a b}{ab}> 0\),所以\(a +\frac{1}{b} > b +\frac{1}{a}\),A 选项正确。
B 选项:\(\frac{b + 1}{a + 1} \frac{b}{a} =\frac{a(b+ 1) b(a + 1)}{a(a + 1)}=\frac{a b}{a(a + 1)}\),因为\(a(a + 1) > 0\),但\(a b\)的正负不确定,所以\(\frac{b + 1}{a + 1}\)与\(\frac{b}{a}\)大小不确定,B 选项错误。
C 选项:\((a \frac{1}{b})(b \frac{1}{a})=(a b) (\frac{1}{b} \frac{1}{a})=(a b) \frac{a b}{ab}\),当\(ab > 1\)时,\((a b) \frac{a b}{ab} < 0\),C 选项错误。
D 选项:\(\frac{2a + b}{a + 2b} \frac{a}{b} =\frac{b(2a + b) a(a + 2b)}{b(a + 2b)}=\frac{b^2 a^2}{b(a +2b)}\),因为\(b^2 a^2 < 0\),\(b(a + 2b) > 0\),所以\(\frac{2a + b}{a + 2b} \frac{a}{b} < 0\),D 选项错误。
高中数学基本不等式训练题(含答案)1.若xy>0,则对 xy+yx说法正确的是()A.有最大值-2 B.有最小值2C.无最大值和最小值 D.无法确定答案:B2.设x,y满足x+y=40且x,y都是正整数,则xy的最大值是()A.400 B.100C.40 D.20答案:A3.已知x2,则当x=____时,x+4x有最小值____.答案:2 44.已知f(x)=12x+4x.(1)当x>0时,求f(x)的最小值;(2)当x<0 时,求f(x)的最大值.解:(1)∵x>0,12x,4x>0.12x+4x212x4x=83.当且仅当12x=4x,即x=3时取最小值83,当x>0时,f(x)的最小值为83.(2)∵x<0,-x>0.则-f(x)=12-x+(-4x)212-x-4x=83,当且仅当12-x=-4x时,即x=-3时取等号.当x<0时,f(x)的最大值为-83.一、选择题1.下列各式,能用基本不等式直接求得最值的是()A.x+12x B.x2-1+1x2-1C.2x+2-x D.x(1-x)答案:C2.函数y=3x2+6x2+1的最小值是()A.32-3 B.-3C.62 D.62-3解析:选D.y=3(x2+2x2+1)=3(x2+1+2x2+1-1)3(22-1)=62-3.3.已知m、nR,mn=100,则m2+n2的最小值是() A.200 B.100C.50 D.20解析:选A.m2+n22mn=200,当且仅当m=n时等号成立.4.给出下面四个推导过程:①∵a,b(0,+),ba+ab2baab=2;②∵x,y(0,+),lgx+lgy2lgxlgy;③∵aR,a0,4a+a 24aa=4;④∵x,yR,,xy<0,xy+yx=-[(-xy)+(-yx)]-2-xy -yx=-2.其中正确的推导过程为()A.①② B.②③C.③④ D.①④解析:选D.从基本不等式成立的条件考虑.①∵a,b(0,+),ba,ab(0,+),符合基本不等式的条件,故①的推导过程正确;②虽然x,y(0,+),但当x(0,1)时,lgx是负数,y(0,1)时,lgy是负数,②的推导过程是错误的;③∵aR,不符合基本不等式的条件,4a+a24aa=4是错误的;④由xy<0得xy,yx均为负数,但在推导过程中将全体xy +yx提出负号后,(-xy)均变为正数,符合基本不等式的条件,故④正确.5.已知a>0,b>0,则1a+1b+2ab的最小值是()A.2 B.22C.4 D.5解析:选C.∵1a+1b+2ab2ab+2ab222=4.当且仅当a=bab =1时,等号成立,即a=b=1时,不等式取得最小值4. 6.已知x、y均为正数,xy=8x+2y,则xy有()A.最大值64 B.最大值164C.最小值64 D.最小值164解析:选C.∵x、y均为正数,xy=8x+2y28x2y=8xy,当且仅当8x=2y时等号成立.xy64.二、填空题7.函数y=x+1x+1(x0)的最小值为________.答案:18.若x>0,y>0,且x+4y=1,则xy有最________值,其值为________.解析:1=x+4y4y=4xy,xy116.答案:大1169.(2019年高考山东卷)已知x,yR+,且满足x3+y4=1,则xy的最大值为________.解析:∵x>0,y>0且1=x3+y42xy12,xy3.当且仅当x3=y4时取等号.答案:3三、解答题10.(1)设x>-1,求函数y=x+4x+1+6的最小值;(2)求函数y=x2+8x-1(x>1)的最值.解:(1)∵x>-1,x+1>0.y=x+4x+1+6=x+1+4x+1+52 x+14x+1+5=9,当且仅当x+1=4x+1,即x=1时,取等号.x=1时,函数的最小值是9.(2)y=x2+8x-1=x2-1+9x-1=(x+1)+9x-1=(x-1)+9x-1+2.∵x>1,x-1>0.(x-1)+9x-1+22x-19x-1+2=8.当且仅当x-1=9x-1,即x=4时等号成立,y有最小值8.11.已知a,b,c(0,+),且a+b+c=1,求证:(1a-1)(1b -1)(1c-1)8.证明:∵a,b,c(0,+),a+b+c=1,1a-1=1-aa=b+ca=ba+ca2bca,同理1b-12acb,1c-12abc,以上三个不等式两边分别相乘得(1a-1)(1b-1)(1c-1)8.当且仅当a=b=c时取等号.12.某造纸厂拟建一座平面图形为矩形且面积为200平方米的二级污水处理池,池的深度一定,池的外圈周壁建造单价为每米400元,中间一条隔壁建造单价为每米100元,池底建造单价每平方米60元(池壁忽略不计).问:污水处理池的长设计为多少米时可使总价最低.解:设污水处理池的长为x米,则宽为200x米.总造价f(x)=400(2x+2200x)+100200x+60200=800(x+225x)+120191600x225x+12019=36000(元)当且仅当x=225x(x>0),即x=15时等号成立.。
完整版)高中数学不等式习题及详细答案第三章不等式一、选择题1.已知 $x\geq 2$,则 $f(x)=\frac{x^2-4x+5}{2x-4}$ 的取值范围是()。
A。
最大值为 5,最小值为 1B。
最大值为 5,最小值为 $\frac{11}{2}$C。
最大值为 1,最小值为 $\frac{11}{2}$D。
最大值为 1,最小值为 02.若 $x>0$,$y>0$,则$(x+\frac{1}{y})^2+(y+\frac{1}{x})^2$ 的最小值是()。
A。
3B。
$\frac{7}{2}$C。
4D。
$\frac{9}{2}$3.设 $a>0$,$b>0$,则下列不等式中不成立的是()。
A。
$a+b+\frac{1}{ab}\geq 2\sqrt{2}$B。
$(a+b)(\frac{1}{a}+\frac{1}{b}+\frac{1}{2})\geq 4$C。
$\sqrt{a^2+b^2}\geq a+b-\sqrt{2ab}$D。
$\frac{2ab}{a+b}\geq \sqrt{ab}$4.已知奇函数 $f(x)$ 在 $(-\infty,+\infty)$ 上是增函数,且$f(1)=3$,则不等式 $f(x)-f(-x)<0$ 的解集为()。
A。
$(-1,+\infty)$B。
$(-\infty,-1)\cup (1,+\infty)$C。
$(-\infty,-1)\cup (1,+\infty)$D。
$(-1,1)$5.当 $0<x<\frac{\pi}{2}$ 时,函数 $f(x)=\frac{1+\cos^2 x+8\sin^2 x}{2\sin^2 x}$ 的最小值为()。
A。
2B。
$\frac{2}{3}$C。
4D。
$\frac{3}{2}$6.若实数 $a,b$ 满足 $a+b=2$,则 $3a+3b$ 的最小值是()。
A。
18B。
高三数学不等式练习题及答案1. 求解以下不等式,并将解集表示在数轴上:a) 3x - 5 > 7b) 2x + 1 ≤ 9c) 4 - 3x ≥ 1解析:a) 首先将不等式转化成等式:3x - 5 = 7解这个等式可以得到 x = 4,所以 x 大于 4。
因此解集表示在数轴上为(4, +∞)。
b) 将不等式转化成等式:2x + 1 = 9解这个等式可以得到 x = 4,所以 x 小于等于 4。
因此解集表示在数轴上为 (-∞, 4]。
c) 不等式已经是等式形式:4 - 3x = 1解这个等式可以得到 x = 1,所以 x 小于等于 1。
因此解集表示在数轴上为 (-∞, 1]。
2. 计算以下不等式的解集,并将解集表示在数轴上:a) 2x + 3 > 10 - xb) 5 - 3x ≤ 2x + 4c) 3(2x - 1) ≥ 2(x + 3)解析:a) 通过整理不等式,得到 3x > 7,解为 x > 7/3,即解集为(7/3, +∞)。
b) 整理不等式可以得到8 ≤ 5x,解为x ≥ 8/5,即解集为[8/5, +∞)。
c) 展开括号得到 6x - 3 ≥ 2x + 6,然后整理不等式可以得到4x ≥ 9,解为x ≥ 9/4,即解集为[9/4, +∞)。
3. 解以下含有绝对值的不等式,并将解集表示在数轴上:a) |3x + 1| < 5b) |2x - 1| ≥ 3c) |x - 4| > 2解析:a) 当 3x + 1 > 0 时,原不等式可以化简为 3x + 1 < 5,解为 x < 4/3。
当 3x + 1 < 0 时,原不等式可以化简为 -(3x + 1) < 5,解为 x > -6/3。
综合起来,解集为 (-∞, -6/3)∪(4/3, +∞)。
b) 当 2x - 1 ≥ 0 时,原不等式可以化简为 2x - 1 ≥ 3,解为x ≥ 4/2。
高一数学不等式部分经典习题及答案一、不等式一、不等式的性质:1.同向不等式可以相加;异向不等式可以相减。
例如:若a>b。
c>d,则a+c>b+d(若a>b。
cb-d),但异向不等式不可以相加,同向不等式不可以相减。
2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘。
例如:若a>b>0.c>d>0,则ac>bd(若a>b>0.0b/d)。
3.左右同正不等式:两边可以同时乘方或开方。
例如:若a>b>0,则a>b或a^n>b^n。
4.若ab>0,a>b,则a/b>1;若abb,则a/b<-1.例如:对于实数a,b,c,给出下列命题:①若a>b,则ac>bc;②若ac>bc,则a>b;③若a<b<c,则a<b<ab;④若ab^2;⑤若a1;⑥若ab;⑦若c>a>b>d,则(c-a)/(c-a+b-d)>0;其中正确的命题是②③⑥⑦⑧。
2)已知-1≤x+y≤1,1≤x-y≤3,则3x-y的取值范围是1≤3x-y≤7.3)已知a>b>c,且a+b+c=1,则c的取值范围是[-2,-1)。
二、不等式大小比较的常用方法:1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果;2.作商(常用于分数指数幂的代数式);3.分析法;4.平方法;5.分子(或分母)有理化;6.利用函数的单调性;7.寻找中间量或放缩法;8.图象法。
其中比较法(作差、作商)是最基本的方法。
例如:1)设a>1且a不等于1,t>0,比较(1+t)/loga和2loga(t)的大小。
当a>1时,(1+t)/loga=2loga(t)(t=1时取等号)。
2)设a>2,p=a+√a-2.q=2a-√a-2,比较p和q的大小。
高中数学不等式经典题型集锦姓名班级学号得分注意事项:1、本试题满分100分,考试时间90分钟2、答题前填好自己的姓名、班级、考号等信息3.请将答案正确填写在答题卡上一.单选题(每题3分,共48分)1.若t∈(0,1],则t+有最小值()A.2B.3 C.-2D.不存在2.不等式(1+x)(2-x)(3+x2)>0的解集是()A.φB.RC.{x|-1<x<2} D.{x|x>2或x<-1}3.如果实数x,y满足:,则目标函数z=4x+y的最大值为()A.2 B.3 C.D.44.设变量x,y满足约束条件,则z=6x-y的最小值为()A.-8 B.0 C.-2 D.-75.在△ABC中,E为AC上一点,且,P为BE上一点,且(m>0,n>0),则取最小值时,向量=(m,n)的模为()A.B.C.D.26.若a,b,c>0且a2+2ab+2ac+4bc=12,则a+b+c的最小值是()A.B.3 C.2 D.7.不等式x2-ax-12a2<0(a<0)的解集是()A.(-3a,4a)B.(4a,-3a)C.(-3,4)D.(2a,6a)8.若第一象限的点(a,b)关于直线x+y-2=0的对称点在直线2x+y+3=0上,则的最小值是()A.1 B.3 C.D.9.若直线2ax-by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0截得的弦长为4,则的最小值是()A.5 B.6 C.8 D.910.若a,b,c>0且,则2a+b+c的最小值为()A.B.C.D.11.已知x,y满足,且z=2x-y的最大值是最小值的4倍,则a的值是()A.B.C.2 D.-212.不等式的解集是()A.[1,+∞)B.(2,+∞)∪(-∞,-1]C.[2,+∞)∪(-∞,-1] D.[3,+∞)∪(-∞,2)13.若不等式x2-ax+b<0的解集为(1,2),则不等式<的解集为()A.(,+∞)B.(-∞,0)∪(,+∞)C.(,+∞)D.(-∞,0)∪(,+∞)14.若关于x的不等式-+ax>-1的解集为{x|-1<x<2},则实数a=()A.B.C.-2 D.215.若a>0,b>0,则不等式-b<<a等价于()A.<x<0或0<x<B.-<x<C.x<-或x>D.x<或x>16.二次函数f(x)=ax2+bx+c中,a>0且a≠1,对于任意的x∈R都有f(x-3)=f(1-x),设m=f(),n=f[],则()A.m<n B.m=nC.m>n D.m,n的大小关系不确定二.填空题(每题3分,共27分)17.设,x,y∈R,a>1,b>1,若a x=b y=4,a+b=2,则的最大值为______.18.已知3a+2b=1,a,b∈R*,则的最小值______.19.已知实数x,y满足x>y>0且x+y=1,则的最小值是______.20.若x>0,y>0,且+=2,则6x+5y的最小值为______.21.已知x,y为正数,且x++3y+=10,则x+3y的最大值为______.22.若实数a,b满足2a+2b=1,则a+b的最大值是______.23.已知0<b<a<c≤4,ab=2,则的最小值是______.24.设x,y∈R,且x2+xy+y2=9,则x2+y2的最小值为______.25.若x>0,y>0,且y=,则x+y的最小值为______.三.简答题(每题5分,共25分)26.已知a,b,c为正数,证明:≥abc.27.已知不等式|x+2|+|x-2丨<10的解集为A.(1)求集合A;,不等式a+b>(x-4)(-9)+m恒成立,求实数m的(2)若∀a,b∈A,x∈R+取值范围.28.设,则的最小值为______.,x+y+z=3.29.已知x,y,z∈R+(1)求++的最小值(2)证明:3≤x2+y2+z2<9.30.已知关于x的不等式在x∈(a,+∞)上恒成立,求实数a的最小值.参考答案一.单选题(共__小题)1.若t∈(0,1],则t+ 有最小值()A.2B.3 C.-2D.不存在答案:B解析:解:构造函数f(t)=t+,根据双勾函数的图象和性质,f(t)在(0,)上单调递减,在(,+∞)上单调递增,所以,当t∈(0,1]时,f(t)单调递减,=f(1)=3,即f(t)min故答案为:B.2.不等式(1+x)(2-x)(3+x2)>0的解集是()A.φB.RC.{x|-1<x<2} D.{x|x>2或x<-1}答案:C解析:解:∵3+x2>0,∴原不等式即为(1+x)(2-x)>0,再化为(1+x)(x-2)<0,解得-1<x<2.故选C3.如果实数x,y满足:,则目标函数z=4x+y的最大值为()A.2 B.3 C.D.4答案:C解析:解:约束条件的可行域如下图示:由图易得目标函数z=4x+y在A(,)处取得最大,最大值,故选C.4.设变量x,y满足约束条件,则z=6x-y的最小值为()A.-8 B.0 C.-2 D.-7答案:D解析:解:由约束条件作出可行域如图,联立,得B(-1,1),化目标函数z=6x-y为y=-6x+z,由图可知,当直线y=-6x+z过B时,直线在y轴上的截距最大,z最小为6×(-1)-1=-7.故选:D.5.在△ABC中,E为AC上一点,且,P为BE上一点,且(m>0,n>0),则取最小值时,向量=(m,n)的模为()A.B.C.D.2答案:C解析:解:∵,∴=m+4n,又∵P为BE上一点,不妨设=λ,(0<λ<1),∴=+=+λ=+λ()=(1-λ)+λ,∴m+4n=(1-λ)+λ,∵,不共线,∴,∴m+4n=1,∴=()(m+4n)=5++≥5+2=9当且仅当=即m=且n=时,上式取到最小值,∴向量=(m,n)的模||==故选:C6.若a,b,c>0且a2+2ab+2ac+4bc=12,则a+b+c的最小值是()A.B.3 C.2 D.答案:A解析:解:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc=(a2+2ab+2ac+4bc)+b2+c2-2bc=12+(b-c)2≥12,当且仅当b=c时取等号,∴a+b+c≥故选项为A7.不等式x2-ax-12a2<0(a<0)的解集是()A.(-3a,4a)B.(4a,-3a)C.(-3,4)D.(2a,6a)答案:B解析:解:x2-ax-12a2<0,因式分解得:(x-4a)(x+3a)<0,可化为:或,∵a<0,∴4a<0,-3a>0,解得:4a<x<-3a,则原不等式的解集是(4a,-3a).故选B8.若第一象限的点(a,b)关于直线x+y-2=0的对称点在直线2x+y+3=0上,则的最小值是()A.1 B.3 C.D.答案:C解析:解:设A(a,b)关于直线x+y-2=0的对称点B(x0,y)在直线2x+y+3=0上,∴线段AB的中点(,)在直线x+y-2=0上,由题意得:,∴a+2b=9,∴+=+=++≥+2=,当且仅当:=即b=2a时“=”成立,故选:C.9.若直线2ax-by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0截得的弦长为4,则的最小值是()A.5 B.6 C.8 D.9答案:D解析:解:由x2+y2+2x-4y+1=0得:(x+1)2+(y-2)2=4,∴该圆的圆心为O(-1,2),半径r=2;又直线2ax-by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0截得的弦长为4,∴直线2ax-by+2=0(a>0,b>0)经过圆心O(-1,2),∴-2a-2b+2=0,即a+b=1,又a>0,b>0,∴=()•(a+b)=1+++4≥5+2=9(当且仅当a=,b=时取“=”).故选D.10.若a,b,c>0且,则2a+b+c的最小值为()A.B.C.D.答案:D解析:解:若a,b,c>0且,所以,∴,则(2a+b+c)≥,故选项为D.11.已知x,y满足,且z=2x-y的最大值是最小值的4倍,则a的值是()A.B.C.2 D.-2答案:B解析:解:由题意可得,∴a<1,不等式组表示的平面区域如图所示,三角形的三个顶点坐标分别为(a,a),(a,2-a),(1,1).由z=2x-y可得y=2x-z,则z表示直线y=2x-z在y轴上的截距的相反数,截距越大,z越小作直线L:y=-2x,把直线向可行域平移,当直线经过(1,1)时,z最大为1,当直线经过点(a,2-a)时,z最小为3a-2,∵z=2x-y的最大值是最小值的4倍,∴4(3a-2)=1,即12a=9,∴a=.故选B.12.不等式的解集是()A.[1,+∞)B.(2,+∞)∪(-∞,-1]C.[2,+∞)∪(-∞,-1] D.[3,+∞)∪(-∞,2)答案:B解析:解:不等式化为即,即,转化为:所以不等式的解集为:(-∞,-1]∪(2,+∞).故选B.13.若不等式x2-ax+b<0的解集为(1,2),则不等式<的解集为()A.(,+∞)B.(-∞,0)∪(,+∞)C.(,+∞)D.(-∞,0)∪(,+∞)答案:B解析:解:因为不等式x2-ax+b<0的解集为(1,2),所以1+2=a,1×2=b,即a=3,b=2,所以不等式<为,整理得,解得x<0或者x>,所以不等式的解集为:(-∞,0)∪(,+∞).故选B.14.若关于x的不等式-+ax>-1的解集为{x|-1<x<2},则实数a=()A.B.C.-2 D.2答案:A解析:解:由的解集是{x|-1<x<2},可知-1与2是方程的两根,∴,解得 a=.故选A.15.若a>0,b>0,则不等式-b<<a等价于()A.<x<0或0<x<B.-<x<C.x<-或x>D.x<或x>答案:D解析:解:故选D.16.二次函数f(x)=ax2+bx+c中,a>0且a≠1,对于任意的x∈R都有f(x-3)=f(1-x),设m=f(),n=f[],则()A.m<n B.m=nC.m>n D.m,n的大小关系不确定答案:A解析:解:∵二次函数f(x)=ax2+bx+c中,a>0且a≠1,对于任意的x∈R都有f(x-3)=f(1-x),∴二次函数f(x)关于直线x==-1对称.∴m=f()=f(-2),n=f[]=f()=,∵a>0且a≠1,∴函数f(x)在(-∞,-1]上单调递减,∴.∴n>m.故选:A.二.填空题(共__小题)17.设,x,y∈R,a>1,b>1,若a x=b y=4,a+b=2,则的最大值为______.答案:解析:解:∵a>1,b>1,a+b=2,∴,即ab≤2,当且仅当时取等号.∵a x=b y=4,∴xlga=lg4,ylgb=lg4,∴===.故答案为.18.已知3a+2b=1,a,b∈R*,则的最小值______.答案:解析:解;∵3a+2b=1,a,b∈R*,∴3a∵====∴的最小值为故答案:.19.已知实数x,y满足x>y>0且x+y=1,则的最小值是______.答案:解析:解:∵x>y>0且x+y=1,∴.则=+=+=f(x),f′(x)=-=,令f′(x)>0,解得<x<1,此时函数f(x)单调递增;令f′(x)<0,解得,此时函数f(x)单调递减.∴当x=时,函数f(x)取得最小值,=.故答案为:.20.若x>0,y>0,且+=2,则6x+5y的最小值为______.答案:解析:解:6x+5y===,当且仅当,a=时取等号.故答案为:.21.已知x,y为正数,且x++3y+=10,则x+3y的最大值为______.答案:8解析:解:∵x++3y+=10,∴(x+3y)(x++3y+)=10(x+3y),∴(x+3y)2-10(x+3y)+10++=0,∵+≥6(=,即x=y时取等号)∴(x+3y)2-10(x+3y)+16≤0,∴2≤x+3y≤8,∴x+3y的最大值为8,此时x=y=2.故答案为:8.22.若实数a,b满足2a+2b=1,则a+b的最大值是______.答案:-2解析:解:∵2a+2b=1,∴=,即,∴a+b≤-2,当且仅当,即a=b=-1时取等号,∴a=b=-1时,a+b取最大值-2.故答案为:-2.23.已知0<b<a<c≤4,ab=2,则的最小值是______.答案:解析:解:∵已知0<b<a<c≤4,ab=2,∴0<b<1,2<a,a->0.则=+=+=(a-)+()+≥2+=4+=,当且仅当(a-)=()且c=时,等号成立,故答案为:.24.设x,y∈R,且x2+xy+y2=9,则x2+y2的最小值为______.答案:6解析:解:∵,解得x2+y2≥6,当且仅当x=y=时取等号.故答案为6.25.若x>0,y>0,且y=,则x+y的最小值为______.答案:18解析:解:∵x>0,y>0,且y=>0,解得x>2.∴x+y===x-2++2≥+2=18,当且仅当x=6时取等号,此时x+y的最小值为18.故答案为:18.三.简答题(共__小题)26.已知a,b,c为正数,证明:≥abc.答案:证明:∵a,b,c为正数,∴a2(b2+c2)≥2a2bc①,b2(a2+c2)≥2b2ac②,c2(b2+a2)≥2c2ba③①+②+③可得:2(a2b2+b2c2+c2a2)≥2abc(a+b+c)∴≥abc.27.已知不等式|x+2|+|x-2丨<10的解集为A.(1)求集合A;,不等式a+b>(x-4)(-9)+m恒成立,求实数m的(2)若∀a,b∈A,x∈R+取值范围.答案:解:(1)不等式|x+2|+|x-2丨<10等价于,或或,解得-5<x<5,故可得集合A=(-5,5);,(2)∵a,b∈A=(-5,5),x∈R+∴-10<a+b<10,∴(x-4)(-9)=1--9x+36=37-(+9x)≤37-2=25,∵不等式a+b>(x-4)(-9)+m恒成立,∴m+25≤-10,解得m≤-3528.设,则的最小值为______.答案:解:∵,∴1-2x>0∴==13+≥13+=25 当且仅当,即x=时,的最小值为25故答案为:25,x+y+z=3.29.已知x,y,z∈R+(1)求++的最小值(2)证明:3≤x2+y2+z2<9.答案:,x+y+z=3.(1)解:∵x,y,z∈R+∴++===3,当且仅当x=y=z=1时取等号,∴++的最小值是3.(2)证明:∵(x-y)2+(x-z)2+(y-z)2≥0,∴2(x2+y2+z2)≥2xy+2xz+2yz,∴3(x2+y2+z2)≥(x+y+z)2=32,∴x2+y2+z2≥3;又x2+y2+z2-9=x2+y2+z2-(x+y+z)2=-2(xy+yz+xz)<0.综上可得:3≤x2+y2+z2<9.解析:(30.已知关于x的不等式在x∈(a,+∞)上恒成立,求实数a的最小值.答案:解:不等式在x∈(a,+∞)上恒成立,设y=,∴x-1≥2,x≥3,故实数a的最小值3.。
高中数学必修5不等式精选题目(附答案)一、一元二次不等式(1)确定ax 2+bx +c >0(a >0)或ax 2+bx +c <0(a >0)在判别式Δ>0时解集的结构是关键.在未确定a 的取值情况下,应先分a =0和a ≠0两种情况进行讨论.(2)若给出了一元二次不等式的解集,则可知二次项系数a 的符号和方程ax 2+bx +c =0的两个根,再由根与系数的关系就可知a ,b ,c 之间的关系.(3)解含有参数的一元二次不等式,要注意对参数的取值进行讨论:①对二次项系数与0的大小进行讨论;②在转化为标准形式的一元二次不等式后,对判别式与0的大小进行讨论;③当判别式大于0,但两根的大小不确定时,对两根的大小进行讨论.1. (1)已知不等式ax 2+bx +2>0的解集为{x |-1<x <2},则不等式2x 2+bx +a <0的解集为( )A.⎩⎨⎧⎭⎬⎫x -1<x <12B.⎩⎨⎧⎭⎬⎫xx <-1或x >12 C .{x |-2<x <1} D .{x |x <-2或x >1}(2)解关于x 的不等式ax 2-2ax +a +3>0.1.[解析] (1)由题意知x =-1,x =2是方程ax 2+bx +2=0的根.由根与系数的关系得⎩⎪⎨⎪⎧ -1+2=-b a ,(-1)×2=2a ⇒⎩⎨⎧a =-1,b =1. ∴不等式2x 2+bx +a <0,即2x 2+x -1<0.解得-1<x <12.[答案] A(2)解:当a =0时,解集为R ;当a >0时,Δ=-12a <0,∴解集为R ;当a <0时,Δ=-12a >0,方程ax 2-2ax +a +3=0的两根分别为a +-3a a ,a --3a a ,∴此时不等式的解集为x a +-3a a <x <a --3a a. 综上所述,当a ≥0时,不等式的解集为R ;a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ a +-3a a <x <a --3a a . 注:解一元二次不等式时,当二次项系数为负时要先化为正,再根据判别式符号判断对应方程根的情况,然后结合相应二次函数的图象写出不等式的解集.2.函数f (x )=1ln (-x 2+4x -3)的定义域是( ) A .(-∞,1)∪(3,+∞) B .(1,3)C .(-∞,2)∪(2,+∞)D .(1,2)∪(2,3) 解析:选D 由题意知⎩⎨⎧ -x 2+4x -3>0,-x 2+4x -3≠1, 即⎩⎨⎧ 1<x <3,x ≠2,故函数f (x )的定义域为(1,2)∪(2,3).3.若关于x 的不等式ax 2-6x +a 2<0的解集是(1,m ),则m =________.解析:根据不等式与方程之间的关系知1为方程ax 2-6x +a 2=0的一个根,即a 2+a -6=0,解得a =2或a =-3,当a =2时,不等式ax 2-6x +a 2<0的解集是(1,2),符合要求;当a =-3时,不等式ax 2-6x +a 2<0的解集是(-∞,-3)∪(1,+∞),不符合要求,舍去.故m =2.答案:24.已知不等式ax 2-3x +6>4的解集为{x |x <1或x >b }.(1)求a ,b 的值;(2)解不等式ax 2-(ac +b )x +bc <0.解:(1)因为不等式ax 2-3x +6>4的解集为{x |x <1或x >b },所以x 1=1与x 2=b 是方程ax 2-3x +2=0的两个实数根,b >1且a >0.由根与系数的关系,得⎩⎪⎨⎪⎧ 1+b =3a ,1×b =2a .解得⎩⎨⎧a =1,b =2. (2)不等式ax 2-(ac +b )x +bc <0,即x 2-(2+c )x +2c <0,即(x -2)(x -c )<0.当c >2时,不等式(x -2)(x -c )<0的解集为{x |2<x <c };当c <2时,不等式(x -2)(x -c )<0的解集为{x |c <x <2};当c =2时,不等式(x -2)(x -c )<0的解集为∅.所以,当c >2时,不等式ax 2-(ac +b )x +bc <0的解集为{x |2<x <c };当c <2时,不等式ax 2-(ac +b )x +bc <0的解集为{x |c <x <2};当c =2时,不等式ax 2-(ac +b )x +bc <0的解集为∅.二、简单的线性规划问题1.确定二元一次不等式表示平面区域的方法与技巧确定二元一次不等式表示的平面区域时,经常采用“直线定界,特殊点定域”的方法.2.利用线性规划求最值,一般用图解法求解,其步骤是(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值.5.(1)设变量x ,y 满足约束条件:⎩⎨⎧ x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =y +1x 的最小值为( )A .1B .2C .3D .4 (2)某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的23倍,且对每个项目的投资不能低于5万元.对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确规划投资后,在这两个项目上共可获得的最大利润为( )A .36万元B .31.2万元C .30.4万元D .24万元5.[解析] (1)不等式组所表示的平面区域如图中的△ABC ,目标函数的几何意义是区域内的点与点P (0,-1)连线的斜率,显然图中AP 的斜率最小.由⎩⎨⎧x +y =3,2x -y =3解得点A 的坐标为(2,1),故目标函数z =y +1x 的最小值为1+12=1.(2)设对项目甲投资x 万元,对项目乙投资y 万元, 则⎩⎪⎨⎪⎧ x +y ≤60,x ≥23y ,x ≥5,y ≥5.目标函数z =0.4x +0.6y .作出可行域如图所示,由直线斜率的关系知目标函数在A 点取最大值,代入得z max =0.4×24+0.6×36=31.2,所以选B.[答案] (1)A (2)B注:(1)求目标函数最值的一般步骤为:一画、二移、三求.其关键是准确作出可行域,理解目标函数的意义.(2)在约束条件是线性的情况下,线性目标函数只有在可行域的顶点或者边界上取得最值.在解答选择题或者填空题时也可以根据可行域的顶点直接进行检验.6.不等式组⎩⎨⎧ 2x +y -6≤0,x +y -3≥0,y ≤2表示的平面区域的面积为( ) A .4B .1C .5D .无穷大解析:选B 不等式组⎩⎨⎧ 2x +y -6≤0,x +y -3≥0,y ≤2表示的平面区域如图所示(阴影部分),△ABC 的面积即为所求.求出点A ,B ,C 的坐标分别为(1,2),(2,2),(3,0),则△ABC 的面积为S =12×(2-1)×2=1.7.已知实数x ,y 满足⎩⎨⎧ x ≥0,y -x +1≤0,y -2x +4≥0,若z =y -ax 取得最大值时的最优解(x ,y )有无数个,则a =________. 解析:依题意,在坐标平面内画出题中的不等式组表示的平面区域,如图所示.要使z =y -ax 取得最大值时的最优解(x ,y )有无数个,则直线z =y -ax 必平行于直线y -x +1=0,于是有a =1.答案:18.某公司用两种机器来生产某种产品,第一种机器每台需花3万日元及人民币50元的维护费;第二种机器则需5万日元及人民币20元的维护费.第一种机器的年利润每台有9万日元,第二种机器的年利润每台有6万日元,但政府核准的外汇日元为135万元,并且公司的总维护费不得超过1 800元,为了使年利润达到最大值,第一种机器应购买________台,第二种机器应购买________台.解析:设第一种机器购买x 台,第二种机器购买y 台,总的年利润为z 万日元,则⎩⎨⎧ 3x +5y ≤135,50x +20y ≤1 800,x ,y ∈N ,目标函数为z=9x +6y . 不等式组表示的平面区域如图阴影部分中的整点.当直线z =9x +6y 经过点M ⎝ ⎛⎭⎪⎫63019,13519,即到达l 1位置时,z 取得最大值,但题目要求x ,y 均为自然数,故进行调整,调整到与M 邻近的整数点(33,7),此时z =9x +6y 取得最大值,即第一种机器购买33台,第二种机器购买7台获得年利润最大.答案:33 7三、基本不等式基本不等式的常用变形(1)a +b ≥2ab (a >0,b >0),当且仅当a =b 时,等号成立;(2)a 2+b 2≥2ab ,ab ≤⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R),当且仅当a =b 时,等号成立; (3)b a +a b ≥2(a ,b 同号且均不为零),当且仅当a =b 时,等号成立;(4)a +1a ≥2(a >0),当且仅当a =1时,等号成立;a +1a ≤-2(a <0),当且仅当a =-1时,等号成立.9.(1)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( )A.245B.285 C .5 D .6(2)若正数x ,y 满足4x 2+9y 2+3xy =30,则xy 的最大值是( )A.43B.53 C .2 D.54[解析] (1)由x +3y =5xy 可得15y +35x =1,∴3x +4y =(3x +4y )⎝ ⎛⎭⎪⎫15y +35x =95+45+3x 5y +12y 5x ≥135+125=5当且仅当3x 5y =12y 5x ,即x =1,y =12时,等号成立, ∴3x +4y 的最小值是5.(2)由x >0,y >0,得4x 2+9y 2+3xy ≥2×(2x )×(3y )+3xy (当且仅当2x =3y 时等号成立),∴12xy +3xy ≤30,即xy ≤2,∴xy 的最大值为2.[答案] (1)C (2)C注:条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值.10.已知2x +2y =1(x >0,y >0),则x +y 的最小值为( )A .1B .2C .4D .8解析:选D ∵x >0,y >0,∴x +y =(x +y )·⎝ ⎛⎭⎪⎫2x +2y =4+2⎝ ⎛⎭⎪⎫x y +y x ≥4+4 x y ·yx =8.当且仅当x y =y x ,即x =y =4时取等号.11.设x ,y ∈R ,且xy ≠0,则⎝ ⎛⎭⎪⎫x 2+1y 2⎝ ⎛⎭⎪⎫1x 2+4y 2的最小值为________. 解析:⎝ ⎛⎭⎪⎫x 2+1y 2⎝ ⎛⎭⎪⎫1x 2+4y 2=5+1x 2y 2+4x 2y 2≥5+21x 2y 2·4x 2y 2=9,当且仅当x 2y 2=12时“=”成立.答案:912.某种商品原来每件售价为25元,年销售8万件. (1)据市场调查,若价格每提高1元,销售量将相应减少2 000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到x 元.公司拟投入16(x 2-600)万元作为技改费用,投入50万元作为固定宣传费用,投入15x 万元作为浮动宣传费用.试问:当该商品明年的销售量a 至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时每件商品的定价.解:(1)设每件定价为t 元,依题意,有[8-(t -25)×0.2]t ≥25×8,整理得t 2-65t +1 000≤0,解得25≤t ≤40.因此要使销售的总收入不低于原收入,每件定价最多为40元.(2)依题意,x >25时,不等式ax ≥25×8+50+16(x 2-600)+15x 有解,等价于x>25时,a≥150x+16x+15有解.∵150x+16x≥2150x·16x=10(当且仅当x=30时,等号成立),∴a≥10.2.因此当该商品明年的销售量a至少应达到10.2万件时,才可能使明年的销售收入不低于原收入与总投入之和,此时该商品的定价为每件30元.巩固练习:1.若1a<1b<0,则下列不等式不正确的是()A.a+b<ab B.ba+ab>0C.ab<b2D.a2>b2解析:选D由1a<1b<0,可得b<a<0,故选D.2.已知不等式x2-2x-3<0的解集为A,不等式x2+x-6<0的解集为B,不等式x2+ax+b<0的解集是A∩B,那么a+b等于()A.-3 B.1C.-1 D.3解析:选A由题意:A={x|-1<x<3},B={x|-3<x<2}.A∩B={x|-1<x<2},由根与系数的关系可知:a=-1,b=-2,∴a+b=-3.3.函数y=x2+2x-1(x>1)的最小值是()A.23+2 B.23-2 C.2 3 D.2解析:选A∵x>1,∴x-1>0.∴y=x2+2x-1=x2-2x+2x+2x-1=x2-2x+1+2(x-1)+3x-1=(x-1)2+2(x-1)+3x-1=x -1+3x -1+2≥23+2当且仅当x -1=3x -1,即x =3+1时等号成立. 4.(2017·浙江高考)若x ,y 满足约束条件⎩⎨⎧ x ≥0,x +y -3≥0,x -2y ≤0,则z =x +2y 的取值范围是( )A .[0,6]B .[0,4]C .[6,+∞)D .[4,+∞) 解析:选D 作出不等式组所表示的平面区域如图中阴影部分所示,由z =x +2y ,得y =-12x +z 2,∴z 2是直线y =-12x +z 2在y 轴上的截距,根据图形知,当直线y =-12x +z 2过A 点时,z 2取得最小值.由⎩⎨⎧ x -2y =0,x +y -3=0,得x =2,y =1,即A (2,1),此时,z =4,∴z =x +y 的取值范围是[4,+∞).5.已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎨⎧ x +y -7≤0,x -y +3≥0,y ≥0.若圆心C∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为( )A .5B .29C .37D .49解析:选C 由已知得平面区域Ω为△MNP 内部及边界.∵圆C 与x 轴相切,∴b =1.显然当圆心C 位于直线y=1与x +y -7=0的交点(6,1)处时,a max =6.∴a 2+b 2的最大值为62+12=37.故选C.6.设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z 取得最大值时,2x +1y -2z 的最大值为( )A .0B .1C.94 D .3 解析:选B 由x 2-3xy +4y 2-z =0,得z =x 2-3xy +4y 2, ∴xy z =xy x 2-3xy +4y 2=1x y +4yx -3. 又x ,y ,z 为正实数,∴x y +4y x ≥4,即xy z ≤1,当且仅当x =2y 时取等号,此时z =2y 2.∴2x +1y -2z =22y +1y -22y2 =-⎝ ⎛⎭⎪⎫1y 2+2y =-⎝ ⎛⎭⎪⎫1y -12+1, 当1y =1,即y =1时,上式有最大值1.7.若x ,y 满足约束条件⎩⎨⎧ x -1≥0,x -y ≤0,x +y -4≤0,则y x 的最大值为________.解析:画出可行域如图阴影部分所示, ∵y x 表示过点(x ,y )与原点(0,0)的直线的斜率,∴点(x ,y )在点A 处时y x 最大.由⎩⎨⎧ x =1,x +y -4=0,得⎩⎨⎧ x =1,y =3.∴A (1,3).∴y x 的最大值为3.答案:38.设正数a ,使a 2+a -2>0成立,若t >0,则12log a t ________log a t +12(填“>”“≥”“≤”或“<”).解析:因为a 2+a -2>0,所以a <-2或a >1,又a >0,所以a >1,因为t >0,所以t +12≥ t ,所以log a t +12≥log a t =12log a t .答案:≤9.(2017·全国卷Ⅲ)若x ,y 满足约束条件⎩⎨⎧ x -y ≥0,x +y -2≤0,y ≥0,则z =3x -4y 的最小值为________.解析:作出约束条件表示的可行域如图中阴影部分所示,作出直线l :3x -4y =0,平移直线l ,当直线z =3x -4y 经过点A (1,1)时,z 取得最小值,最小值为3-4=-1.答案:-110.某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5 min ,生产一个骑兵需7 min ,生产一个伞兵需4 min ,已知总生产时间不超过10 h .若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)用每天生产的卫兵个数x 与骑兵个数y 表示每天的利润W (元).(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?解:(1)依题意每天生产的伞兵个数为100-x -y ,所以利润W =5x +6y +3(100-x -y )=2x +3y +300.(2)约束条件为:⎩⎨⎧ 5x +7y +4(100-x -y )≤600,100-x -y ≥0,x ∈N ,y ∈N ,整理得⎩⎨⎧ x +3y ≤200,x +y ≤100,x ∈N ,y ∈N ,目标函数为W =2x +3y +300,如图所示,作出可行域.初始直线l 0:2x +3y =0,平移初始直线经过点A 时,W 有最大值,由⎩⎨⎧x +3y =200,x +y =100,得⎩⎨⎧x =50,y =50.最优解为A (50,50),所以W max =550(元).故每天生产卫兵50个,骑兵50个,伞兵0个时利润最大,为550元.11.某外商到一开发区投资72万美元建起一座蔬菜加工厂,第一年各种经费12万美元,以后每年增加4万美元,每年销售蔬菜收入50万美元.设f (n )表示前n 年的纯利润总和.(注:f (n )=前n 年的总收入-前n 年的总支出-投资额)(1)从第几年开始获利?(2)若干年后,外商为开发新项目,有两种处理方案:①年平均利润最大时以48万美元出售该厂;②纯利润总和最大时,以16万美元出售该厂;问哪种方案最合算?为什么?解:由题意知,每年的经费是以12为首项,4为公差的等差数列,∴f (n )=-2n 2+40n -72.(1)获利就是要求f (n )>0,所以-2n 2+40n -72>0,解得2<n <18.由n ∈N 知从第三年开始获利.(2)①年平均利润=f (n )n =40-2⎝ ⎛⎭⎪⎫n +36n ≤16. 当且仅当n =6时取等号.故此方案共获利6×16+48=144(万美元),此时n =6.②f (n )=-2(n -10)2+128.当n =10时,f (n )max =128.故第②种方案共获利128+16=144(万美元),故比较两种方案,获利都是144万美元.但第①种方案只需6年,而第②种方案需10年,故选择第①种方案最合算.12.已知α,β是方程x 2+ax +2b =0的两根,且α∈[0,1],β∈[1,2],a ,b ∈R ,求b -3a -1的最大值和最小值. 解:设f (x )=x 2+ax +2b ,由题意f (x )在[0,1]和[1,2]上各有一个零点,∴⎩⎨⎧ f (0)≥0,f (1)≤0,f (2)≥0,即⎩⎨⎧ b ≥0,a+2b +1≤0,a +b +2≥0,建立平面直角坐标系aOb ,则上述不等式组表示的平面区域如图.由⎩⎨⎧ a +2b +1=0,a +b +2=0,解得⎩⎨⎧ a =-3,b =1,即C (-3,1).令k =b -3a -1,可以看成动点P (a ,b )与定点A (1,3)的连线的斜率.又B (-1,0),C (-3,1),则k AB =32,k AC =12,∴12≤b -3a -1≤32.故b -3a -1的最大值是32,最小值是12.。
1、(02京皖春1)不等式组⎩⎨⎧<-<-030122x x x 的解集是( )A .{x |-1<x <1}B .{x |0<x <3}C .{x |0<x <1}D .{x |-1<x <3}2、(01河南广东1)不等式31--x x >0的解集为( ) A .{x |x <1}B .{x |x >3}C .{x |x <1或x >3}D .{x |1<x <3}3、(02全国3)不等式(1+x )(1-|x |)>0的解集是( )A .{x |0≤x <1}B .{x |x <0且x ≠-1}C .{x |-1<x <1}D .{x |x <1且x ≠-1}4、(97全国14)不等式组⎪⎩⎪⎨⎧+->+->|22|330xx x x x 的解集是( )A .{x |0<x <2}B .{x |0<x <2.5}C .{x |0<x <6}D .{x |0<x <3}5、(95全国理16)不等式(31)82-x >3-2x 的解集是_____。
6、(02全国文5理4)在(0,2π)内,使sin x >cos x 成立的x 取值范围为( )A .(4π,2π)∪(π,45π) B .(4π,π) C .(4π,45π)D .(4π,π)∪(45π,23π)7、解不等式1|55|2<+-x x8、不等式022>++bx ax 的解集为}3121|{<<-x x ,求a , b 9、解不等式∣∣x +4∣-8∣>2解:由原不式式得∣x +4∣-8>2或∣x +4∣-8<-2∴∣x +4∣>10或∣x +4∣<6 ∴x >6或x <-14或-10<x <2 ∴不等式的解集:{x ∣x >6或x <-14或-10<x <2} 10、解不等式:∣x -1∣>2x 11、解不等式:∣x +3∣+∣2x -4∣>2 12、解不等式2931831>⋅+-+x x13、解关于x 的不等式0)1(2>---a a x x14、a 为何值时,不等式2)1()23(22+-++-x a x a a >0的解为一切实数?15、(06重庆文15)设0,1a a >≠,函数2()log (23)a f x x x =-+有最小值,则不等式log (1)0a x ->的解集为 。
16、(06重庆理15)设0,1a a >≠,函数2lg(23)()x x f x a -+=有最大值,则不等式()2log 570a x x -+>的解集为 。
17、已知不等式230{|1,}x x t x x m x R -+<<<∈的解集为(1)求t ,m 的值;(2)若函数4)(2++-=ax x x f 在区间(],1-∞上递增,解关于x 的不等式2log (32)0a mx x t -++-<.18、解关于x 的不等式2)1(--x x a >1(a ≠1)。
19、(1)设不等式x 2-2ax +a +2≤0的解集为M ,如果M ⊆[1,4],求实数a 的取值范围?20、(06安徽10)如果实数x y 、满足条件⎪⎩⎪⎨⎧≤++≥+≥+-010101y x y y x , 那么2x y -的最大值为( )A .2B .1C .2-D .3-21、(06湖南卷)已知1,10,220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩则22x y +的最小值是 .22、预算用2000元购买单件为50元的桌子和20元的椅子,希望使桌椅的总数尽可能的多,但椅子不少于桌子数,且不多于桌子数的1.5倍,问桌、椅各买多少才行?23、(06天津卷)某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x = 吨.24、有两个粮食经销商,在同一粮食生产基地购粮两次(两次的价格不同),一个每次购粮10000 kg ,另一个每次购粮10000元,试问哪一种购粮方式更经济?请写出你的解答过程及结论。
25、直线l 经过点()23,且与x 轴正半轴,y 轴正半轴分别交于A 、B 两点,求三角形AOB 的面积的最小值及此时直线l 的方程。
(O 为直角坐标系原点) 26、建造一个容积是83()m ,深为2()m 的长方形无盖水池,如果池底和池壁的造价分别是1202元/m 和802元/m ,求:水池的最低造价。
27、某房屋开发公司用128万元购得一块土地,欲建成不低于五层的楼房一幢,该楼每层的建筑面积为1000平方米,楼房的总建筑面积(即各层面积之和)的每平方米的平均建筑费用与楼层有关,若该楼建成x 层时,每平方米的平均建筑费用用)(x f 表示,且)()(m f n f =(1+20mn -)(其中n >m ,m 、n ∈N*),又知建成五层楼房时,每平方米的平均建筑费用为400元,为了使该楼每平方米的综合费用最省(综合费用是建筑费用与购地费用之和),公司应把该楼建成几层?28、已知定点M (6,4)和射线l y x x :=>40(),试在射线上求一点N ,使射线l ,直线MN 及x 轴的正半轴围成的三角形面积最小,并求此面积的最小值。
29、(06上海文14)如果0,0a b <>,那么,下列不等式中正确的是( ) (A )11a b< (B )a b -< (C )22a b < (D )||||a b > 30、(03京春文1)设a ,b ,c ,d ∈R ,且a >b ,c >d ,则下列结论中正确的是( )A .a +c >b +dB .a -c >b -dC .ac >bdD .cbd a >31、设0>a 且1≠a 比较)1(log 3+a a 与)1(log 2+a a 的大小32、比较11n n+-与2n 的大小(n N ∈)。
33、已知P x x Q x x =-+=++22111,,则P 、Q 的大小关系为( ) A . P Q >B . P Q <C . P Q ≥D . 不确定34、已知a b >>00,且a b ≠,比较a b a b 与a b b a 的大小。
35、求证:5273<+36、某地每年消耗木材约20万3m ,每3m 价240元,为了减少木材消耗,决定按%t 征收木材税,这样每年的木材消耗量减少t 25万3m ,为了既减少木材消耗又保证税金收入每年不少于90万元,则t 的范围是 ( )A .[1,3]B .[2,4]C .[3,5]D .[4,6]37、(06浙江理7)“a >b >0”是“ab <222b a +”的( )(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D)既不允分也不必要条件 38、(06陕西卷)设x ,y 为正数, 则(x +y )(14x y+)的最小值为( ) A . 6 B .9 C .12 D .15 39、(07上海理5)已知,x y R +∈,且41x y +=,则x y ⋅的最大值为_____ 40、求y =x sin +xsin 5的最小值, x ∈(0,π) 41、(01京春)若实数a 、b 满足a +b =2,则3a +3b 的最小值是( )A .18B .6C .23D .24342、(00全国7)若a >b >1,P =b a lg lg ⋅,Q =21(lg a +lg b ),R =lg (2b a +),则( )A .R <P <QB .P <Q <RC .Q <P <RD .P <R <Q43、甲、乙两人同时从A 地出发沿同一路线走到B 地,所用时间分别为t 1、t 2,甲有一半时间以速度m行走,另一半时间以速度n 行走(m ≠n );乙有一半路程以速度m 行走,另一半路程以速度n 行走,则下列结论成立的是 ( )A .t 1>t 2B .t 1=t 2C .t 1<t 2D .t 1、t 2的大小无法确定 44、(06陕西卷)已知函数)(x f =ax 2+2ax +4(a >0),若21x x < ,021=+x x , 则( )A .)(1x f <)(2x fB .)(1x f =)(2x fC .)(1x f >)(2x fD .)(1x f 与)(2x f 的大小不能确定45、(06上海卷)若关于x 的不等式x k )1(2+≤4k +4的解集是M ,则对任意实常数k ,总有( ) (A )2∈M ,0∈M ; (B )2∉M ,0∉M ; (C )2∈M ,0∉M ; (D )2∉M ,0∈M . 46、 (06重庆卷文)若,,0a b c >且222412a ab ac bc +++=,则a b c ++的最小值是 (A )23 (B )3 (C )2 (D )347、 (06重庆理)若a ,b ,c >0且a (a +b +c )+bc =4-23,则2a +b +c 的最小值为 (A )3-1 (B)3+1 (C) 23+2 (D) 23-248、某公司第一年产值增长率为p ,第二年的产值增长率为q ,这两年的年平均增长率为x ,那么x 与2qp +(p ≠Q )的关系是( ) A . 2q p x +< B .2q p x += C .2qp x +>D .与p 、q 的值有关49、(07山东理16)函数log (3)1(0,1)a y x a a =+->≠的图象恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,则12m n+的最小值为_______.50、已知0>a ,0>b ,且1222=+b a ,求21b a +的最大值 51、已知a b ,>0且ab a b ++=298,求:ab 的最大值。
52、已知a >2,b >3,求a b a b ++--123()()的最小值。
解答1、C 解析:原不等式等价于:⇒⎩⎨⎧<<<<-⇒⎩⎨⎧<-<30110)3(12x x x x x 0<x <1。
2、C 解析:由已知⇔>--031x x (x -1)(x -3)>0,∴x <1或x >3. 3、D 解法一:①x ≥0时,原不等式化为:(1+x )(1-x )>0,∴(x +1)(x -1)<0,∴⇒⎩⎨⎧≥<<-011x x 0≤x <1。