自动检测系统的构成、在控制系统的使用情况
- 格式:doc
- 大小:408.50 KB
- 文档页数:13
现代自动检测的发展现状与趋势所谓自动检测,是指由计算机进行控制对系统、设备和部件进行性能检测和故障诊断,是性能检测、连续监测、故障检测和故障定位的总称。
现代自动检测技术是计算机技术、微电子技术、信息论、控制论、测量技术、传感技术等学科发展的产物,是这些学科在解决系统、设备、部件性能检测和故障诊断的技术问题中相结合的产物。
凡是需要进行性能测试和故障诊断的系统、设备、部件,均可以采用自动检测技术,它既适用于电系统也适用于非电系统。
电子设备的自动检测与机械设备的自动检测在基本原理上是一样的,均采用计算机/微处理器作控制器通过测试软件完成对性能数据的采集、变换、处理、显示/告警等操作程序,而达到对系统性能的测试和故障诊断的目的。
现代的自动检测系统,通常包括控制器、激励信号源、测量仪器、开关系统、适配器、人机接口、检测程序几个部分。
现在自动检测技术在军/民两个方面都得到了广泛的应用。
在军事上,越来越多的武器装备配置了自动化和信息化设备,而设备中的电子装置的比例更是越来越高。
这些设备的可靠性至关重要,在战场上一旦出现问题,轻则贻误战机,重则带来毁灭性后果。
以现代军用飞机为例,航空电子设备的性能和质量已经成为作战效能的决定因素,自动检测应经成为确保;在民用领域,提高产品质量和确保生产安全始终是企业的两项基本工作。
在冶金、电力、石化、轻工、建材等连续生产的过程中,每时每刻需要检测各种工艺流程的工作状态,从而确保各种工艺参数和质量参数。
为此经常设置故障监测系统以对温度、压力、流量、转速、振动和噪声等多种参数进行长期动态监测,以便及时发现异状,加强故障防御,达到早期诊断的目的。
这样做可以避免突发事件,保证人员和机器的安全,提高经济利益。
即使设备发生故障,也可以从检测的数据中找出故障原因,缩短检修周期,提高检修质量。
为了确定设备维护周期和大修的时机,还要检测和处理各种有关的安全参数和能耗参数,集数据采集采集、系统辨识和专家系统为一体的自动检测技术能够很好的解决这些问题。
化工仪表及自动化知识要点第一章1化工自动化一般包括 自动检测系统、自动信号和联锁保护系统、自动操纵及自动开停车系统、自动控制系统。
2自动控制系统的基本组成1)被控对象 2)自动化装置:测量元件与变送器、自动控制器、执行器3自动控制系统方框图4自动控制系统的方框图与控制流程图的区别:方框图中的每一个方框都代表一个具体的装置。
方框与方框之间的连接线,只是代表方框之间的信号联系,并不代表方框之间的物料联系。
方框之间连接线的箭头也只是代表信号作用的方向,与工艺流程图上的物料线是不同的。
工艺流程图上的物料线是代表物料从一个设备进入另一个设备,而方框图上的线条及箭头方向有时并不与流体流向相一致。
5在自动控制系统将需要控制其工艺参数的生产设备或机器叫做被控对象,简称对象。
6生产过程中所要保持恒定的变量,称为被控变量。
7工艺上希望保持的被控变量数值,即给定值。
8具体实现控制作用的变量叫做操纵变量。
9自动控制系统是具有被控变量负反馈的闭环系统。
10与自动检测、自动操纵等开环系统比较,最本质的区别,就在于自动控制系统有负反馈,开环系统中,被控(工艺)变量是不反馈到输入端的。
11仪表位号是由字母代号组合和阿拉伯数字编号两部分组成。
第一位字母表示被测变量,后继字母表示仪表的功能阿拉伯数字编号写在圆圈的下半部,其第一位数字表示工段号,后续数字(二位或三位数字)表示仪表序号。
12将控制系统按照工艺过程需要控制的被控变量的给定值是否变化和如何变化来分类,这样可将自动控制系统分为三类,即定值控制系统、随动控制系统和程序控制系统。
13静态——被控变量不随时间而变化的平衡状态;动态——被控变量随时间变化的不平衡状态 。
14控制系统的过渡过程 系统由一个平衡状态过渡到另一个平衡状态的过程。
15采用阶跃干扰的优点:(1) 这种形式的干扰比较突然、危险,且对被控变量的影响也最大。
如果一个控制系统能够有效地克服这种类型的干扰,那么一定能很好地克服比较缓和的干扰。
概述 化工自动化的基本概念一、化工自动化概述所谓化工自动化就是用自动化装置(自动化仪表、自动装置、计算机等)来代替人,对化工生产过程进行控制和管理的措施(办法)。
如图1、图2所示。
图1 人工对贮罐液位进行控制 图2 自动化装置对贮罐液位进行控制化工自动化的基本内容概括起来大致有以下几个方面:图3 化工自动化的基本内容 1、自动检测系统在化工生产过程中,人们要想知道生产过程状况进行的如何,是通过了解反映生产过程状况的某些物理量的大小来实现的。
通常把这些物理量称为过程变量。
化工生产中常常通过温度、压力、流量、液位、物料、成份等过程变量的大小来反映生产过程状况的好坏。
自动检测系统就是对各种生产过程变量自动地进行检测,并且把检测的结果随时指示或记录下来的自动化系统。
2、自动操纵系统在化工生产过程中,往往会有一些周期循环重复的操作。
这种操作单调乏味容易使人疲劳。
例如:用煤造气的生产过程中,有吹风、上吹、下吹、回收这四个步骤组成一组单调的、周期重复的操作。
为了摆脱这种单调的重复操作,人们设置了由自动机(顺序控制器)和执行器组成的自动操纵系统去自动地完成这组操作。
这种能够按照人们事先规定好的操作顺序,自动地进行单调、周期性重复操作的自动化系统称为自动操纵系统(也称顺序控制系统)。
3、自动控制系统化工生产过程是连续的生产过程,各种过程变量都是连续变化的模拟量。
在化工生产中,常常要求通过操作使得某些表征化工生产过程状况的、重要的过程变量,相对地稳定在生产工艺要求的数值上。
例如:在精馏塔的操作中,提馏段的温度是否稳定在某个量值上,将直接影响到精馏塔工作状况的好坏和产品质量的优劣,通常设置一个自动控制系统对提馏段温度进行自动操作。
这种操纵某种物料量或能量的大小,使得某个过程变量保持在生产工艺要求的给定值上的自动化系统,叫自动控制系统。
4、自动报警系统、自动联锁保护系统在化工生产过程中常常会遇到这样的情况,当某个过程变量的数值超过或低于一定的限制时,就会影响生产的正常进行,甚至会造成种种事故。
电气自动化毕业论文前言电气自动化是高等院校开设的一门工科专业,主要学习电子技术、电工技术、信息控制、电气测量、计算机技术等方面较宽广的工程技术基础和专业知识。
本专业主要特点是强电弱电结合、电工技术与电子技术相结合、软件与硬件结合、元件与系统结合,学生受到电工电子、信息控制及计算机技术方面的基本训练,具有解决电气工程与自动化领域技术问题的基本能力。
该专业是强电和弱电、计算机技术与电气控制技术交叉渗透的综合型专业学科。
电气工程及其自动化专业培养出的毕业生,以理论基础扎实、专业知识面宽广、实践动手能力强、适应性强在国内有较好的声誉。
主干课程电路原理、电子技术基础、计算机技术(语言、软件基础、硬件基础、单片机)、信号与系统、电磁场理论与应用、自动控制原理、电机学、电力电子技术、电气测量、电力拖动与控制等。
就业方向适合到国民经济各部门从事与电气工程有关的系统运行、自动控制、电力电子技术、信息处理、试验分析、研制开发等方面的工作,也能在科研院所、高等学校从事电气信息与自动化技术相关的研究开发、技术引进与改造及教学工作。
一、自动控制的基本概念在现代科学技术的许多领域中,自动控制技术得到了广泛的应用。
所谓自动控制,是指在无人直接参与的情况下,利用控制装置操纵受控对象,使被控量等于给定值或给定信号变化规律去变化的过程。
如图1-1所示。
控制装置和受控对象为物理装置,而给定值和被控量均为一定形式的物理量。
自动控制系统由控制装置和受控对象构成。
对自动控制系统的性能进行分析和设计则是自动控制原理的主要任务。
二、自动控制系统的基本构成及控制方式1. 开环控制控制装置与受控对象之间只有顺向作用而无反向联系时,称为开环控制。
开环控制的特点是系统结构和控制过程很简单,但抗扰能力差、控制精度不高,故一般只能用于对控制性能要求较低的场合。
2. 闭环控制控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对控制过程的影响,这种控制称为闭环控制,相应的控制系统称为闭环控制系统。
自动化检测系统及其自动化检测方法一、引言自动化检测系统是一种基于计算机技术和自动化控制原理的检测设备,可以实现对各种产品的自动化检测。
本文将介绍自动化检测系统的标准格式,包括系统的组成、工作原理以及自动化检测方法的详细描述。
二、系统组成自动化检测系统由以下几个主要组成部分构成:1. 检测设备:包括传感器、仪器仪表等,用于获取被测对象的数据。
2. 控制系统:由计算机和控制器组成,用于控制检测设备的工作状态和数据采集。
3. 数据处理系统:用于对采集到的数据进行处理和分析,包括数据存储、数据展示和数据分析等功能。
4. 人机交互界面:提供给操作员与系统进行交互的界面,包括显示屏、键盘、鼠标等。
三、工作原理自动化检测系统的工作原理如下:1. 初始化:系统启动时进行初始化,包括设备校准、参数设置等。
2. 数据采集:系统通过传感器等设备对被测对象进行数据采集,将采集到的数据发送给控制系统。
3. 控制与调节:控制系统根据预设的检测要求对检测设备进行控制和调节,确保检测过程的准确性和稳定性。
4. 数据处理与分析:数据处理系统对采集到的数据进行处理和分析,包括数据的存储、展示和分析等功能。
5. 结果输出:系统将检测结果通过人机交互界面展示给操作员,并可以通过打印机、网络等方式进行结果输出。
四、自动化检测方法自动化检测系统可以应用多种检测方法,根据不同的被测对象和检测要求选择合适的方法。
以下是几种常见的自动化检测方法:1. 视觉检测:利用摄像头和图像处理算法对被测对象进行图像分析,实现对外观、尺寸等特征的检测。
2. 声学检测:利用麦克风和声学信号处理算法对被测对象产生的声音进行分析,实现对声音特征的检测。
3. 温度检测:利用温度传感器对被测对象的温度进行实时监测和检测。
4. 振动检测:利用加速度传感器等设备对被测对象的振动特征进行检测和分析。
5. 电气检测:利用电流、电压等传感器对被测对象的电气特性进行检测,如电阻、电容、电感等。
1.自动控制系统主要有哪些环节组成各环节的作用是什么a测量变送器:测量被控变量,并将其转化为标准,统一的输出信号。
b控制器:接收变送器送来的信号,与希望保持的给定值相比较得出偏差,并按某种运算规律算出结果,然后将此结果用标准,统一的信号发送出去。
c执行器:自动地根据控制器送来的信号值来改变阀门的开启度。
d被控对象:控制装备所控制的生产设备。
2.被控变量:需要控制器工艺参数的设备或装置;被控变量:工艺上希望保持稳定的变量;操作变量:克服其他干扰对被控变量的影响,实现控制作用的变量。
给定值:工艺上希望保持的被控变量的数值;干扰变量:造成被控变量波动的变量。
3.自动控制系统按信号的传递路径分:闭环控制系统,开环~(控制系统的输出端与输入端不存在反馈回路,输出量对系统的控制作用不发生影响的系统),复合~4.按给定值的不同分:定值控制系统,随动控制系统(随机变化),程序控制系统(给定值按预先设定好的规律变化)5.自动控制系统的基本要求:稳定性:保证控制系统正常工作的必要条件快速性:反应系统在控制过程中的性能准确性:衡量系统稳态精度的指标,反映了动态过程后期的性能。
提高动态过程的快速性,可能会引起系统的剧烈振荡;改善系统的平稳性,控制进程又可能很迟缓,甚至使系统稳态精度变差。
6.控制系统的静态:被控变量不随时间而变化的平衡状态。
7.自动系统的控过渡过程及其形式控制系统在动态过程中,被控变量从一个稳态到达另一个稳态随时间变化的过程称为~形式:非周期衰减过程,衰减振荡过程,等幅振荡过程,发散振荡过程8.衰减振荡过渡过程的性能指标衰减比:表振荡过程中的衰减程度,衡量过渡过程稳定性的动态指标。
(以新稳态值为标准计算)最大偏差:被控变量偏离给定值的最大值余差:系统的最终稳态误差,终了时,被控变量达到的新稳态值与设定值之差。
调节时间:从过渡过程开始到结束所需的时间振荡周期:曲线从第一个波峰到同一方向第二个波峰之间的时间9.对象的数学模型:用数学的方法来描述对象输入量与输出量之间的关系,这种对象特性的数学描述叫~动态数学模型:表示输出变量与输入变量之间随时间而变化的动态关系的数字描述10.描述对象特性的参数放大系数K:数值上等于对象重新稳定后的输出变化量与输入变化量之比。
太阳能光电工程学院《材料加工设备概论》课程设计报告书题目:自动检测系统的构成、在控制系统的使用情况姓名:邵奎专业:太阳能光伏材料加工与应用技术班级:助考(1)班准考证号:设计成绩:指导教师:刘小梅摘要介绍了自动检测技术的发展现状及其在性能检测和故障诊断方面应用的必要性和良好前景;讨论了现代自动检测系统组建时,用到的关键技术;详细论述了基于PC的虚拟仪器技术的特点,软、硬件的构成和设计时关键技术分析。
提出了目前在虚拟仪器系统中较为常用的几种总线方式和应用特点。
关键词:自动检测系统;故障诊断;关键技术目录绪言 (3)1.引言 (3)2.自动检测系统的基本原理 (3)1.控制器 (4)2 . 激励信号源 (5)3. 测量器 (6)4.开关系统 (7)5.适配器 (7)6.检测程序 (7)一、程控接口技术 (8)虚拟仪器技术 (8)三.专家系统 (8)5结束语. (9)参考文献 (9)绪言所谓自动检测,是指由计算机进行控制对系统、设备和部件进行性能检测和故障诊断,是性能检测、连续监测、故障检测和故障定位的总称。
现代自动检测技术是计算机技术、微电子技术、信息论、控制论、测量技术、传感技术等学科发展的产物,是这些学科在解决系统、设备、部件性能检测和故障诊断的技术问题中相结合的产物。
凡是需要进行性能测试和故障诊断的系统、设备、部件,均可以采用自动检测技术,它既适用于电系统也适用于非电系统。
电子设备的自动检测与机械设备的自动检测在基本原理上是一样的,均采用计算机/微处理器作控制器通过测试软件完成对性能数据的采集、变换、处理、显示/告警等操作程序,而达到对系统性能的测试和故障诊断的目的。
自动检测系统(ATS)是一个不断发展的概念,随着各种高新技术在检测领域的运用,它不断被赋予各种新的内容和组织形式。
因此,以现代电子设备的自动检测系统组成原理框图,如图1所示,说明当前自动检测系统的基本组成。
图1自动检测系统的组成图中表明,当前的自动检测系统,通常包括以下几个部分。
1、控制器控制器是自动检测系统的核心,它由计算机构成。
其功能是管理检测周期,控制数据流向,接收检测结果,进行数据处理,检查读数是否在误差范围内,进行故障诊断,并将检测结果送到显示器或打印机。
控制器是在检测程序的作用下,对检测周期内的每一步骤进行控制,从而完成上述功能的。
2、激励信号源激励信号源是主动式检测系统必不可少的组成部分.其功能是向被测单元(UUT)提供检测所需的激励使号。
根据各种UUT的不同要求,激励装置的形式也不同,如交直流电源、函数发生器、D/A变换器、频率合成器、微波源等。
3、测量仪器测量仪器的功能是检测UUT的输出信号.根据检测的不同要求,测量仪器的形式也不同,如数字式多用表,频率计,A/D变换器及其它类型的检测仪器等。
4、开关系统开关系统的功能是控制UUT和自动检测系统中有关部件间的信号通道。
即控制激励信号输入UUT,和UUT的被测信号输往测量装置的信号通道。
5、适配器适配器的功能是实现UUT与自动检测系统之间的信号连接。
6、人机接口人机接口的功能是实现操作员和控制器的双向通信。
常见的形式为,操作员用键盘或开关向控制器输人信息,控制器将检测结果及操作提示等有关信息送到显示器显示。
显示器的类型有阴极射线管(CRT)显示器、液晶(LCD)显示器、发光二级管(LED)显示器或灯光显示装置等。
当需要打印检测结果时,人机接口内应配备打印机。
7、检测程序自动检测系统是在检测程序的控制下进行性能检测和故障诊断的。
检测程序完成人机交互、仪器管理和驱动、检测流程控制、检测结果的分析处理和输出显示、故障诊断等,是自动检测系统的重要组成部分。
计算机技术的发展为自动检测系统(ATS)的组建提供了多种可能,典型的自动检测系统主要由自动化检测设备(ATE),检测程序集(TPS)和检测环境三部分组成。
ATE由检测和测量仪器、主计算机、矩阵开关、通讯总线、接收器和系统软件组成。
典型自动检测系统的组建如图2所示。
主计算机控制检测和测量仪器以及TPS的运行。
系统软件(如操作系统、编译器及实验运行程序等)控制检测工作站的工作状态,对TPS进行开发并执行。
TPS由检测、诊断程序,连接被测单元(UUT)和ATE的适配器及操作手册等组成。
检测环境包括ATS 的结构描述、编程和检测规范语言、编译器、开发工具以及描述对象设计需求、检测策略信息的标准格式等。
图2 典型ATS结构概念示意3.1 现代自动检测系统组建的关键技术由于现代微电子技术和计算机技术的飞速发展,检测技术与计算机深层次的结合引起了检测仪器领域的革命,全新的仪器结构概念和检测设备组建方式不断更新。
现代检测设备组建的关键技术主要集中在以下几点。
一、程控接口技术如何实现检测系统与被测设备间的自动连接,是实现检测过程自动化的关键。
用计算机程序控制的接口单元(PIU)是解决这一问题的重要手段。
这种程控接口(PIU)包括一组通用的连接点,并配有所需的缓冲器和多路分配器,用于完成三项基本任务。
1、发生、调理(如衰减、缓冲、变换等)模拟与数字激励,并将激励引导到相应的被测装置;2、把从相应的被测装置引线来的测量数据进行调理并引导到自动检测系统;3、将程控负载加到相应的被测装置引线上。
简言之,程控接口在程序控制下,能够把任何检测系统功能引导到任何被测设备,并能完成检测。
二、虚拟仪器技术80年代末期,美国NI(National Instrument)公司提出了虚拟仪器的概念:在一定的硬件平台下,利用软件在屏幕上生成虚拟面板,在软件导引下进行信号采集、运算、分析和处理,实现传统仪器的各种功能。
虚拟仪器是计算机技术同仪器技术深层次结合产生的全新概念的仪器,是对传统仪器概念的重大突破。
传统仪器的主要功能模块都是以硬件(或固化的软件)的形式存在的,而虚拟仪器是具有仪器功能的软硬件组合体。
虚拟仪器系统的功能可根据软件模块的功能及其不同组合而灵活配置,因而得以实现并扩充传统仪器的功能。
三、专家系统自动检测技术与专家系统的结合也是自动检测领域的一个重要发展趋势。
专家系统作为人工智能的重要组成部分,于五十年代产生,到八十年代形成人工智能这一完整的学科体系。
美国在八十年代中期就率先将专家系统引入航空机载设备的检测,效果良好。
专家系统与典型自动检测设备的结合,将大大提高故障分析判断能力,提高设备维修保障效率。
四、现场故障检测技术现代机载设备的发展趋势是微处理器和大规模集成电路的应用日益普遍,现场故障检测也就越加显得重要。
为了便于现场维修,正在开发、研究诸如特征分析、逻辑分析、电路模拟、内在诊断等现场故障检测技术。
例如,采用“特征分析技术”,在电路图的有关节点,标明“特征”,由设备本身产生激励,用一种简单的、无源的检测仪器—特征分析仪,就能迅速地在现场找出故障,定位到元器件,从而大大地简化了维修现场的故障诊断,有效地提高了设备的战备率。
五、开放、可互操作的ATS实现技术所谓ATS的可互操作性是指两个以上的系统或部件可以直接、有效地共用数据和信息。
就一般的ATS结构来说,其互操作性主要体现在可以共用TPS和ATE的资源,可以共用一个底层的诊断子系统,可以支持多种运行环境和语言。
所谓系统的开放性是指:其功能部件采用广泛使用的标准或协议,从而可在不同的系统中使用,可以与其它系统中的部件互操作,软件可以方便的移植;其接口也符合广泛使用的标准、规范或协议,或具有完全明确的定义,从而通过插入新的功能部件,即可增加、扩展和提高系统的性能。
1、PC总线插卡型虚拟仪器基于PC总线插卡型虚拟仪器它借助于插入计算机内的数据采集卡与专用的软件相结合,完成检测任务,充分利用了计算机的总线、机箱、电源及软件。
典型插卡型虚拟仪器由传感器、信号调理电路、数据采集卡、计算机四部分组成。
多层电路板、可编程仪器放大器、即插即用、系统定时控制器、多数据采集板、实时系统集成总线、具有双缓冲区的高速数据采集、数据高速传送中断、DMA等技术应用,使数据采集卡能保证很高的准确度与可靠图3 虚拟仪器系统构成框图性。
2、GPIB总线方式GPIB技术是IEEE488标准的虚拟仪器早期的发展阶段。
它的出现使电子测量由独立的单台手工操作向大规模自动检测系统发展。
典型的GPIB系统由一台PC机、一块GPIB接口卡和若干台GPIB形式的仪器通过GPIB电缆连接而成。
在标准情况下,一块GPIB接口卡可带多达14台的仪器,电缆长度可达20米。
GPIB技术可用计算机实现对仪器的操作和控制,替代传统的人工操作方式,可以很方便地把多台仪器组合起来,形成大的自动检测系统。
GPIB测量系统的结构和命令简单,造价较低,主要应用于台式仪器市场。
适用于精确度要求高,但对计算机速率要求不高的场合。
3、VXI总线VXI总线是高速计算机总线VME在虚拟仪器领域的扩展,它具有稳定的电源、强有力的冷却能力和严格的RFI/EMI屏蔽。
由于它的标准开放,且具有结构紧凑、数据吞吐能力强、定时和同步精确、模块可重复利用、众多仪器厂家支持的优点,很快得到广泛的应用。
其适合于组建大、中规模自动检测系统以及对速度、精度要求高的场合。
然而,组建VXI总线要求有机箱、管理器及嵌入式控制器,造价比较高。
二、虚拟仪器系统的软件通用计算机软件和仪器软件的有机组合,构成了虚拟仪器的基本软件框架,该软件框架主要包括以下三部分。
1、总线接口软件总线接口软件驻留在计算机系统之中执行总线的特殊功能,是实现虚拟仪器功能的最基础软件,一般要求该软件还必须与其它仪器系统(GPIB、RS—232等)的软件结构兼容,以便于系统集成。
它处于软件框架的最底层。
2、仪器驱动软件仪器驱动软件处于软件框架的中间层,完成对某一特定仪器的控制与通讯,它可作为用户程序的一部分。
每个仪器模块均有自己的仪器驱动程序。
仪器驱动程序的实质是为用户提供用于仪器操作的较抽象的操作函数集。
对于应用程序来说,它对仪器的操作是通过仪器驱动程序来实现的;仪器驱动程序对于仪器的操作与管理,又是通过输入/输出(I/O)软件所提供的统一基础与格式的函数库(V ASA)调用实现的。
3、应用软件开发环境应用软件开发环境位于软件框架的最顶层,它将计算机的数据分析和显示能力与仪器驱动器融合在一起,为用户开发虚拟仪器提供了必要的软件工具和环境。
目前,虚拟仪器系统应用软件开发环境主要包括两种:一种是基于传统的文本语言式平台,主要是NI公司的LabWindows/CVI和微软公司的VC++、Visual Basic等;一种是基于图形化工程环境的平台,如HP公司的HP VEE、NI公司的LabVIEW等。
11.结束语未来测试系统的发展趋势,在军用领域,就是采用开放的商业标准,大幅度减少测试系统软、硬件的开发、升级的费用,实现自动测试系统的互操作,满足武器维护的灵活性,实现各军种间、不同维护级别间自动测试系统的通用,最大限度地发挥测试系统的能力。