激光与材料的相互作用
- 格式:wps
- 大小:116.00 KB
- 文档页数:4
激光加工的原理特点及应用一、激光加工的原理激光加工是一种利用激光束对材料进行加工的方法。
它使用高能量密度的激光束对材料表面进行加热或熔化,从而实现切割、焊接、打孔等加工过程。
激光加工的原理主要包括以下几个方面:1.激光的产生:激光是由激光器生成的一束高度聚焦的光束。
激光器通过受激辐射的原子或分子发出具有特定波长和方向性的光,形成激光束。
2.激光的聚焦:激光束经过透镜或反射镜的作用,可以将光束聚焦到小尺寸的区域。
聚焦后的激光束具有高能量密度,可使材料表面产生高温。
3.激光与材料的相互作用:激光束照射到材料表面时,光能会被材料吸收、反射或透射。
当光能被吸收时,材料会发生热量的积累,引起温度升高。
4.材料的热效应:当材料受到高温的作用时,可能会发生熔化、汽化、气化或蒸发等现象。
材料的热效应决定了激光加工的效果。
二、激光加工的特点激光加工具有以下几个特点,使其在许多领域得到了广泛应用:1.高能量密度:激光束具有高度聚焦的特性,能够将高能量集中在很小的区域内。
因此,激光加工可以在微观尺度上进行精确加工,实现高精度的加工效果。
2.无接触加工:激光加工是一种非接触加工方法,即激光束不需要直接接触材料表面,避免了材料污染和机械损伤的可能性。
3.热影响区小:激光加工主要通过瞬时高温作用于材料表面,对材料的热影响区域较小,减少了加工过程中的热变形和残余应力。
4.处理速度快:激光加工具有高加工速度的特点,可以在短时间内完成大量的加工任务,提高了生产效率。
5.可加工多种材料:激光加工适用于各种硬度和脆性的材料,包括金属、非金属、塑料等。
不同材料对激光的吸收和反射特性不同,因此可以选择不同类型的激光器进行加工。
三、激光加工的应用激光加工在许多应用领域都得到了广泛的应用,以下列举了几个常见的应用领域:1.制造业:激光切割、激光焊接和激光打孔是制造业中常用的激光加工方法。
激光加工可以对金属板材、管材、零件等进行精确加工,提高产品的质量和生产效率。
激光频率与材质之间并没有直接的关系,激光的频率主要是由产生激光的工作物质(如染料、气体、固体激光器中的晶体或光纤激光器中的掺杂光纤)以及电子在其能级间跃迁时释放的能量决定的。
这个能量按照普朗克关系对应于特定的光子频率,也就是激光的颜色或者说波长。
然而,在材料加工应用中,不同频率(波长)的激光与被加工材料的相互作用效果是密切相关的:
- 吸收特性:不同材料对不同激光波长的吸收率不同。
例如,某些材料可能对红外激光有较高的吸收率,而对紫外激光则几乎不吸收,因此选择适当的激光频率对于高效地加热和熔化材料至关重要。
- 非线性光学效应:在高功率激光作用下,某些材料可能出现非线性光学响应,这些响应的程度可能依赖于激光的频率。
- 激光打标/切割/焊接:在激光打标机中,虽然打标频率是指单位时间内激光脉冲次数,但所使用的激光器产生的激光波长(即频率的倒数)会影响打标的效果,比如深浅、边缘质量等,因为不同波长的激光与材料作用的热效应、机械效应及化学反应速率不同。
综上所述,虽然激光的频率本质上不是由加工材料决定的,但在实际应用中,选择合适的激光频率会直接影响到其与目标材质相互作用的效果。
激光与材料表面相互作用过程分析激光技术作为一种高能量、高密度、高单色性的光源,广泛应用于各个领域,包括材料加工、医学、通信等。
在材料加工领域,激光与材料表面的相互作用过程具有重要意义。
深入分析激光与材料表面相互作用过程,对于提高材料加工效率和质量具有重要意义。
激光与材料表面相互作用过程可以分为三个主要阶段:吸收阶段、热传导阶段和物质损失阶段。
在吸收阶段,激光能量被材料表面吸收,导致材料表面温度升高。
激光的选择性吸收特性使得激光能够更加有效地转化为热能。
材料的吸收率与激光波长、材料性质以及表面状态等因素有关。
吸收阶段的研究对于确定激光处理的条件和参数非常关键。
在热传导阶段,经过吸收的能量将沿着材料表面传播。
热传导的速度与材料的热导率密切相关。
高热导率的材料能够更快地将热量传导到材料内部,减少激光热效应的范围。
还有一些材料由于其较低的热导率,可以实现局部加热和快速冷却,从而形成一些特殊的表面形貌,如激光诱导断裂等。
在物质损失阶段,高温和高能量的激光作用下,材料表面会出现一系列改性的现象,如脱层、气泡、熔化、汽化等。
这些现象与材料的物理性质、激光参数和作用时间密切相关。
理解物质损失机制可以帮助我们更好地控制材料的加工质量,避免不必要的损失。
除了以上三个主要阶段,还有一些其他因素会影响激光与材料表面相互作用过程,比如激光的聚焦方式、脉冲能量和频率以及材料的粗糙度等。
这些因素在激光加工过程中起到重要的作用,对于加工效率和质量的控制至关重要。
值得注意的是,激光与材料表面相互作用过程也存在一些潜在的挑战和问题。
一方面,激光加工可能导致材料的畸变、裂纹和残留应力等问题,需要通过优化激光参数和加工条件来解决;另一方面,激光加工过程中产生的废气和废水可能对环境造成污染,需要采取相应的措施进行处理和处理,确保激光加工的可持续性和环境友好性。
总而言之,激光与材料表面相互作用过程是一个复杂且多变的过程。
深入分析这个过程对于提高材料加工效率和质量至关重要。
激光与材料相互作用物理学
激光与材料相互作用物理学是研究激光与物质相互作用的学科,其中包括激光与材料
的光学、光谱学、热力学、动力学等方面的问题。
激光是一种极具高度的集中性和单色性的光源,其能量密度超过了传统的光源,因此
可以产生非常强的光束,对物质产生显著的影响。
在材料科学中,利用激光进行加工、制备和探测已成为一种热门的研究方向。
激光在
材料中的作用主要包括光学过程和非光学过程。
光学过程是指激光与材料的光学性质相互作用的过程。
这种相互作用通常涉及到材料
对激光的吸收、散射和反射等现象。
根据材料对激光吸收的不同波长,可以选择不同波长
的激光进行操作。
此外,激光还可以通过能量传递的方式作用于材料,达到加热或组分转
移的目的。
光学过程的特点是能够实现高精度加工,制备高性能材料。
在激光与材料相互作用中的一些基本问题包括激光与材料的能量传递过程、激光对材
料的光致化学反应、激光与材料的相转变过程等。
激光与材料相互作用物理学的研究已在工业、医学、能源等领域得到广泛应用。
例如,激光制造已成为高精度制造和精密控制技术的典范,激光检测已经在医学和环境保护上得
到广泛应用,激光在能源中的应用也日渐增多,包括太阳能、激光动力学、激光核聚变等。
总之,激光与材料相互作用的物理学研究对于推动材料科学和现代工业的发展具有重
要的意义。
激光的成型技术原理和应用1. 引言激光技术是一种利用激光器发射的激光束进行物质加工和制造的先进技术。
这种技术具有高精度、高效率和非接触性的特点,广泛应用于多个领域,例如工业加工、医疗、通信等。
本文将介绍激光的成型技术原理和应用。
2. 激光成型技术原理激光成型技术是一种通过控制激光束对材料进行加热和熔化,从而实现材料形状的变化的技术。
以下是激光成型技术的原理:•激光产生:激光是通过激光器产生的。
激光器中的活性介质受到能量激发后,会发射出一束具有高度一致性和高度定向性的光束。
•激光与材料的相互作用:激光束照射到材料表面时,会与材料相互作用。
激光的能量会被吸收或散射,使材料受热并熔化或蒸发。
•激光控制和移动:激光束通过透镜或反射镜进行聚焦和控制,使激光能量集中在材料的特定区域。
同时,激光束可以通过机械系统进行移动,以实现对材料的精确成型。
3. 激光成型技术应用激光成型技术在多个领域具有广泛的应用。
以下是一些常见的应用领域:3.1 工业加工激光成型技术在工业加工中起到了关键作用。
它可以用于切割、雕刻、打孔和焊接等工艺。
由于激光的高能量密度和精确控制能力,它可以对各种材料进行高精度加工,例如金属、塑料和陶瓷等。
3.2 医疗在医疗领域,激光成型技术被广泛用于激光手术和激光治疗。
激光手术利用激光束的高能量照射来切割、凝固或蒸发组织,用于眼科手术、皮肤手术和晶状体摘除等。
激光治疗则利用激光的局部加热作用来破坏异常组织,用于癌症治疗和皮肤疾病治疗等。
3.3 通信激光成型技术在通信领域起到了重要的作用。
激光器发射的激光束可以传输数据信号,用于光纤通信和无线通信中的光传输。
激光的高速、高能量传输能力使其成为了当前通信技术中的重要组成部分。
3.4 其他领域的应用除了工业加工、医疗和通信,激光成型技术还在其他领域有着各种应用。
例如,激光打印技术用于激光打印机和激光复印机中,激光雷达用于地形测绘和无人驾驶汽车等。
4. 总结激光成型技术利用激光器产生的激光束对材料进行加热和熔化,实现材料形状的变化。
激光光谱与物质相互作用机理分析激光光谱技术是一种非侵入性的检测技术,可以通过分析物体的光谱信息来得到其化学组成和结构信息。
该技术在石油勘探、环境监测、食品安全等领域得到广泛应用。
在激光光谱技术中,物质与激光相互作用是关键步骤之一,本文将对激光与物质相互作用机理进行分析。
1. 激光与分子相互作用机理激光与物质相互作用的机制可以从分子层面进行解析。
当激光射入物质中时,分子的原子核和电子将发生振动和旋转等运动,产生光谱信号。
分子的这些运动受到分子内部力的驱动,也受到外部光辐射的影响。
在外部光辐射的作用下,分子的振动和旋转运动会发生共振增强,产生明显的光谱信号。
这种现象被称为拉曼散射。
2. 激光与晶体相互作用机理激光与晶体的相互作用机制也可以从内部结构出发进行分析。
晶体是由多个原子或分子构成的超大分子结构,在激光射入晶体后,晶体结构会发生物理或化学变化,在晶体体系发生的一系列弹性和非弹性变形过程中,分别产生相应的光谱信号。
这些变形过程通常与晶体中原子之间的键合有关,如振动、旋转、弯曲、伸缩、双键和三键的伸缩等运动。
这些运动将导致晶体结构的扭转或增强,从而产生明显的光谱信号。
这种现象被称为拉曼光谱。
3. 激光与纳米材料相互作用机理纳米材料是指粒径在1-100纳米范围内的材料结构,这种结构相比一般的材料结构更加复杂。
在激光与纳米材料的相互作用中,一般会出现材料结构的表面增强拉曼光谱现象。
这是由于纳米材料的表面存在很多缺陷和缺陷位点,这些位点会产生强烈的拉曼光谱信号。
表面增强拉曼光谱技术可以有效提高纳米材料的检测灵敏度,同时也能够了解其表面结构和反应特性等信息。
综上所述,激光光谱技术在与物质相互作用中,可以通过分析分子、晶体和纳米材料的结构来获得物质的化学、结构等信息。
该技术的应用范围广阔,可用于石油勘探、食品安全、环境监测等领域的实时检测和定量分析。
此外,在冶金、生物医药等新兴领域也有广泛的应用前景。
激光加工的基本工艺原理激光加工是利用高能量密度的激光束对材料进行加工的一种先进的加工技术。
它具有加工精度高、加工速度快、加工质量好、灵活性强等特点,被广泛应用于工业制造、航空航天、电子、医疗等领域。
激光加工的基本原理是利用激光器发射出的单色、单向、高能量密度的激光束,通过对激光束的聚焦、导引和控制,将其集中在工件表面上的一个小区域上。
激光束与工件表面的相互作用产生多种物理和化学效应,从而实现对工件进行切割、焊接、钻孔等加工操作。
激光加工的基本工艺原理包括激光与材料的相互作用、激光的传输与聚焦、激光加热和激光驱动。
激光与材料相互作用是激光加工的基础。
激光束通过与材料相互作用,能够迅速提升材料的温度,引起材料的热膨胀和熔化。
激光能量在材料中的传播方式可以分为吸收、散射和透射三种形式。
材料的光学特性、热导率和熔点等参数会对激光加工的质量和效果产生重要影响。
激光的传输与聚焦是激光加工中的关键环节。
激光束从激光器发射出来后,需要通过光学系统进行传输和聚焦。
激光束的传输包括光纤传输和光路传输两种方式。
光纤传输具有高效率、低损耗和方便灵活等优点,适用于长距离传输。
而光路传输适用于短距离传输和精密加工,通常需要利用透镜进行光线的收敛和聚焦。
激光加热是激光加工的核心过程。
激光束集中在材料表面上后,会使材料被加热到高温状态。
激光加工的效果主要依赖于材料的吸收系数、光照时间和激光能量密度等参数。
如果激光能量密度过高,可能引起材料的焦化和蒸发;而如果激光能量密度过低,则无法达到所需的加工效果。
激光加热时的温度分布也会影响加工的精度和质量,因此必须进行合理的温度控制。
激光加工的驱动方式包括脉冲激光和连续激光两种形式。
脉冲激光的工作时间很短,能量较高,适用于对材料进行切割和打孔等加工;而连续激光的工作时间较长,能量较低,适用于对材料进行焊接和表面处理等加工。
不同的驱动方式可以根据不同的加工要求进行选择和调整,以达到最优的加工效果。
激光与材料的相互作用原理激光与材料的相互作用原理,这听上去好像个高深莫测的课题,但其实啊,它就像是我们生活中那些琐碎的小事,简单却又妙趣横生。
想象一下,你在阳光下用放大镜聚焦光线,结果一不小心就烧着了纸。
这就是光的能量,哇,激光也是一样,只不过它的能量可大得多。
激光就像一把锋利的刀,精准得很,能在材料上游刃有余,不管是金属、塑料还是其他材料,它都能“轻松”应对。
大家是不是想到了那些炫酷的激光切割机?对,正是它们将这玩意发挥得淋漓尽致。
激光发出的光束,其实是高度集中的光,简单来说,就是把光聚在一起,像是一个强力小聚会,简直热情得让人心跳加速。
它的能量密度高得吓人,就像你在沙滩上把太阳光聚焦,瞬间就能引发一场“火灾”。
所以,激光一照,材料表面就开始“发烧”,然后就会发生一系列有趣的变化。
有的材料会蒸发,有的会熔化,有的甚至会被打穿。
就像是厨房里的大厨,手里拿着那把宝刀,一刀切下去,噼里啪啦,简直帅呆了。
有趣的是,激光与材料的互动不仅仅是简单的烧和切,哎呀,这可得多说几句。
很多时候,激光和材料的相互作用会引发化学反应,简直像是给材料注入了新生。
比如说,某些材料在激光照射下会发生颜色变化,甚至会变得更加坚固。
听上去是不是像魔法一样?其实这就是科学的魅力呀!想想看,平时我们看到的那些闪闪发光的金属饰品,很多时候都是激光处理的结果,真是让人爱不释手。
而且啊,激光的应用可是五花八门,想想我们生活中常见的东西,激光打印机、激光电视、激光手术等等,样样都离不开它。
尤其是在医疗领域,激光的“神奇之手”简直无所不能。
那些微创手术,激光一开,就像一根无形的手指,轻松搞定,让病人不再痛苦。
这样的技术,简直让人对未来充满了幻想,期待有一天能有更多的“激光魔法”出现在我们的生活中。
激光还可以用于雕刻,哎,真是让人眼前一亮。
想象一下,一个艺术家站在激光机前,像魔术师一样,一道道光芒闪烁,细致入微的雕刻就诞生了。
那种感觉,就像是看着一幅美丽的画卷在眼前展开,心里满是赞叹。
激光与材料的相互作用发布日期:2007-10-04 我也要投稿!作者:网络阅读:[ 字体选择:大中小] 680作为能量源的激光束可以聚焦成很小的一个光斑,无需直接接触,即可与材料发生相互作用。
激光的性能不断提高,现在的激光具有各种不同的波长、功率和脉冲宽度,这些参数的不同组合适用于各种不同的加工需要。
为了更好地了解激光的潜能,工程师们必须熟悉这种技术以及其中的细微差别。
在决定使用何种激光前,工程师应该了解激光工作原理、激光与材料的相互作用、激光参数以及何时可利用激光进行医疗材料加工。
了解这些知识后,工程师设计医疗器械时就能做出正确的决定。
激光在器械加工中的应用机会激光可用于器械制造的许多加工环节中。
例如,激光切割便是一种常见用途,常用于制造支架等小型器械。
激光还可用于加工通沟或盲孔。
该技术可用于加工医疗诊断设备的微流体通道以及给药用微量注射器的小孔。
目前,人们正利用激光加工技术研制用于芯片实验室上的微型传感器和传动器上的硅制微型机械。
激光焊接和打标常用于植入器械和手术器械的制造中。
此外,激光还常用于表面纹理加工中,例如:可用于矫形外科植入物的表面处理上,提高表面的粘附性。
激光工作原理激光的工作原理较为简单。
通过一个光子激发其他光子,使大量光子以光束的形式一起发射出去。
肉眼可能无法看见的光束由激光腔中发射出去,然后被传导至材料加工工作站中。
根据激光波长的不同,光束可通过光纤传播或者经光学元件直接传播。
目前使用的激光大都早在20世纪60年代就已经问世,包括Nd:Y AG激光、二氧化碳激光和半导体激光。
激光器集成到工业用机械中经过了数年的时间,尽管技术已经成熟,但激光器仍在不断改进,例如:人们研制出能产生很短脉冲宽度的如皮秒和飞秒激光器。
此外,激光材料在光纤激光器、光碟激光器和焊接用绿光激光器内的独特排列进一步丰富了材料加工的方法。
表I. 材料加工中常用的激光波长。
(点击放大) 材料加工所用激光波长从紫外线一直到红外线,包括了可见光谱。
常用激光类型及其波长列于表I中。
除激光类型外,选择激光时还要考虑其他许多方面,例如:激光腔的设计、光学传送元件和激光与材料相互作用。
最为关键的是,医疗器械设计人员必须了解激光束如何与不同器械材料发生相互作用以及如何用于材料加工中。
激光与材料的相互作用激光束投射在材料表面时,部分能量被反射,部分被吸收,部分被传递出去,具体情况取决于材料类型和激光波长。
在到达材料表面的光能中,被材料吸收的那部分能量是对材料加工有用的。
1,2 光能以电子和原子的振动激发形式被吸收,并转化为热能,扩散至临近原子。
随着吸收的光子越来越多,材料温度不断升高,从而提高光能吸收的比例。
该过程可引发连锁反应,使温度在极短时间内(焊接中通常为一毫秒内)急剧升高。
温度升高的速度取决于材料中能量吸收与能量消散之间的比例。
光吸收长度是指光子能量被吸收导致光束强度降低至原来的1/e (37%)时光束传播的距离。
该距离内材料吸收能量转化的热能扩散距离为L = [4Dt]1/2,其中L为扩散距离,D为热扩散率,t 为激光的脉冲宽度。
如果热扩散距离远大于吸收长度,激光光斑处的温度升高将很有限。
相反,如果扩散距离小于吸收深度,温度将急剧升高,导致材料熔化,甚至汽化。
要达到预期的效果,无论是加热、软焊、焊接、钻孔、打标、切割还是微加工,工程师都必须选择合适的激光波长和脉冲宽度。
当光吸收深度与热扩散距离相等时,可以达到一个临界值,可根据该值选择特定频率激光的脉冲宽度。
表II. 利用准分子波长的激光进行微加工时,需要采用不同的脉冲宽度,以便使热扩散距离与吸收长度相等。
脉冲宽度值(皮秒)仅供比较;应通过实验进行全面评估。
(点击放大)表II列出了使用248nm波长激光时限制热扩散所需脉冲宽度的计算结果。
由于各种金属的吸收深度接近,脉冲宽度的差异主要取决于扩散距离间的差异。
例如,不锈钢与镍相比导热性较差,因此进行微加工时可以使用较长的脉冲宽度;另一方面,与镍相比,硅导热性更好,因此烧蚀时需要较短的脉冲宽度。
人们认为,采用飞秒脉冲时,由于功率密度高、时帧短,激光与材料间的相互作用发生在多光子非线性过程中。
此过程极为迅速,因此可以认为光束实际上一瞬间即可去除表面的原子,而不影响临近原子。
由于飞秒激光不会在暴露表面上留下扰动层,因而适合微加工。
表III. 常见材料加工中的脉冲宽度和能量密度值。
(点击放大) 对于烧蚀来说,所用脉冲宽度必须小于表II中计算的临界值,但这样还不够。
还必须保证脉冲具有足够的能量,以便每个脉冲都能加热足够体积的加工材料。
对于一定的脉冲能量来说,随着脉冲时间的缩短,热量越来越被局限在激光光斑附近,逐渐产生加热、熔化、烧蚀、最终达到汽化的效果。
选定合适的波长后,就要确定脉冲能量和脉冲宽度的组合,从而确定材料加工的类型。
不同加工应用中常用的脉冲宽度和能量密度值列于表III中。
尽管激光与材料间的相互作用基本相似,但不同材料如金属、陶瓷、玻璃和塑料还各有不同的特点。
图1显示了金属、塑料、陶瓷和玻璃的吸收长度-波长曲线。
图中曲线为示意图,仅供讨论,而且仅于室温下有效。
《激光工业应用(Industrial Applications of Lasers)》和《美国激光学会激光材料加工手册(LIA Handbook of Laser Materials Processing)》1,2中列出了各种材料的吸收特性。
图1. 示意图显示了所选金属、玻璃和塑料材料的吸收特性。
(点击放大)激光无法透过金属材料,部分能量会被吸收和反射掉。
金属吸收二氧化碳激光的能力较弱,激光波长越小,吸收率越高,能量传递效率也越高。
尽管金属对二氧化碳激光的吸收较少,但只要能量密度很大,二氧化碳激光仍可有效用于金属的焊接和切割。
与金属相反,陶瓷和玻璃对各种波长的激光都能很好地吸收。
但由于陶瓷的抗热冲击性能差、熔点高,因此加工难度比金属大。
玻璃只能吸收一小部分的Y AG激光入射能,但由于玻璃导热性差,因而较易熔化。
表IV. 一些波长位于紫外线范围的激光在加工时能够打断聚合物材料中的化学键。
(点击放大)塑料能够更好地吸收激光能量,特别是紫外线激光和二氧化碳激光。
一些波长位于紫外线范围的激光能够打断塑料分子中特定的化学键(见表IV),这为激光增添了一些新的用途。
通过这些波长的激光,可以选择性地改变材料的表面性质。
此外,如果塑料足够透明,工程师还能改变其表面下的材料性质。
激光参数激光加工能否达到预期效果很大程度上取决于一些激光参数以及这些参数的相互依存关系。
工程技术人员选择某一激光波长或加工机械前,必须全面了解这些关系。
脉冲能量。
考虑激光参数时大多从单个脉冲的能量开始。
采用最新一代的电源时,可以按照预期的传送曲线设定每次脉冲的能量,可以使脉冲开始时能量逐渐升高,结束时逐渐降低。
调节脉冲形状有助于改善加工控制效果。
功率密度。
功率密度实际度量的是到达材料上的激光光子数。
功率密度单位为瓦特/平方厘米,由脉冲能量除以光斑面积计算而得。
即使在单个光斑内,由于激光束质量不同,功率密度也有很大差异。
M2。
M2 衡量的是光束内的能量分布。
M2等于1的理想光束中心处能量达到高峰,由中心向四周能量呈高斯分布。
M2较小、接近1时,适合显微加工,M2较大(在30–100范围)时,适合热处理和焊接加工。
脉冲宽度和重复频率。
脉冲宽度定义为激光能量脉冲持续的时间。
大多数激光加工都是以脉冲模式进行的。
在脉冲模式下,激光器按照设定的重复频率和持续时间以脉冲的形式发射能量。
激光器持续开启(称为连续波或CW模式)的加工操作包括:焊接、软焊和热处理。
峰值功率。
尽管激光器的平均额定功率可能很小,但每次脉冲的峰值功率可能非常大。
例如,一般10W的激光器峰值功率可达5kW。
这可能是由于激光能量在极短的脉冲时间内释放的原因。
峰值功率可由脉冲能量除以脉冲宽度计算而得。
如果一个脉冲在1毫秒内释放了1焦耳的能量,那么峰值功率就是1kW。
但是,由于计算得到的是整个脉冲宽度内的平均值,实际的峰值功率可能更大,因为,能量在整个脉冲持续时间内并不是均匀释放的。
光斑直径。
光斑直径大小取决于焦距、波长、M2和光束直径,其关系如下:光斑直径= 2fλ M2 /D,其中 f 为聚焦透镜的焦距,λ为波长,M2 为光束质量指标,D 为光束直径。
注意,准分子激光光束质量较差,无法聚焦。
因此,这种激光要通过掩模,以便形成所需的样式,常用于硅芯片的蚀刻。
除波长在选择激光类型后即确定外,其他所有参数间几乎都有相互依存关系,因此必须谨慎设置。
例如,使用焦距较短的透镜改变光斑大小时,会增大功率密度,除非同时按比例减小总体功率。
结论了解各种激光参数以及激光与材料间的相互作用后,人们会发现很多情况下都可用激光来制造医疗器械。
工程师应检查激光的波长、功率级和脉冲宽度。
但更重要的是,他们必须了解这些参数如何相互作用。
随着器械越来越小,越来越精密,工程师们必须谨慎分析激光系统的各种特性以及这些特性对材料加工会产生何种影响。