动力气象学第六章改过
- 格式:ppt
- 大小:1005.00 KB
- 文档页数:105
“动力气象学”问题讲解汇编徐文金(南京信息工程大学大气科学学院)本讲稿根据南京信息工程大学“动力气象学”学位考试大纲(以下简称为大纲)要求的内容,以问答形式编写,以便学习者能更好地掌握“动力气象学”中的重要问题和答案。
主要参考书为:动力气象学教程,吕美仲、候志明、周毅编著,气象出版社,2004年。
本讲稿的章节与公式编号与此参考书一致(除第五章外)。
第二章(大纲第一章) 描写大气运动的基本方程组问题2.1 大气运动遵守那些定律?并由这些定律推导出那些基本方程?大气运动遵守流体力学定律。
它包含有牛顿力学定律,质量守恒定律,气体实验定律,能量守恒定律,水汽守恒定律等。
由牛顿力学定律推导出运动方程(有三个分量方程)、由质量守恒定律推导出连续方程、由气体实验定律得到状态方程、由能量守恒定律推导出热力学能量方程、由水汽守恒定律推导出水汽方程。
这些方程基本上都是偏微分方程。
问题 2.2何谓个别变化?何谓局地变化?何谓平流变化?及其它们之间的关系? 表达个别物体或系统的变化称为个别变化,其数学符号为dtd ,也称为全导数。
表达某一固定地点某一物理量变化称为局地变化,其数学符号为t∂∂,也称为偏导数。
表达由空气的水平运动(输送)所引起的局地某物理量的变化称为平流变化,它的数学符号为∇⋅-V 。
例如,用dt dT 表示个别空气微团温度的变化,用tT ∂∂表示局地空气微团温度的变化。
可以证明它们之间有如下的关系 zT w T V dt dT t T ∂∂-∇⋅-=∂∂ (2.4) 式中V 为水平风矢量,W 为垂直速度。
(2.4)式等号右边第二项称为温度的平流变化(率),第三项称为温度的对流变化(率)或称为垂直输送项。
问题 2.3何谓绝对坐标系?何谓相对坐标系?何谓绝对加速度?何谓相对加速度?何谓牵连速度?绝对坐标系也称为惯性坐标系,可以想象成是绝对静止的坐标系。
而相对坐标系则是非惯性坐标系,例如,在地球上人们是以跟随地球一起旋转的坐标系来观测大气运动的,这种旋转的坐标系就是相对坐标系。
动力气象学笔记一、绪论。
1. 动力气象学的定义与研究范畴。
- 动力气象学是应用物理学定律研究大气运动的动力过程和热力过程,以及它们相互关系的学科。
- 研究范畴包括大气环流、天气系统的发展演变、大气波动等。
2. 动力气象学在气象学中的地位。
- 是现代气象学的理论基础。
它为天气预报、气候研究等提供了理论依据。
例如,数值天气预报就是建立在动力气象学的基础上,通过求解大气运动方程组来预测未来的天气状况。
二、大气运动方程组。
1. 运动方程。
- 牛顿第二定律在大气中的应用。
- 在笛卡尔坐标系下,水平方向(x方向)的运动方程为:- (du)/(dt)=-(1)/(ρ)(∂ p)/(∂ x)+fv + F_x- 其中u是x方向的风速,(du)/(dt)是x方向的加速度,ρ是空气密度,p是气压,f = 2Ωsinφ是科里奥利参数(Ω是地球自转角速度,φ是纬度),v是y方向的风速,F_x是x方向的摩擦力。
- 同理,y方向的运动方程为:(dv)/(dt)=-(1)/(ρ)(∂ p)/(∂ y)-fu+F_y。
- 垂直方向(z方向)的运动方程由于垂直加速度相对较小,考虑静力平衡近似时为:(∂ p)/(∂ z)=-ρ g。
2. 连续方程。
- 质量守恒定律在大气中的体现。
- 其表达式为:(∂ρ)/(∂ t)+(∂(ρ u))/(∂ x)+(∂(ρ v))/(∂ y)+(∂(ρ w))/(∂ z)=0。
- 在不可压缩流体(ρ = const)的情况下,简化为:(∂ u)/(∂ x)+(∂ v)/(∂ y)+(∂ w)/(∂ z)=0。
3. 热力学方程。
- 能量守恒定律在大气中的表现形式。
- 对于干空气,常用的形式为:c_p(dT)/(dt)-(1)/(ρ)(d p)/(dt)=Q。
- 其中c_p是定压比热,T是温度,Q是单位质量空气的非绝热加热率。
三、尺度分析。
1. 尺度分析的概念与意义。
- 尺度分析是根据大气运动中各物理量的特征尺度,对大气运动方程组进行简化的方法。
动力气象学总复习第一章绪论掌握动力气象学的性质,研究对象,研究内容以及基本假定动力气象学(性质)是由流体力学中分离出来(分支),是大气科学中一个独立的分支学科。
动力气象学定义:是应用物理学定律研究大气运动的动力过程、热力过程,以及它们之间的相互关系,从理论上探讨大气环流、天气系统演变和其它大气运动过程学科。
动力气象学研究对象:发生在旋转地球上并且密度随高度递减的空气流体运动的特殊规律。
动力气象学研究内容:根据地球大气的特点研究地球大气中各种运动的基本原理以及主要热力学和动力学过程。
主要研究内容有大气运动的基本方程、风场、气压坐标、环流与涡度、风与气压场的关系、大气中的波动、大气边界层、大气不稳定等等。
一、基本假设:大气视为“连续流体”,表征大气运动状态和热力状态的各种物理量(U, V, P, T, et al.) 看成是随时间和空间变化的连续函数;大气宏观运动时,可视为“理想气体”,气压、密度和温度之间满足理想其他的状态方程,大气是可“压缩流体”,动力过程和热力过程相互影响和相互制约;二、地球大气的动力学和热力学特性大气是“旋转流体”:90%的大气质量集中在10km以下的对流层;水平U, V远大于w(满足静力平衡);Ω =7.29⨯10-5rad/s,中纬度大尺度满足地转平衡(科氏力与水平气压梯度力相当)。
大气是“层结流体”:大气密度随高度变化,阿基米德净力使不稳定层结大气中积云对流发展;阿基米德净力使稳定层结大气中产生重力内波。
大气中含有水份:水份的相变过程使大气得到(失去)热量。
大气下垫面的不均匀性:海陆分布和大地形的影响。
大气运动的多尺度性:(见尺度分析)第二章大气运动方程组控制大气运动的基本规律有质量守恒、动量守恒、能量守恒等等。
支配其运动状态和热力学状态的基本定律有:牛顿第二定律、质量守恒定律、热力学第一定律和状态方程等等。
本章要点:旋转坐标系;惯性离心力和科氏力;全导数和局地导数;预报和诊断方程;运动方程、连续方程;状态方程、热力学方程及其讨论;局地直角坐标系。
动力气象学总学时:128(其中自学96,面授24,实习8)教材版本:动力气象学教程(吕美仲、彭永清编著)教学目的和要求:动力气象学是在热力学和流体力学的基础上,系统地讲述大气的热力过程和大气运动的基本规律,并指出这些规律的实践意义的一门专业基础课。
具体地说,它是应用物理学定律研究大气运动的动力过程、热力过程以及它们之间的相互关系,从理论上探讨大气环流、天气系统演变和其它大气动力过程,因而,它是天气学、数值天气预报及大气环流等专业课程的理论基础。
本课程,通过教学,目的在于使学生能深入地理解大气动力学的基本理论,了解近代动力气象学的主要进展,掌握用动力学方法分析和预报天气的基本原理和技术,从而使学生具有一定的理论水平和科学研究的能力。
为将来从事天气预报的业务及研究工作打下基础。
为达到上述目的,在教学中要求:⑴努力贯彻理论联系实际的原则。
在教学内容和取材上,从现今国内外气象业务部门及科研单位所使用的有代表性的方法和理论为主体,讲课中以讲授基本原理为重点,在讲深讲透基本理论的基础上,让学生进行必要的课堂讨论和作练习,使学生既能掌握基本原理,又能利用基本原理去探讨和解决实际问题。
⑵注重理论的系统性。
本课程是一门理论性较强的课程,在努力贯彻理论联系实际的原则下,要突出本课程的特点,在教学中应该注意有系统、有条理地介绍它的内容,强调各部分内容之间的有机联系,以使学生能掌握得深透。
教学的主要内容及学时分配:总学时:128课时,其中面授24课时,课堂练习8学时,自学96课时。
每章自学10学时,5~10章每章讲授4学时,其余4学时供课堂练习和答疑。
第一章大气运动的基本方程组§1.1全导数和局地导数§1.2旋转参考系中运动方程的矢量形式§1.3质量守恒定律--连续方程§1.4状态方程、热力学方程、水汽方程§1.5球坐标系中基本方程组§1.6局地直角坐标系中基本方程组§1.7闭合运动方程组、初始条件和边界条件第二章尺度分析与基本方程组的简化§2.1尺度概念、大气运动的尺度分类§2.2基本方程组的尺度分析§2.3无量纲方程、动力学参数§2.4 平面近似§2.5静力平衡大气、P坐标系第三章自由大气中平衡流畅§3.1自然坐标系§3.2平衡流场的基本形式与性质§3.3地转风随高度的变化、热成风§3.4地转偏差第四章环流定理、涡度方程和散度方程§4.1环流与环流定理§4.2涡度与涡度矢量方程§4.3泰勒——普劳德曼定理§4.4铅直涡度方程§4.5P坐标系中的涡度方程和散度方程§4.6位势涡度方程第五章大气行星边界层§5.1大气运动的湍流特性和平均运动方程组§5.2大气行星边界层及其特征§5.3属性的湍流输送通量及其参数化§5.4湍流运动发展的判据§5.5近地面层风随高度的分布§5.6埃克曼层风随高度的分布§5.7埃克曼抽吸与旋转减弱第六章大气能量学§6.1大气能量的主要形式§6.2大气能量方程§6.3静力平衡条件下大气中的能量转换§6.4有效位能§6.5大气中动能的消耗§6.6实际大气中的能量循环§6.7能量的转换过程第七章大气中的基本波动§7.1波动的基本概念§7.2微扰动法、基本方程组的线性化§7.3声波和LAMB波§7.4重力外波、重力慣性外波§7.5重力内波、性内波、重力慣性内波§7.6 波§7.7噪音与滤波第八章地转适应过程与准地转演变过程§8.1大尺度运动过程的阶段性§8.2正压大气中的地转适应过程§8.3斜压大气中的地转适应过程§8.4准地转运动的分类§8.5准地转运动方程组§8.6准地转位势倾向方程组与方程§8.7Q矢量、非热成风产生的二级环流的诊断第九章大气运动的稳定性理论§9.1流体动力学稳定性概念§9.2慣性不稳定§9.3开尔文——赫姆霍茨不稳定§9.4正压不稳定§9.5斜压不稳定第十章低纬度热带大气动力学§10.1热带运动系统概述§10.2热带大气运动的尺度分析§10.3热带扰动的生成与发展§10.4台风的结构与发展§10.5热带行星尺度波动。
“动力气象学”问题讲解汇编徐文金(南京信息工程大学大气科学学院)本讲稿根据南京信息工程大学“动力气象学”学位考试大纲(以下简称为大纲)要求的内容,以问答形式编写,以便学习者能更好地掌握“动力气象学”中的重要问题和答案。
主要参考书为:动力气象学教程,吕美仲、候志明、周毅编著,气象出版社,2004年。
本讲稿的章节与公式编号与此参考书一致(除第五章外)。
第二章(大纲第一章) 描写大气运动的基本方程组问题2.1 大气运动遵守那些定律?并由这些定律推导出那些基本方程?大气运动遵守流体力学定律。
它包含有牛顿力学定律,质量守恒定律,气体实验定律,能量守恒定律,水汽守恒定律等。
由牛顿力学定律推导出运动方程(有三个分量方程)、由质量守恒定律推导出连续方程、由气体实验定律得到状态方程、由能量守恒定律推导出热力学能量方程、由水汽守恒定律推导出水汽方程。
这些方程基本上都是偏微分方程。
问题2.2何谓个别变化?何谓局地变化?何谓平流变化?及其它们之间的关系? 表达个别物体或系统的变化称为个别变化,其数学符号为dtd ,也称为全导数。
表达某一固定地点某一物理量变化称为局地变化,其数学符号为t ∂∂,也称为偏导数。
表达由空气的水平运动(输送)所引起的局地某物理量的变化称为平流变化,它的数学符号为∇⋅-V ρ。
例如,用dt dT 表示个别空气微团温度的变化,用tT ∂∂表示局地空气微团温度的变化。
可以证明它们之间有如下的关系z T w T V dt dT t T ∂∂-∇⋅-=∂∂ρ (2.4) 式中V ρ为水平风矢量,W 为垂直速度。
(2.4)式等号右边第二项称为温度的平流变化(率),第三项称为温度的对流变化(率)或称为垂直输送项。
问题2.3何谓绝对坐标系?何谓相对坐标系?何谓绝对加速度?何谓相对加速度?何谓牵连速度?绝对坐标系也称为惯性坐标系,可以想象成是绝对静止的坐标系。
而相对坐标系则是非惯性坐标系,例如,在地球上人们是以跟随地球一起旋转的坐标系来观测大气运动的,这种旋转的坐标系就是相对坐标系。
动力气象学知到章节测试答案智慧树2023年最新南京大学绪论单元测试1.不同于普通流体,地球大气有哪些基本特征?参考答案:受到重力场作用;旋转流体;具有上下边界 ;密度随高度变化2.中纬度大尺度大气运动的特点包括参考答案:准水平无辐散;准地转 ;准静力 ; 准水平3.以下哪种波动的发现及其深入研究,极大地推动了天气预报理论和数值天气预报的发展?参考答案:Rossby波4.动力气象学的发展与数学、物理学及观测技术的发展密不可分。
参考答案:对5.大气运动之所以复杂,其中一个原因是其运动具有尺度特征,不同尺度的运动控制因子不同。
参考答案:对第一章测试1.以下关于惯性坐标系,错误的说法是参考答案:惯性坐标系下测得的风速是地球大气相对于旋转地球的相对速度2.关于科里奥利力,以下错误的说法是参考答案:在全球大气的运动中,科里奥利力均使得大气运动方向右偏3.物理量S(x,y,z,t)能够替代z作为垂直坐标需要满足哪些条件参考答案:需要满足一定的数学基础和物理基础;S与z有一一对应关系;要求S在大气中有物理意义4.通过Boussinesq近似方法简化大气运动方程组,可得如下哪些结论参考答案:垂直运动方程中与重力相联系的项要考虑密度扰动作用;连续方程中可不考虑扰动密度的影响,与不可压流体的连续方程形式相同;大气密度的扰动变化,对垂直运动有较大影响5.Rossby数的物理意义包括参考答案:Rossby数的大小可用于划分运动的尺度;表征地球旋转的影响程度;判别相对涡度和牵连涡度的相对重要性第二章测试1.下面哪些变量可以描述大气旋转性特征参考答案:螺旋度;环流;涡度2.在什么情况下,绝对环流是守恒的参考答案:正压无摩擦大气;绝热无摩擦大气3.对于中纬度大气的平均状况而言,从对流层低层向上到平流层,位势涡度会发生怎样的变化参考答案:位涡在对流层顶附近会迅速增加4.对大尺度运动,引起绝对涡度变化的量级最大的项为参考答案:散度项5.通常在大气中,非绝热加热在热源上方和下方分别会产生哪种位涡异常参考答案:负,正第三章测试1.地转偏差随纬度和季节变化的特征有参考答案:夏季比冬季大;在低纬度地区相对较大;在大气低层相对较大2.下列关于地转偏差的表述正确的是参考答案:在北半球与加速度方向垂直;与加速度项成正比3.下面哪项不是地转偏差的组成项参考答案:气压梯度项4.下面关于地转适应和地转演变的说法错误的是参考答案:地转演变可以看成线性过程5.以下正确的说法是参考答案:流场和气压场相互调整,使得大气恢复准地转平衡的过程称作地转适应;纯地转运动是定常运动第四章测试1.浪花云是由两种不同云层的切变不稳定导致,以下说法正确的是参考答案:快速移动且密度较低的云层在速度较慢且密度更高的云层上方2.小扰动法的基本气流一般取为沿纬圈平均的速度场,若考虑斜压切变气流,这一速度场应取为参考答案:y和z的函数3.以下哪些条件可以滤去重力内波参考答案:水平无辐散;中性层结大气;f平面上地转近似4.关于Rossby波的频散强度,以下正确的有参考答案:大槽大脊频散强;低纬频散强5.由一维线性涡度方程∂ζ⁄∂t+βv=0讨论Rossby波的形成,对初始只有v=Vcos(kx)的南北风谐波状扰动,以下不正确的是参考答案:x=0处的运动状态将被其左侧的运动状态代替第五章测试1.如果扰动随时间增长,那我们称这个扰动为参考答案:发展2.斜压不稳定中,扰动发展的能量来自参考答案:有效位能的释放;基本气流的动能3.若采用标准模方法分析稳定性,设扰动方程单波解为,以下哪个参数影响波在x方向上的传播速度。
1、大气运动方程组一般由几个方程组成?那些是预报方程?哪些是诊断方程?答:大气运动方程组一般由六个方程组成,分别是三个运动方程、连续方程、热力学能量方程、状态方程;若是湿空气还要加一个水汽方程。
运动方程、连续方程、热力学能量方程是预报方程,状态方程是诊断方程。
2、研究大气运动变化规律为什么选用旋转参考系?旋转参考系与惯性参考系中的运动方程有什么不同?For personal use only in study and research; not for commercial use答:地球以常值角速度Ω绕地轴旋转着,所以任何一个固定在地球上并与它一道运动的参考系,乃是一个旋转参考系。
为了将牛顿第二定律应用于研究相对于旋转参考系的大气运动,不但要讨论作用于大气的真实力的性质,而且要讨论绝对加速度与相对加速度之间的关系。
相对于惯性参考系中的运动方程而言,旋转参考系中的运动方程加入了视示力(科里奥利力、惯性离心力)。
3、惯性离心力与科里奥利力有哪些异同点?答:都是在旋转参考系中的视示力;惯性离心力恒存在,而大气相对于地球有运动时才会产生科里奥利力。
4、重力位势与重力位能这两个概念有何差异?答:重力位势:重力位势表示移动单位质量空气微团从海平面(Z=0)到 Z 高度,克服重力所做的功。
重力位能:重力位能可简称为位能。
重力场中距海平面 z 高度上单位质量空气微团所具有的位能为Φ=gz,引进重力位势后, g等重力位势面(等Φ面)相垂直,方向为高值等重力位势面指向低等重力位势面,其大小由等重力位势面的疏密程度来确定。
所以,重力位势的空间分布完全刻划出了重力场的特征。
5、试阐述速度散度的物理意义?速度散度与运动的参考系有没有关系?答:速度散度代表物质体积元的体积在运动中的相对膨胀率。
因,故速度散度与运动的参考系没有关系。
8、计算 45° N跟随地球一起旋转的空气微团的牵引速度。
答:由速度公式可知,牵引速度为:大小为;方向为向东。