零指数幂与负整数指数幂
- 格式:ppt
- 大小:730.50 KB
- 文档页数:13
初中数学中零指数幂与负整指数幂详解教案一、背景知识在数学中,指数是一种表示乘方的数学运算符号,它用于表示底数(基数)上幂次(指数)的运算。
一个数a的b次方,可以表示为ab,其中a是底数,b是指数。
但是,当底数为零或者负整数时,就会涉及到特殊的指数问题,这就是本次教案所要重点讲解的内容——零指数幂与负整指数幂。
对于初中学生来说,理解和掌握这些知识点是十分必要的。
二、知识点解析零指数幂:当底数为0时,幂为0,即0的任何次幂均为0。
例如:0³=0;0²=0;0¹=0;0⁰=1负整指数幂:当底数为非零实数a,指数为正整数n时,aⁿ表示a 的n次幂;当a≠0,n>0时,a−n称为a的负整数幂(倒数),它表示乘以n个因数a的倒数。
即:a⁻ⁿ = 1/aⁿ。
例如:2³=8;2²=4;2¹=2;2⁰=1;2⁻¹=1/2;2⁻²=1/4;2⁻³=1/8。
三、教学设计Step1:引入新知通过提问或者演示,引入”零指数幂“和”负整指数幂“的概念,让学生打好基础。
Step2:讲解零指数幂通过课件或者白板展示,向学生解释零指数幂的概念和特性,可以采用如下的方式进行:将0的任意次幂和其他数字的幂的结果进行比较:0³=0;2³=8;0²=0;2²=4;0¹=0;2¹=2;0⁰=1;2⁰=1;让学生通过对比发现,无论是什么数的0次幂都等于1,而0的任何次幂都等于0,这就是零指数幂的特性。
Step3:讲解负整指数幂通过课件或者白板展示,向学生解释负整指数幂的概念和特性,可以采用如下的方式进行:将一个数的正整数幂和负整数幂的结果进行比较:2³=8;2⁻³=1/8;2²=4;2⁻²=1/4;2¹=2;2⁻¹=1/2;让学生发现,当n>0时,aⁿ表示a的n次幂;当a≠0,n>0时,a−n称为a的负整数幂(倒数),它表示乘以n个因数a的倒数。
师:对于期末和中考的零指数幂和负整数指数幂都考哪些题型呢?生:回答师:法则比较简单,但是运算的比较复杂,容易出错,都会用到哪些方法呢?师:综合近两年的考题,那些题目考查频率高一些呢?生:回答师:我们发现通过计算题、出题频率相当高,今天我们就这一节的类型题进行详细的讲解。
1.零指数幂的意义任何不等于0的数的0次幂都等于1。
用公式表示为:______________.2.负整数指数幂的意义任何不等于0的数的-n(n 是正整数)次幂,等于这个数的n 次幂的倒数,用公式表示为1n na a -=≠(a 0,n 是正整数) 注意点:(1)底数a 不能为0,若a 为0,则除数为0,除法就没有意义了;(2)是法则的一部分,不要漏掉; ()0,a m n m n ≠>、是正整数,且(3)只要底数不为0,则任何数的零次方都等于1;(20-40分钟)考点1零指数幂【典题导入】【亮点题】【例1】(1)计算:|-3|+(-4)0=.【答案】4【解析】原式=3+1=4.故答案为:4.(2)计算(π-1)0+3=.【答案】4【解析】原式=1+3=4.故答案为:4.(3)计算:20150-|2|=.【答案】-1【解析】原式=1-2=-1.故答案为:-1.(4)|-2|+(-2)0=.【答案】3【解析】|-2|+(-2)0=2+1=3.故答案为:3.【方法提炼】【小试牛刀】(1)如果整数x 满足(|x|−1)x2−9=1,则x 可能的值为 . 【答案】±2或±3 【解析】根据非零数的零指数幂等于1可得:|x|-1≠0,x 2-9=0;解得x=±3.由1的任何次幂等于1可得:|x|-1=1,解得x=±2.由-1的偶次幂等于1可得:|x|-1=-1,解得x=0,此时x 2-9=-9,不符合题意;因此x 可能的值为:x=±2或±3.故答案为:±2或±3. (2)若实数m ,n 满足|m -2|+(n -2014)2=0,则m -1+n 0= .【答案】32 【解析】因为|m -2|+(n -2014)2=0,所以|m -2|=0,(n -2014)2=0,即得m=2,n=2014,则m -1+n 0=(2)-1+(2014)0=12+1=32. 故答案为:32.负整数指数幂【典题导入】【亮点题】【例1】把代数式3−2b −22−2a −3化成不含负指数的形式是( )A .9b 24a 3 B .9a 34b C .3a 22ab 2 D, 4a 39b 2【答案】D【解析】运用负整数指数幂的意义将负整数指数幂转化为正整数指数幂.3−2b −22−2a −3=22a 332b 2=4a 39b 2.考点2故选D 。
究竟什么是初中数学中的零指数幂与负整指数幂?。
什么是零指数幂?在数学中,零指数幂指的是任何非零数的0次幂。
也就是说,任何一个非零数的0次幂都等于1。
例如:6的0次幂等于1,3的0次幂等于1。
值得注意的是,零的0次幂是没有意义的。
那么为什么非零数的0次幂等于1呢?一般来说,幂指数的定义是将一个数字乘以自己指数次。
例如,2的3次幂是2x2x2=8。
但是当幂的指数为0时,根据这个规则,幂应该是1。
所以,我们得出结论,非零数的0次幂等于1。
虽然零指数幂看似笔直无奇,但是在数学运算中很有用。
例如,我们可以用它来消除分母中的x。
当我们想要消除分式中的x,但是分式中分子与分母没有相同的未知数时,我们就可以把x移动到分子或分母中,将分子或分母中的x变成0次幂,从而消除它。
什么是负整指数幂?负整指数幂是指给定的数的负值的指数。
比如,2的-3次幂是1/(2^3),也就是1/8。
这里的指数是负整数,也就是基数的分母。
在数学中,一个数的负指数表示着将该数的倒数作为幂。
因此,一个负整数幂可以写成一个分数的形式。
在分数形式中,分母是基数,分子是1。
一个负整数幂是分母是这个基数的乘幂。
一个数的负整数幂可以通过计算这个数的正整数幂,然后求其倒数来获得。
例如,-2的-3次幂是-1/(2^3)。
它等于-1/8。
另一种方法是使用负数指数规则,该规则表示n的-m次幂等于1/n的m次幂。
例如,2的-3次幂是1/2的3次幂,即1/(2^3)。
负整数幂的运算规律在进行负整数幂的运算时,需要注意以下几点:1.乘幂的规则:a(m+n) = am x an其中,a、m和n为实数。
这个规律表明,将最后一个幂与另一个幂相加,然后把它们作为单个幂的指数,就相当于将这两个幂相乘。
例如,2的3次幂乘以2的-4次幂等于2的(3-4)次幂,也就是2的-1次幂,等于1/2。
2.除幂的规则:a(m-n) = am / an其中,a、m和n为实数。
这个规律表明,将最后一个幂与另一个幂相减,然后把它们作为单个幂的指数,就相当于将这两个幂相除。
七年级数学下册11.6零指数幂与负整数指数幂说课稿一. 教材分析《新人教版七年级数学下册》第11.6节“零指数幂与负整数指数幂”是初中学段初中一年级下学期的数学课程内容。
这一节主要介绍零指数幂和负整数指数幂的概念、性质及其运算规律。
学生在学习了有理数、实数等基础知识后,进一步拓展指数幂的知识,为以后学习代数式、函数等高级知识打下基础。
二. 学情分析七年级的学生已经具备了一定的数学基础,如实数、有理数等概念。
然而,对于零指数幂和负整数指数幂这些较抽象的概念,学生可能存在一定的理解难度。
因此,在教学过程中,需要从学生已有的知识出发,循序渐进地引导学生理解和掌握新知识。
三. 说教学目标1.知识与技能:使学生理解零指数幂和负整数指数幂的概念,掌握它们的性质和运算规律。
2.过程与方法:通过观察、分析、归纳等方法,培养学生发现和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的抽象思维能力和创新意识。
四. 说教学重难点1.教学重点:零指数幂和负整数指数幂的概念、性质和运算规律。
2.教学难点:零指数幂和负整数指数幂的运算规律以及应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组合作学习法等,引导学生主动探究、积极思考。
2.教学手段:利用多媒体课件、黑板、粉笔等传统教学工具,结合数学软件和网络资源,提高教学效果。
六. 说教学过程1.导入新课:通过复习指数幂的基本概念,引导学生思考零指数幂和负整数指数幂的意义。
2.自主学习:让学生独立观察和分析 examples,引导学生发现零指数幂和负整数指数幂的性质。
3.小组讨论:学生进行小组讨论,分享各自的学习心得,引导学生共同探讨零指数幂和负整数指数幂的运算规律。
4.讲解与演示:教师对零指数幂和负整数指数幂的概念、性质和运算规律进行讲解,并通过示例进行演示。
5.练习与巩固:布置练习题,让学生运用所学知识解决问题,巩固零指数幂和负整数指数幂的知识。
零指数幂与负整数指数幂教学案例
(一)零指数幂
1、首先要理解什么是零指数幂:零指数幂是数学领域中的一个概念,它的定义是“任何以零为指数的幂都等于1”。
2、其次要让学生动手实践:首先让学生计算一些7的零指数幂,比如7^0 、5^0、2^0等。
当学生计算完后,就可以让他们总结出最终的结论:任何以零为指数的幂都等于1。
3、最后,引导学生思考:为什么任何以零为指数的幂都等于1呢?通常学生都会发现:无论怎样改变底数和指数,答案都是1,这是由于一个事实决定的:任何大于0的数的零次方,都是1。
(二)负整数指数幂
1、首先要理解什么是负整数指数幂:负整数指数幂是指指数为负整数的正数的幂运算,比如3^(-2) 为3的负二次方,即乘方运算结果的倒数。
2、其次让学生动手实践:首先让学生来计算几个4^(-1)、-2^(-3)等,让他们根据计算的结果来总结最终的结论,即负指数幂的结果是幂的倒数。
3、最后,引导学生思考:负指数幂中,负指数有什么特点呢?学生一般会发现:指数变为负数时,结果的准确性会大大增加,而且计算速度也会加快,这时,相关的数据和理论模型也会变得更加清晰。
零指数幂与负整数指数幂 教学目标 1.知道负整数指数幂n a -=n a 1(a ≠0,n 是正整数).2.掌握整数指数幂的运算性质.3.会用科学计数法表示小于1的数.重点、难点 重点:掌握整数指数幂的运算性质.难点:会用科学计数法表示小于1的数.情感态度与价值观通过学习课堂知识使学生懂得任何事物之间是相互联系的,理论来源于实践,服务于实践。
能利用事物之间的类比性解决问题。
教 学 过 程 教学设计 与 师生互动备 注 第一步:课堂引入1.回忆正整数指数幂的运算性质:(1)同底数的幂的乘法:n m n m a a a +=⋅(是正整数);(2)幂的乘方:mn n m a a =)((是正整数);(3)积的乘方:n n n b a ab =)((n 是正整数); (4)同底数的幂的除法:n m n m a a a -=÷( a ≠0,是正整数,m >n);(5)商的乘方:n nn b a ba =)((n 是正整数); 2.回忆0指数幂的规定,即当a ≠0时,10=a .3.你还记得1纳米=10-9米,即1纳米=9101米吗?4.计算当a ≠0时,53a a ÷53a a 233a a a ⋅21a ,再假设正整数指数幂的运算性质n m n m a a a -=÷(a ≠0,是正整数,m >n)中的m >n 这个条件去掉,那么53a a ÷53-a 2-a .于是得到2-a =21a (a ≠0)总结:负整数指数幂的运算性质:当n 是正整数时,n a -=n a 1(a ≠0).(注意:适用于m 、n 可以是全体整数.)第二步:例题讲解计算:2321326)3(------b a b a b a[分析] 是应用推广后的整数指数幂的运算性质进行计算,与用正整数指数幂的运算性质进行计算一样,但计算结果有负指数幂时,要写成分式形式.第三步:随堂练习1.填空(1)-22= (2)(-2)2= (3)(-2) 0=(4)20= ( 5)2 -3= ( 6)(-2) -3=2.计算 (1) (x 32)2 (2)x 22 ·(2y)3 (3)(3x 22) 2 ÷(2y)3答案:1.(1)-4 (2)4 (3)1 (4)1(5) 81 (6)81-2.(1)46y x (2)4x y(3) 7109y x第四步:课后练习1. 用科学计数法表示下列各数:0.000 04, -0. 034, 0.000 000 45, 0. 003 0092.计算(1) (3×10-8)×(4×103) (2) (2×10-3)2÷(10-3)3 答案:1.(1) 4×10-5 (2) 3.4×10-2 (3)4.5×10-7 (4)3.009×10-32.(1) 1.2×10-5 (2)4×103课后小结 :课后反思:。
第十七章 分式§17.4 零指数幂与负整指数幂一. 知识点:1.零指数幂:任何不等于零的数的零次幂都等于1。
2.负整指数幂:任何不等于零的数的-n (n 为正整数)次幂,等于这个数的n 次幂的倒数.3.科学记数法:可以利用10的负整数次幂,用科学记数法表示一些绝对值较小的数,即将它们表示成a ×10-n 的形式,其中n 是正整数,1≤∣a ∣<10.二.自主学习类似地,我们可以利用10的负整数次幂,用科学记数法表示一些绝对值较小的数,即将它们表示成a ×10-n 的形式,其中n .是正整数,.....1.≤∣..a .∣<..10....例如,0.000021可以表示成2.1×10-5.三.练习(一)基础1.计算(1)810÷810; (2)10-2; (3)(-0.1)0; (4)2-2;2.用科学记数法表示:(1)0.000 03; (2)-0.000 0064; (3)0.000 0314; (4)2013 000.3.用科学记数法填空:(1)1秒是1微秒的1000000倍,则1微秒=_______秒;(2)1毫克=_________千克; (3)1微米=_________米; (4)1纳米=_________微米;(5)1平方厘米=_________平方米; (6)1毫升=_________立方米.(二)巩固4.计算:(1)101)1)-+ (2)0221(()(2)2--+---(3)16÷(-2)3-(31)-1+(3-1)05.用小数表示下列各数:(1)10-4; (2)2.1×10-5.6.用小数表示下列各数:(1)-10-3×(-2) (2)(8×105)÷(-2×104)3(三)提高7.计算下列各式,并且把结果化为只含有正整数指数幂的形式:(1)(a -3)2(ab 2)-3; (2)(2mn 2)-2(m -2n -1)-3.8.计算)102.3()104(36⨯⨯⨯- 2125)103()103(--⨯÷⨯。
《零指数幂与负整数指数幂》导学案一、学习目标1、理解零指数幂和负整数指数幂的意义。
2、掌握零指数幂和负整数指数幂的运算法则,并能熟练进行计算。
3、能运用零指数幂和负整数指数幂的知识解决实际问题。
二、学习重难点1、重点(1)零指数幂和负整数指数幂的意义和运算法则。
(2)运用零指数幂和负整数指数幂的法则进行计算。
2、难点(1)零指数幂和负整数指数幂的意义的理解。
(2)负整数指数幂法则的推导和应用。
三、知识回顾1、正整数指数幂的运算法则(1)同底数幂相乘:$a^m×a^n =a^{m+n}$(m、n 为正整数)(2)幂的乘方:$(a^m)^n = a^{mn}$(m、n 为正整数)(3)积的乘方:$(ab)^n = a^n b^n$ (n 为正整数)(4)同底数幂相除:$a^m÷a^n = a^{mn}$(a≠0,m、n 为正整数,且 m>n)2、用科学记数法表示绝对值大于 10 的数:$a×10^n$,其中$1≤|a|<10$,n 为正整数,n 等于原数的整数位数减 1。
四、新课导入在前面的学习中,我们已经掌握了正整数指数幂的运算。
那么,当指数为 0 或者是负整数时,又该如何计算呢?这就是我们今天要学习的零指数幂与负整数指数幂。
五、零指数幂1、思考:如果按照同底数幂的除法法则,$a^m÷a^m$(a≠0,m 为正整数)应该等于多少?因为同底数幂相除,底数不变,指数相减,所以$a^m÷a^m = a^{m m} = a^0$。
又因为被除数和除数相等,商为 1,所以$a^0 = 1$(a≠0)。
2、零指数幂的定义:任何非零数的零次幂都等于 1,即$a^0 =1$(a≠0)。
3、注意:0 的 0 次幂没有意义。
六、负整数指数幂1、思考:如果按照同底数幂的除法法则,$a^m÷a^n$(a≠0,m、n 为正整数,且 m<n)应该等于多少?$a^m÷a^n = a^{m n}$,因为 m<n,所以 m n 是负数。
零指数幂与负整数指数幂计算题50道
摘要:
1.零指数幂的定义与性质
2.负整数指数幂的定义与性质
3.零指数幂与负整数指数幂的计算方法
4.50 道计算题的解答
正文:
零指数幂是指一个数的0 次方,它的值等于1。
这是数学中的基本定义,无论这个数是多少,它的0 次方都等于1。
例如,2 的0 次方等于1,3 的0 次方也等于1。
负整数指数幂是指一个数的负整数次方,它的值等于这个数的倒数的正整数次方。
例如,2 的-3 次方等于1/2 的3 次方,即1/8。
同样,3 的-4 次方等于1/3 的4 次方,即1/81。
对于零指数幂和负整数指数幂的计算,主要是记住它们的定义和性质,然后根据定义进行计算。
需要注意的是,0 的任何正整数次方都等于0,而0 的0 次方等于1。
接下来,我将提供50 道零指数幂与负整数指数幂的计算题,并给出解答。
由于篇幅原因,这里只列举前5 道题目及其解答,剩余的题目请参考附件。
题目1:2 的0 次方等于?
解答1:1
题目2:3 的-3 次方等于?
解答2:1/27
题目3:0 的3 次方等于?
解答3:0
题目4:-2 的-2 次方等于?
解答4:1/4
题目5:-3 的-4 次方等于?
解答5:1/81
对于剩余的题目,读者可以根据零指数幂和负整数指数幂的定义与性质进行计算。
零指数幂与负整数指数幂优秀教案在数学教学中,指数运算是一个重要的概念。
指数运算的结果包括正整数指数幂、零指数幂和负整数指数幂。
本教案将重点介绍零指数幂和负整数指数幂的特点及运算规律,以便帮助学生更好地理解和应用这些概念。
一、零指数幂的特点和运算规律1. 零的任何正整数指数幂都等于1:0ⁿ=1,其中n为任意正整数。
2. 零的零指数幂是没有定义的:0⁰。
3. 零的负整数指数幂也是没有定义的。
二、负整数指数幂的特点和运算规律1. 任何非零数的负整数指数幂等于该数的倒数的正整数指数幂:a⁻ⁿ=1/aⁿ,其中a为非零数,n为任意正整数。
2. 任何数的负整数指数幂等于倒数的负整数指数幂的倒数:a⁻ⁿ=1/(a⁻ⁿ),其中a为非零数,n为任意正整数。
3. 非零数的负整数指数幂和零的负整数指数幂都是没有定义的。
三、综合运用1. 零的正整数次幂为1:0ⁿ=1,其中n为正整数。
2. 零的负整数次幂没有定义。
3. 非零数的正整数次幂和负整数次幂之间的运算规律:aⁿ⁺ᵐ=aⁿ⋅aᵐ,aⁿ/aᵐ=aⁿ⁻ᵐ,其中a为非零数,n和m为任意整数。
四、教学活动设计为了帮助学生更好地理解和应用零指数幂和负整数指数幂的概念和运算规律,可以设计以下教学活动:1. 活动一:探索零指数幂的特点- 让学生观察并讨论0⁰和0ⁿ(n为正整数)的结果是否有定义,引导学生发现零指数幂的特点。
- 给学生一些数学表达式,让他们判断其中哪些是零指数幂,哪些不是,并解释原因。
- 引导学生总结出零指数幂的运算规律。
2. 活动二:探索负整数指数幂的运算规律- 让学生观察并讨论a⁻ⁿ和1/aⁿ(a为非零数,n为正整数)的关系,引导学生发现负整数指数幂的运算规律。
- 引导学生举例验证负整数指数幂的运算规律,并总结出相应的运算规律。
3. 活动三:综合运用零指数幂和负整数指数幂- 给学生一些综合性的数学表达式,让他们运用所学的知识化简、计算或解释结果。
- 设计一些小组合作活动,让学生在合作中探索更多的数学问题,比如让他们找出一组数,使得其中的数的2ⁿ结果为0或负数。
零指数幂与负整数指数幂计算题50道(实用版)目录1.零指数幂的计算2.负整数指数幂的计算3.零指数幂与负整数指数幂的转换4.50 道计算题的解答方法正文零指数幂与负整数指数幂是代数学中的基本概念,它们在数学运算中占有重要的地位。
零指数幂指的是任何数的零次方都等于 1,例如:a^0=1(a≠0)。
而负整数指数幂是指一个数的负整数次方等于这个数的倒数的正整数次方,例如:a^-n=1/a^n(a≠0,n 为正整数)。
在这篇文章中,我们将介绍如何计算零指数幂与负整数指数幂,并提供 50 道相关的计算题及其解答方法。
首先,我们来了解零指数幂的计算。
对于任何非零数 a,其零次方等于 1,即 a^0=1。
需要注意的是,当 a=0 时,a 的零次方没有定义。
接下来,我们看看负整数指数幂的计算。
当一个非零数 a 的负整数次方时,等于这个数的倒数的正整数次方,即 a^-n=1/a^n。
例如,2 的 -3 次方等于 1/(2^3)=1/8。
需要注意的是,当 a=0 时,a 的负整数次方没有定义。
在实际计算过程中,零指数幂与负整数指数幂之间可以相互转换。
例如,a^0=1 可以转换为 a^-1=1/a,而 a^-n=1/a^n 可以转换为a^n=1/a^-n。
现在,我们来解答 50 道零指数幂与负整数指数幂的计算题。
这里列举几道题目作为示例:1.计算 2^0答案:12.计算 3^-2答案:93.计算 (-2)^0答案:14.计算 (-3)^-3答案:-1/275.计算 5^0答案:16.计算 (-4)^-4答案:1/256通过以上示例,我们可以发现零指数幂与负整数指数幂的计算方法。
对于零指数幂,任何非零数的零次方都等于 1;对于负整数指数幂,一个数的负整数次方等于这个数的倒数的正整数次方。
在实际计算过程中,我们可以根据这些规律进行计算。
总之,零指数幂与负整数指数幂是代数学中的基本概念,它们在数学运算中具有重要意义。
通过理解它们的计算方法,我们可以轻松地解答相关的题目。