磁路与铁心线圈电路
- 格式:ppt
- 大小:1.49 MB
- 文档页数:27
第一章 磁路和电路基础知识电路是由电气元件和设备组成的总体。
它提供了电流通过的途径,进行能量的转换、 电能的传输和分配,以及信号的处理等。
例如,发电机将机械能转换为电能:电动机将电 能转换成机械能:变压器和配电线路把电能分配给各用电设备:电子放大器或磁放大器可 把所施加的信号经过处理后输出。
一台大型工程机械的电路是由若干简单电路组成的。
因此,掌握简单电路的规律、特 点和分析方法是学懂整机电路并指导实践的必要基础。
为了满足初学电工者的要求和节省 查阅参考书的时间,本章对大型工程机械电路中必要的磁路和电路基础知识有重点地作了 介绍。
1.1 磁路和磁化电和磁是紧密相关的,电流能产生磁场,而变动的磁场或导体切割磁力线又会产生电 动势。
初学电工者往往只注意电而不重视磁。
其实在很多情况下没有磁路知识是不可能学 懂电路的,例如电机、变压器、互感器、接触器和磁放大器等的工作原理都与磁密切相关。
图1.1是一个均匀密绕的空心环形线圈,匝数为 。
当电流I 通过线圈时,在环形线圈内就产生磁场。
环内磁力线是一些以o 为圆心的同心圆,其方向可用右手螺旋定则确定。
磁力线通过的路径称为磁路,环形线圈的磁路是线圈所包围的圆环。
图1.1 环形线圈(一)磁感应强度描述某点磁场强弱和方向的物理量称为磁感应强度。
它不但有大小而且有方向,是一个矢量。
它的方向与该点的磁力线方向一致。
环形线圈内中心线上P 点的磁感应强度lIw r Iw B μπμ==2 (1.1) 式中 μ --表征磁路介质对磁场影响的 物理量,叫做导磁率: r --P 点到圆心的距离:l --磁路的平均长度。
(二)磁通为了描述磁路某一截面上的磁场情况,把该截面上的磁感应强度平均值与垂直于磁感应强度方向的面积s 的乘积称为通过这块面积的磁通,即Bs =φ (1.2)(三)磁场强度为了排除介质对磁场的影响,使计算更加方便,引入磁场强度这个物理量,其定义是μB H =(1.3)环形线圈中P 点的磁场强度为 lIw BH ==μ (1.4) (四)磁势环形线圈中的磁通是因为在w 匝的线圈中通过电流I 而产生的,所以仿照电路中电势的意义把w 与I 的乘积称为磁势[]Iw F = (1.5)(五)磁阻描述磁路对磁通阻碍作用大小的物理量称为磁阻。
什么是磁路?什么是电路?电路与磁路的区别我们首先来看两个概念:磁路和电路。
那么什么是磁路,什么是电路呢,只有搞清楚这两个概念是什么,我们才能分析二者之间到底有什么区别。
我们先来看什么是电路:在电动势或者电压的作用下,电流所流经的路径叫电路。
电路的组成是由电源、负载和开关三部分结构。
而电路又分为直流电路和交流电路。
流经电路的电流的大小和方向不随时间变化的电路,叫做直流电路。
流经电路的电流的大小和方向随时间变化的电路,叫做交流电路。
看完了电路,我们再来讲讲磁路。
当通电线圈中具有铁芯时,磁动势所产生的磁通,主要集中在由铁芯所规定的路径内,这种路径就叫做磁路。
而磁路也是分为直流磁路和交流磁路。
由直流电流励磁的磁路,叫做直流磁路,由交流电流励磁的磁路,叫做交流磁路。
电路与磁路相同点确实没有什么可说的。
在电路中,电流是电动势产生的,在磁路中,磁通是由磁动势产生的。
在电路中,电流经过电阻便产生电压降,在磁路中,磁通经过磁阻便产生磁压降。
在电路中,用欧姆定律来表示电流、电阻和电压降之间的关系,在磁路中,用与电路相似的磁路欧姆定律来表示磁通、磁阻和磁动势之间的关系。
但是,电路与磁路二者有本质上的区别,主要区别如下:a.在电路中,没有电动势时,电流等于零。
而在磁路没有磁动势时,由于磁滞现象,总是或多或少地存在剩磁。
b.电流代表电荷的移动,而磁通却不代表任何质点移动。
磁通通过滋阻时,不象电流通过电阻那样要消耗能量,维持恒定磁通也并不需要消耗任何能童。
因此,在电路中可以有断路情况,在磁路中却没有断路的情况,只要有磁动势存在,总会引起相应的磁通,磁通总是连续的。
c.由于铁磁材料具有磁饱和现象,所以磁路的磁阻都是非线性,这与一般情况下电路电阻都是线性电阻是不一样的。
因此,磁路欧姆定律一般只能用来对磁路进行定性分析。
d.在电路中,导电材料的电导率一般比绝缘材料的电导率大儿千万倍以上,所以电路的漏电非常小,完全可以忽略不计。
在磁路中,铁磁材料的磁导率一般比非铁磁材料的磁导率只大几千倍甚至更小。
变压器铁芯线圈电路的功率损耗
1 变压器的功率损耗
变压器是一种用于改变电力电压的设备,它通过将高电压输入转
换为低电压输出来提供能量的传递,以满足特定的应用要求。
在变压
器中,铁心线圈电路用于将高压电流转换为低压电流。
然而,在变压
器中使用铁芯线圈电路也会产生功率损耗。
2 功率损耗的原因
铁芯线圈电路的功率损耗主要由两部分组成:磁损耗和电损耗。
磁损耗是通过磁饱和和铁芯损耗产生的,是指截止电感铁芯在开路情
况下物理损失的部分。
铁芯损耗是指在准饱和磁路中,由于磁铁变形
而引起的铁芯内的热损失。
电损耗是由于铁芯铁氧体引入电路中而产
生的损耗。
3 功率损耗的减少
可以采取一些措施来减少铁芯线圈电路的功率损耗,如使用低损
耗线圈、晶体管密封及采用对称结构来改善电器的绝缘特性等。
另外,应当尽量减少铁芯的损耗,它是减轻线圈的磁损耗的有效手段,因为
它的电路阻抗会减少。
此外,应采取措施减少芯片温升,如选择高效
变压器,采用良好的散热装置和结构以改善变压器的散热特性,同时
对变压器进行定期维护也可以减少功率损耗。
4 结论
变压器铁芯线圈电路的功率损耗主要由磁损耗和电损耗组成,可
以采取一些措施来减少功率损耗,例如使用低损耗线圈、晶体管密封
以及采用对称结构来改善电器的绝缘特性。
它也可以减少铁芯的损耗,选择高效变压器,采用良好的散热装置和结构以改善变压器的散热特性,同时对变压器进行定期维护也可以减少功率损耗。
电路与磁路实验报告1. 了解电路和磁路的基本概念和特性。
2. 掌握电路和磁路的实验方法和实验装置。
3. 分析电路和磁路的实验结果,验证电路和磁路的理论知识。
实验仪器:1. 电源2. 电流表、电压表3. 变压器4. 电阻箱5. 磁铁6. 铁芯线圈7. 硅钢片8. 各种导体实验原理:电路是由电源、导线和电器设备组成的,可以导电进行电流的闭合回路。
磁路是由铁芯、线圈和磁铁组成的,可以传导磁通的回路。
实验步骤:1. 电路实验步骤一:搭建一个简单的串联电路,包括电源、电阻和电流表。
步骤二:改变电阻的大小,测量电流和电压值。
步骤三:绘制电流随电阻变化的曲线图。
2. 磁路实验步骤一:将铁芯线圈连接到直流电源上。
步骤二:在铁芯线圈的两端接入电压表。
步骤三:改变电压的大小,测量电流和磁感应强度的值。
步骤四:绘制电流随磁感应强度变化的曲线图。
实验结果和讨论:1. 电路实验结果分析:根据电路的欧姆定律,电流与电压成正比,与电阻成反比。
通过实验可以得到电流与电压的关系曲线,验证了欧姆定律的正确性。
2. 磁路实验结果分析:根据磁路的法拉第定律,磁感应强度与电流成正比,与铁芯长度成反比。
通过实验可以得到电流与磁感应强度的关系曲线,验证了法拉第定律的正确性。
实验总结:通过本次实验,我们对电路和磁路的基本概念和特性有了更深入的了解。
掌握了基本的电路和磁路实验方法和实验装置的使用。
通过分析实验结果,我们验证了电路和磁路的理论知识,加深了对电路和磁路的掌握程度。
实验过程中,我们还发现了一些实验误差和改进的方法,提高了实验的准确性和可靠性。
实验过程中的困难与挑战也加深了我们对电路和磁路的理解和应用能力,为今后的研究和实践积累了经验。
磁保持继电器内部结构
磁保持继电器是一种电磁装置,用于控制电路中的电流流动。
它由
内部结构所组成,这个结构起着关键的作用,实现开关的功能。
磁保持继电器内部结构主要包括以下部分:
1.磁路系统:磁保持继电器的磁路系统包括铁芯、线圈和磁导路径。
铁芯是由软磁材料制成的,通过其内部传导磁场。
线圈通常由导线绕
制而成,当通电时产生磁场。
磁导路径将磁场引导到合适的位置,使
其产生力。
2.触点系统:触点是磁保持继电器中起关键作用的部分。
它通常由
固定触点和可动触点组成。
当线圈通电时,磁场引起可动触点的吸引,使之与固定触点接触,形成电路通断。
这种触点系统能够承受较大的
电流,并具有良好的切换特性。
3.辅助电路:为了进一步增强磁保持继电器的功能,一些辅助电路
也被添加到内部结构中。
例如,过载保护电路、继电器状态指示灯、
电气间隔器等。
辅助电路的添加可以使继电器更安全可靠,并提供额
外的功能。
总体而言,磁保持继电器内部结构的设计旨在实现可靠的开关控制。
通过使用合适的材料和构造,确保其正常工作并承受一定的负荷。
这
样的结构使得磁保持继电器在各种电路中被广泛应用,在电力系统、
自动化控制和电子设备中发挥重要作用。
同一铁芯上的两个线圈原理
铁芯是电感器中的重要部件,由磁导率高的磁性材料制成。
在同一铁芯上制作两个线圈可以实现许多电路和应用的功能,例如互感器、变压器和共模电感等。
同一铁芯上的两个线圈的原理基于电磁感应和磁耦合。
当两个线圈紧贴在同一铁芯上时,它们共享相同的磁路,这种磁路称为磁耦合。
当一个线圈中的电流变化时,它会在铁芯中产生磁场,这个磁场会穿过铁芯并传递到另一个线圈中。
当第二个线圈中有变化的磁场穿过它时,就会在线圈中产生电势差,即电感作用。
在互感器中,通常称为主线圈和次级线圈。
主线圈被连接到电源和电路中,而次级线圈则被用作检测电路中的信号。
通过调整主线圈中的电流,可以改变磁场的强度和方向,从而改变次级线圈中的电势差。
在变压器中,通常有两个或更多的线圈,它们位于同一铁芯上。
当一个线圈中的电流变化时,它产生的磁场穿过铁芯,引起其他线圈中的电势差。
通过不同数量的线圈来控制输入和输出的电压,从而实现变压器的功能。
在共模电感中,两个线圈被用于电路中的电源滤波和干扰抑制。
一个线圈作为进入电源的电流路径,而另一个线圈作为从电源返回的电流路径。
这对线圈的磁耦合显著地抑制了噪音和干扰。
在实际应用中,设计和制造具有特定电感值和耦合系数的同一铁芯上的两个线圈是复杂的,因此需要精确的计算和调整。
同时,正确的绕线和组装也很重要,以确保最小化电感器中的能量损耗和干扰。
第六章磁路与铁心线圈电路★主要内容1、磁场的基本物理量2、磁性材料的磁性能3、磁路及其基本定律4、交流铁心线圈电路5、变压器★教学目的和要求1、理解描述磁场性质的四个有关物理量(磁感应强度、磁通、磁导率和磁场强度)的意义,并熟记它们的单位和符号,了解铁磁材料的磁化、磁滞的物理意义,掌握铁磁材料磁滞回线的概念,了解两类铁磁质的磁性能(磁滞回线的不同特点)和用途。
2、了解磁路的基本概念;了解交流铁心线圈电路的基本电磁关系,掌握交流铁芯线圈端电压与线圈磁通的关系(U≈E=4.44NfΦm)。
3、了解变压器的基本构造、工作原理、绕组的同极性端,掌握理想变压器的三种变换特性,并能利用这些特性对含有变压器的电路进行熟练地计算。
★学时数:6学时★重难点重点:①磁路基本定律、交流铁心线圈;②变压器的三个主要作用难点:①交流铁心线圈电路分析;②变压器与负载的关系★本章作业布置:课本习题P197—199页,6.1.4,6.3.2,6.3.4,6.3.5,6.3.6第六章 磁路与铁心线圈电路本章学习变压器的工作原理。
变压器是一种利用磁路传送电能,实现电压、电流和阻抗变换的重要设备。
§6.1 磁路及其分析方法在电机、变压器及各种铁磁元件中常用铁磁材料做成一定形状的铁心,铁心的磁导率比周围空气或其他物质高得多,因此铁心线圈中电流产生的磁通绝大部分经过铁心而闭合,这种人为造成的磁通闭合路径,称为磁路。
如图7.3-1和图6.1-1分别表示四极直流电机和交流接触器的磁路。
+-一、磁场的基本物理量这部分内容在普物中已基本讲过,这里简单复习一下。
电磁学中已讲过了,电流会产生磁场,通有电流的线圈内部及周围都有磁场存在。
在变压器、电动机等电工设备中,为了用较小的电流产生较强的磁场,通常把线圈绕在铁磁材料制成的铁心上。
由于铁磁性材料的导磁性能比非磁性材料好的多,因此,当线圈中有电流流过时,产生的磁通,绝大部分集中在铁心中,沿铁心面闭合,这部分铁心中的磁通称为主磁通,用Φ表示。