第六章 芯片的数据分析
- 格式:ppt
- 大小:261.50 KB
- 文档页数:19
基因表达谱芯片的数据分析基因芯片数据分析就是对从基因芯片高密度杂交点阵图中提取的杂交点荧光强度信号进行的定量分析,通过有效数据的筛选和相关基因表达谱的聚类,最终整合杂交点的生物学信息,发现基因的表达谱与功能可能存在的联系。
然而每次实验都产生海量数据,如何解读芯片上成千上万个基因点的杂交信息,将无机的信息数据与有机的生命活动联系起来,阐释生命特征和规律以及基因的功能,是生物信息学研究的重要课题[1]。
基因芯片的数据分析方法从机器学习的角度可分为监督分析和非监督分析,假如分类还没有形成,非监督分析和聚类方法是恰当的分析方法;假如分类已经存在,则监督分析和判别方法就比非监督分析和聚类方法更有效率。
根据研究目的的不同[2,3],我们对基因芯片数据分析方法分类如下。
(1)差异基因表达分析:基因芯片可用于监测基因在不同组织样品中的表达差异,例如在正常细胞和肿瘤细胞中;(2)聚类分析:分析基因或样本之间的相互关系,使用的统计方法主要是聚类分析;(3)判别分析:以某些在不同样品中表达差异显著的基因作为模版,通过判别分析就可建立有效的疾病诊断方法。
1 差异基因表达分析(difference expression, DE)对于使用参照实验设计进行的重复实验,可以对2样本的基因表达数据进行差异基因表达分析,具体方法包括倍数分析、t检验、方差分析等。
1.1倍数变化(fold change, FC)倍数分析是最早应用于基因芯片数据分析的方法[4],该方法是通过对基因芯片的ratio值从大到小排序,ratio 是cy3/cy5的比值,又称R/G值。
一般0.5-2.0范围内的基因不存在显著表达差异,该范围之外则认为基因的表达出现显著改变。
由于实验条件的不同,此阈值范围会根据可信区间应有所调整[5,6]。
处理后得到的信息再根据不同要求以各种形式输出,如柱形图、饼形图、点图等。
该方法的优点是需要的芯片少,节约研究成本;缺点是结论过于简单,很难发现更高层次功能的线索;除了有非常显著的倍数变化的基因外,其它变化小的基因的可靠性就值得怀疑了;这种方法对于预实验或实验初筛是可行的[7]。
实验6基因芯片数据处理分析与GO分析实验背景:基因芯片技术是通过检测靶基因在不同样本中的表达量差异,并分析其生物信息学特性,来揭示基因调控网络与疾病发生发展的过程的一种高通量技术。
基因芯片数据处理和分析是基因芯片研究的关键步骤之一、通过对基因芯片数据进行预处理、差异分析、聚类分析等,可以获得与研究目标相关的基因列表,并进一步进行GO(Gene Ontology)的功能富集分析,揭示差异表达基因的功能特性。
实验目的:通过基因芯片数据处理分析和GO功能富集分析,获得与研究目标相关的差异表达基因,并揭示其在生物学功能、分子过程和细胞组分方面的富集情况,为后续的生物学实验和机制研究提供理论依据。
实验步骤:1.基因芯片数据的预处理:包括数据导入、数据清洗、标准化和基因注释等。
首先,将基因芯片数据导入到数据分析软件中,然后针对数据质量进行清洗,剔除异常值和低质量的基因。
接下来,对基因表达谱数据进行归一化处理,保证不同芯片之间的数据可比性。
最后,对基因进行注释,将基因名与其对应的功能注释进行关联。
2.差异分析:通过比较不同组别之间的基因表达差异,筛选出差异表达基因。
差异分析方法包括t检验、方差分析等。
根据统计学中的显著性水平,设定p值的阈值,将差异表达基因筛选出来。
3.聚类分析:将差异表达基因按照其表达谱进行聚类分析,可将具有相似表达模式的基因聚集在一起。
常用的聚类方法包括层次聚类和K均值聚类等。
实验结果与分析:通过基因芯片数据处理和分析,我们得到了与研究目标相关的差异表达基因。
结合GO分析的结果,我们可以进一步了解这些差异表达基因在生物学功能、分子过程和细胞组分方面的富集情况。
例如,在生物学过程方面,我们可以得知这些基因是否与细胞增殖、凋亡、信号传导等生物学过程相关;在分子功能方面,我们可以了解这些基因是否具有催化活性、结合能力等分子功能特性;在细胞组分方面,我们可以了解这些基因在细胞核、细胞质、细胞膜等细胞组分的分布情况。
芯片创新教育系列大数据分析芯片近年来,大数据技术的快速发展促使了各行各业对于数据分析的需求与重视。
而芯片作为信息技术的核心,对于大数据分析的支持起着至关重要的作用。
芯片创新教育系列大数据分析芯片应运而生,为数据分析提供了更高效、更精确的解决方案。
一、芯片创新教育系列大数据分析芯片的定义及特点芯片创新教育系列大数据分析芯片是一种专为大数据分析任务设计的高性能芯片,主要用于数据处理、数据存储和数据传输等方面。
相较于传统的通用芯片,其具备以下几个显著特点:1. 高性能:芯片创新教育系列大数据分析芯片采用了先进的制造工艺和设计理念,使得其在数据处理速度和计算能力方面具备了更强大的优势。
无论是复杂的数据计算还是庞大的数据处理,都能够得到迅速而准确的结果。
2. 低功耗:大数据分析任务通常对功耗有较高的要求。
芯片创新教育系列大数据分析芯片通过优化设计和节能技术,实现了在满足高性能的同时,尽可能地降低功耗。
这不仅有利于降低企业的运营成本,还能节约能源资源。
3. 专用性:芯片创新教育系列大数据分析芯片在设计之初就针对大数据分析场景进行了优化。
它集成了大量的硬件加速器和专用指令集,能够灵活、高效地处理各类数据分析任务。
与传统的通用芯片相比,其在数据处理效率和资源利用率上都有明显的优势。
二、芯片创新教育系列大数据分析芯片的应用领域芯片创新教育系列大数据分析芯片广泛应用于诸多领域,包括但不限于以下几个方面。
1. 商业智能:商业智能是企业做出决策的重要依据,而大数据分析则是商业智能的核心能力之一。
芯片创新教育系列大数据分析芯片能够高效地处理和分析大规模数据,提供准确的数据支持,帮助企业快速洞察市场,发现商机。
2. 金融风险控制:金融行业需要对大量的交易数据进行实时分析,以降低风险和提升效率。
芯片创新教育系列大数据分析芯片通过高性能的数据处理能力,能够帮助金融机构快速、准确地掌握市场动态,进行风险评估和决策分析。
3. 医疗健康:医疗健康领域的大数据应用也日益增多。
芯片技术的芯片数据分析:芯片分析概述随着基因芯片技术的普及,基因表达数据大量产生,如何充分利用这些数据并从中提取有用的生物学知识,是生物信息学所面临的一个迫切问题。
简要来说,生物芯片数据分析流程大体可分成以下几个阶段。
扫描与图像识别一张芯片完成杂交实验,经扫描仪读取后生成图形文件,经过划格(Griding)、确定杂交点范围(Spot Identifying)、过滤背景噪音(Noise Filtering)等图像识别过程,才能最终得到基因表达的荧光信号强度值,并以列表形式输出。
数据预处理由于杂交荧光标记效率或检出率不平衡、位置效应等多种因素,原始提取信号需要进行均衡和修正处理后,才能进一步分析。
这一步通常需要先进行背景校正(Background Correction),去除不均匀背景光强影响,然后再进行归一化(Normalization)处理。
一般来说,对于单色DNA芯片而言,这一步相对容易;而双色DNA芯片则需要考虑不同染料(Cy3、Cy5)对于mRNA染色效率的差异。
数据分析在前一步基础上,需要根据基因表达状况与事先设定的条件,对基因进行分类处理。
具体来说,又可分为寻找差异表达基因和寻找共表达基因两种。
所谓差异表达基因(Differen-tially Expressed Genes),是指在预先设定的不同实验条件下,表达量出现显著差异的基因。
而共表达基因(Co-expressed Genes)则是指在不同实验条件下,表达模式或表达量相似的基因。
实践中,在没有先验知识的情况下,一般是通过聚类来寻找这些基因。
如果事先已经有了一组明确的训练集,也可以通过分类来寻找与这组基因具有类似表达模式的其他基因。
所谓聚类,也称无监督分类(Un-supervised Classification),是指在未设定先验类别的情况下,根据表达模式或表达值相似程度,将基因划分为若干组。
而分类则是指在给定已经先验标明类别(如肿瘤、健康)训练集前提下,根据表达模式或表达值相似程度,将被检基因或样本归入预先设定的类别中。