谐振功率放大器的工作原理剖析
- 格式:ppt
- 大小:1.64 MB
- 文档页数:13
高频谐振功率放大器的基本工作原理高频谐振功率放大器是一种常用于无线通信和射频系统中的放大器,其基本工作原理是通过谐振电路和功率放大器的相互配合来实现信号的放大。
本文将介绍高频谐振功率放大器的基本构成和工作原理。
一、高频谐振功率放大器的构成高频谐振功率放大器主要由三个部分组成:输入谐振电路、功率放大电路和输出谐振电路。
输入谐振电路是用来接收输入信号并将其滤波、匹配到功率放大器的。
它通常由电容和电感组成的谐振回路构成,能够选择性地传输特定频率的信号。
功率放大电路是用来放大输入信号的。
它通常采用晶体管或管子放大器等器件,通过输入电压的调节来实现信号的放大,同时也可以调节放大器的增益和输出功率。
输出谐振电路是用来匹配和传输已放大的信号到输出负载的。
它通常也由谐振回路组成,能够将功率放大后的信号传输到负载上。
二、高频谐振功率放大器的工作原理高频谐振功率放大器的工作原理基于谐振电路的特性和功率放大器的线性放大特性。
首先,输入信号经过输入谐振电路后,可以选择性地通过特定频率的谐振回路,其他频率的信号会被滤波掉。
这样就能保证只有特定频率的信号能够进入功率放大器进行放大。
然后,经过谐振回路的输入信号进入功率放大电路。
功率放大电路通常采用线性放大器,其输入电压的大小决定了输出信号的放大倍数。
通过调节输入电压的大小,就可以实现对输出信号的放大程度的控制。
最后,放大后的信号经过输出谐振电路,并传输到输出负载上。
输出谐振回路起到了匹配和传输的作用,能够将功率放大后的信号有效地传输给负载。
三、高频谐振功率放大器的优势高频谐振功率放大器具有以下优势:1. 高效性:通过谐振电路的匹配和能量传输,以及功率放大器的线性放大特性,高频谐振功率放大器能够实现高效率的信号放大,提高系统的整体效能。
2. 稳定性:谐振回路能够选择性地传输特定频率的信号,并且能够稳定地工作在谐振状态下,使得输出信号的幅度和频率更加稳定。
3. 可调性:通过调节输入信号的电压,可以实现对输出信号的放大倍数和功率的可调。
课题:4.1 概述4.2 谐振功率放大器的工作原理教学目的:1.了解高频功率放大器的基本概念和类型2.掌握高频谐振功率放大器的特点3.掌握高频谐振功率放大器的工作原理教学重点:高频功率放大器的基本概念和类型高频谐振功率放大器的特点教学难点:高频谐振功率放大器的工作原理教学方法:讲授课时:2学时教学进程单元四功率放大器概述及电路4.1 概述顾名思义,高频功率放大器用于放大器高频信号并获得足够大的输出功率,常又称为射频功率放大器(Radio Frequency Power Amplifier)。
它广泛用于发射机、高频加热装置和微波功率源等电子设备中。
一、高频放大器的分类根据相对工作频带的宽窄不同,高频功率放大器可分为窄带型和宽带型两大类。
1. 窄带型高频功率放大器通常采用谐振网络作负载,又称为谐振功率放大器。
为了提高效率,谐振功率放大器一般工作于丙类状态或乙类状态,近年来出现了工作在开关状态的丁类状态的谐振功率放大器。
2. 宽带型高频功率放大器采用传输线变压器作负载。
传输线变压器的工作频带很宽,可以实现功率合成。
二、谐振功率放大器的特点1.采用谐振网络作负载。
2.一般工作在丙类或乙类状态。
3.工作频率和相对通频带相差很大。
4.技术指标要求输出功率大、效率高。
三、高频功率放大器的技术指标1.输出功率:PO2.效率:η3.功率增益:Ap4.2 谐振功率放大器的工作原理一、丙类谐振功率放大器电路电路图如4-1所示图4-1 丙类谐振功率放大器LC谐振网络为放大器的并联谐振网络。
谐振网络的谐振频率为信号的中心频率。
作用:滤波、匹配。
VBB:基极直流电压作用:保证三极管工作在丙类状态。
V BB 的值应小于放大管的导通电压Uon;通常取VBB≤0。
VCC:集电极直流电压作用:给放大管合理的静态偏置,提供直流能量。
二、丙类谐振功率放大器的工作原理ui→u BE→i B→i C→u Cui为余弦电压,可表示为u i=U im COSωc t则:u BE= V BB+u i= V BB+ U im COSωc t根据三极管的转移特性可得到集电极电流i C,为余弦脉冲波,如图4-2所示:图4-2 i C波形根据傅立叶级数的理论,i C可分解为:i c=Ico+iC1+i C2+i C3+………+i Cn+………式中:Ico为直流电流分量iC1为基波分量;i C1=I cm1COSωc tiC2为二次谐波分量;i C2=I cm2COS2ωc tiCn为n次谐波分量;i Cn=I cmn COSnωc t其中,它们的大小分别为:Ico=i Cmax·α0(θ)Icm1=i Cmax·α1(θ)Icmn=i Cmax·αn(θ)iCmax是i c波形的脉冲幅度。
谐振功率放大器的工作原理
1.谐振电路:谐振功率放大器通常由一个谐振电路和一个放大器组成。
谐振电路是一个能够在谐振频率上有较高阻抗、在其他频率上有较低阻抗
的电路。
它可以由电感器和电容器等元件组成。
谐振电路的谐振频率通常
与输入信号的频率相匹配。
2.输入信号:输入信号首先进入谐振电路,如果输入信号的频率与谐
振电路的谐振频率不匹配,谐振电路会对输入信号的通过产生阻抗。
仅当
输入信号的频率与谐振电路的谐振频率一致时,谐振电路的阻抗才会较低,从而使信号得以通过。
3.放大器:通过谐振电路的筛选,只有与谐振电路的谐振频率相匹配
的信号得以通过,进入放大器。
放大器会对输入信号进行放大处理。
放大
器可以采用不同的工作原理,例如晶体管、场效应管等。
它能够将输入信
号的幅度进行放大,使得输出信号的功率大于输入信号的功率。
4.输出信号:经过放大器放大后的信号被输出。
由于输入信号已经通
过谐振电路的筛选,使得仅有与谐振频率匹配的信号得以通过放大器,所
以输出信号的频率与输入信号的频率是相同的。
不同的是输出信号的幅度
更大,即实现了信号的放大。
总的来说,谐振功率放大器的工作原理就是通过谐振来选择输入信号
中与谐振频率匹配的信号,然后经过放大器进行放大处理,最终输出信号。
这种放大方式适用于对特定频率的信号进行放大,具有较高的放大效率和
较低的失真。
在一些需要对特定频率信号进行放大的应用中,如无线通信、射频放大等,谐振功率放大器得到了广泛的应用。
2.1谐振功率放大器的工作原理谐振功率放大器是一种常见的电子电路,用于放大输入信号的功率。
它的工作原理基于谐振现象和功率放大原理。
本文将详细介绍谐振功率放大器的工作原理,并探讨其在电子领域中的应用。
谐振功率放大器的工作原理可以分为两个关键部分:谐振电路和放大电路。
1. 谐振电路谐振电路是谐振功率放大器中起到关键作用的部分,它通过与输入信号的频率进行匹配来实现最大功率传输。
谐振电路通常由一个电感和一个电容组成,构成一个谐振回路。
谐振电路可以分为串联谐振和并联谐振两种形式。
(1)串联谐振电路串联谐振电路是指电感和电容串联连接的谐振回路。
在串联谐振电路中,当输入信号的频率接近谐振频率时,电感和电容的阻抗将呈现出共振状态,此时电路的阻抗最小。
而当输入信号的频率偏离谐振频率时,电路的阻抗将逐渐增大。
通过选择合适的电感和电容数值,可以使得输入信号在谐振频率附近得到最大功率传递。
(2)并联谐振电路并联谐振电路是指电感和电容并联连接的谐振回路。
在并联谐振电路中,当输入信号的频率接近谐振频率时,电感和电容的阻抗将呈现出共振状态,此时电路的阻抗最大。
而当输入信号的频率偏离谐振频率时,电路的阻抗将逐渐减小。
通过选择合适的电感和电容数值,可以使得输入信号在谐振频率附近得到最大功率传递。
2. 放大电路放大电路是谐振功率放大器中负责信号放大的部分,其主要目的是将输入信号的功率放大到更高的水平。
放大电路通常由一个或多个放大器组成,放大器可以采用各种不同的结构和技术,例如晶体管放大器、场效应管放大器等。
放大电路中的放大器将输入信号的功率进行放大,并输出到负载电路中。
放大器的设计需根据谐振电路的特性和需求来选择,以保证输出信号的质量和稳定性。
3. 谐振功率放大器的应用谐振功率放大器广泛应用于各个领域,特别是在射频和微波领域中。
它在通信领域中被用于信号放大和传输,可用于增强信号传输的距离和质量。
在雷达系统中,谐振功率放大器可用于提高雷达信号的功率,提高系统的探测距离和灵敏度。
高频谐振功率放大器实验报告一、实验目的本次实验的目的是理解高频谐振电路的工作原理,以及掌握高频谐振功率放大器的设计、测试和调试方法。
二、实验器材本次实验所需的器材有:1.信号发生器2.谐振电路3.功率放大器4.示波器5.负载三、实验原理1.高频谐振电路的原理高频谐振电路是利用电容和电感构成谐振回路,当电路频率与谐振频率相同时,电路呈现出较大的阻抗,使得谐振电路的输出电压和输出功率得到显著提高。
2.高频谐振功率放大器的原理高频谐振功率放大器是将谐振电路和功率放大器组合在一起,实现对输入信号的放大。
其输入信号经过谐振回路谐振后,输出到功率放大器,通过功率放大器进行放大,最终输出到负载。
四、实验过程1.搭建高频谐振功率放大器电路首先,将信号发生器连接到谐振电路的输入端,谐振电路的输出端连接到功率放大器的输入端,功率放大器的输出端连接到负载。
然后,根据实验要求调整信号发生器的频率,并观察谐振电路的输出波形,以及功率放大器的输出波形。
2.测试谐振频率通过改变电容和电感的数值,调整谐振电路的谐振频率。
在调整过程中,使用示波器观察输出波形,并记录谐振电路的谐振频率。
3.测试输出功率根据实验要求,改变负载的阻抗,测试功率放大器的输出功率,并记录输出功率随负载变化的曲线。
五、实验结果在实验过程中,我们对高频谐振功率放大器进行了测试和调试,并获得了以下实验结果:1.谐振频率为8MHz,放大倍数为10。
2.随着负载阻抗的增加,输出功率逐渐下降,最大输出功率为5W。
3.在工作频率附近,输出波形呈现出较高的稳定性和准确性。
六、实验结论通过本次实验,我们理解了高频谐振电路的工作原理,以及高频谐振功率放大器的设计、测试和调试方法。
并成功完成了谐振频率和输出功率的测试,为下一步的实验奠定了基础。
深圳大学实验报告课程名称:实验项目名称:学院:专业:指导教师:报告人:学号:班级:实验时间:实验报告提交时间:教务处制一、实验目的1.熟悉电子元器件和高频电子线路实验系统。
2.熟悉高频谐振功率放大器的基本工作原理,三种工作状态,功率、效率计算。
3.了解集电极电源电压VCC与集电极负载变化对谐振功率放大器工作的影响。
二、实验仪器:实验板2(丙类高频功率放大电路单元)双踪示波器AS1637函数信号发生器(用作为高频信号源)万用表三、实验原理:1.高频谐振功率放大器原理高频谐振功率放大器原理电路如图3-1所示。
图中,L2、L3是扼流圈,分别提供晶体管基极回路、集电极回路的直流通路。
R10、C9产生射极自偏压,并经由扼流圈L2加到基极上,使基射极间形成负偏压,从而放大器工作于丙类。
C10是隔直流电容,L4、C11组成了放大器谐振回路负载,它们与其他参数一起,对信号中心频率谐振。
L1、C8与其他参数一起,对信号中心频率构成串联谐振,使输入信号能顺利加入,并滤除高次谐波。
C8还起隔直流作用。
R12是放大器集电极负载。
2.高频谐振功率放大器电路高频谐振功率放大器电路如图3-2所示,其第3级部分与图3-1相同。
BG1、BG2是两级前置放大器,C2、C6用以调谐,A、B 点用作为这两级的输出测试点。
BG3为末级丙类功率放大器,当K4断开时可在C、D间串入万用表(直流电流档),以监测IC0值。
同时,E点可近似作为集电极电流iC波形的测试点(R10=10Ω,C9=100pF,因而C9并未对R10构成充分的旁路)。
K1~K3用以改变集电极负载电阻。
四、实验步骤:1.实验准备⑴在箱体右下方插上实验板2(丙类高频功率放大电路单元)。
接通实验箱12V5V电源指示灯点亮。
⑵把实验板2右上方的电源开关(K5)拨到上面的ON位置,就接通了+12V 电源(相应指示灯亮),即可开始实验。
⑶AS1637输出频率为10.7MHz、峰-峰值为80mV的正弦波,并连接到实验板2的输入(IN)端上。