数学文化之赵爽弦图
- 格式:doc
- 大小:108.00 KB
- 文档页数:2
第六讲勾股定理模型(二十三)——赵爽弦图模型◎结论1:在正方形ABCD的四边AB,BC,CD,DA上分别取点E,F,G,H,使得BE =CF=GD=AH,则四边形EHGF是正方形【证明】在正方形中,BE=CF=GD=AH,∴AE=BF=CG=HD,又∵∠A=∠B=∠C=∠D=90°,∴Rt△BEF≌Rt△CFG≌Rt△DGH≌Rt△AHE,∴EF=FG=GH=HE,∠AHE=∠BEF,∵∠AEH+∠AHE=90°∴∠AEH十∠BEF=90°∴∠FEH=90°∴四边形EHGF是正方形.◎结论2:如图所示,在正方形ABCD的四边AB,BC,CD,DA上分别取点E,F,G,H,使得BE=CF=GD=AH,此外EQ∥BC,HP∥CD,GO∥DA,FR∥AB,则四边形ORQP是正方形【证明】∵EQ∥BC,HP∥CD,GO∥DA,FR∥AB,且∠A=∠B=∠C=∠D=90°,∴四边形AHPE、四边形EBFQ、四边形FCGP、四边形HOGD均为长方形,∴△AEH≌△PHE≌△BFE≌△QEF≌△CGF≌△RFG≌△DHG≌△OGH,∴HP=EQ=FR=GO,EP=FQ=GR=HO,∴OP=PQ=QR=RO,且∠ROP=180°-∠HOG=90°,∴四边形ORQP为正方形.◎结论3:如图所示,在正方形ABCD的四边AB,BC,CD,DA上分别取点E,F,G,H,使得BE=CF=GD=AH,此外EQ∥BC,HP∥CD,GO∥DA,FR∥AB,则(1)S正方形ABCD =4SAEH∆十S正方形EFGH;(2)S正方形EFGH =4SHPE∆十S正方形OPQR;(3)S正方形ABCD -S正方形EFGH=S正方形EFGH-S正方形OPQR.(4)2S正方形EFGH =S正方形ABCD十S正方形OPQR注:常见的勾股数组合①3,4,5;②5,12,13;③6,8,10;④8,15,17;⑤9,12,15;1.(2022·福建·厦门双十中学思明分校八年级期中)如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),下列结论:①2249x y+=;②x﹣y=2;③2xy+4=49;④x+y=7.其中正确的结论是()A.①②B.②④C.①②③D.①③2.(2022·辽宁·丹东市第五中学七年级期末)如图是“赵爽弦图”,由4个全等的直角三角形拼成的图形,若大正方形的面积是13,小正方形的面积是1,设直角三角形较长直角边为b,较短直角边为a,则a b+的值是()A.7B.6C.5D.43.(2022·河南·郑州经开区外国语女子中学八年级期末)用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠地铺成一片,就是平面图形的镶嵌.如图是由四个完全相同的直角三角形和一个小正方形进行的镶嵌,其中直角三角形的一个角等于30°,若小正方形EFGH的边长为1,则大正方形ABCD的边长为()A.31+B.21+C.2D.51-1.(2022·北京十一晋元中学八年级期中)用四个全等的直角三角形镶嵌而成的正方形如图所示,已知大正方形的面积为49,小正方形的面积为4,若x,y表示直角三角形的两直角边长(x>y),给出下列四个结论正确的是_____.(填序号即可)x y+=;③2xy=45;④x+y=9.①x﹣y=2;②22492.(2022·河南南阳·八年级期末)把图①中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图②,③所示的正方形(图②中大正方形边长为5,图③中中间小正方形边长为1),则图①中菱形的面积为________.3.(2022·山西吕梁·八年级期末)如图是一幅赵爽弦图,利用此图可以证明勾股定理.现连接BE ,发现AB =BE ,若DE =1,则正方形ABCD 的面积为________.4.(2022·河南安阳·八年级期末)中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展.下图是3世纪我国汉代的数学家赵爽在注解《周髀算经》时给出的图案,人们称它为“赵爽弦图”.此图中四个全等的直角三角形可以围成一个大正方形,中空的部分是一个小正方形.如果大正方形的面积是25,小正方形的面积是1,则()2a b +的值是____________.1.(2022·四川宜宾·中考真题)我国古代数学家赵爽的“弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形(如图所示).若直角三角形的内切圆半径为3,小正方形的面积为49,则大正方形的面积为______.2.(2020·湖南娄底·中考真题)由4个直角边长分别为a ,b 的直角三角形围成的“赵爽弦图”如图所示,根据大正方形的面积2c 等于小正方形的面积2()a b -与4个直角三角形的面积2ab 的和证明了勾股定理222+=a b c ,还可以用来证明结论:若0a >、0b >且22a b +为定值,则当a _______b 时,ab 取得最大值.。
勾股定理之“赵爽弦图”模型【知识梳理】“赵爽弦图”的面积关系是中考常考的一种题型,一般出现在选择题、填空题中,如果能够记住面积之间的关系,那么做此类题时一定非常高效.【考点剖析】一.选择题(共2小题)1如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC= 6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图2所示的“数学风车”,则这个风车的外围周长是()A.76B.72C.68D.52【分析】由题意∠ACB为直角,利用勾股定理求得外围中一条边,又由AC延伸一倍,从而求得风车的一个轮子,进一步求得四个.【解答】解:依题意,设“数学风车”中的四个直角三角形的斜边长为x,则x2=122+52=169所以x=13所以“数学风车”的周长是:(13+6)×4=76.故选:A.【点评】本题是勾股定理在实际情况中应用,并注意隐含的已知条件来解答此类题.2“赵爽弦图”巧妙地利用面积关系证明了勾股定理.在如图所示的“赵爽弦图”中,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD,EFGH都是正方形.若AB=10,EF=2,则AH的长为()A.62B.82C.6D.8【分析】由题意得,设AH=DE=CF=BG=x,则AE=DF=CG=BH=2+x,再根据勾股定理即可求解.【解答】解:∵△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD,EFGH都是正方形.AB=10,EF=2,∴设AH=DE=CF=BG=x,则AE=DF=CG=BH=2+x,在Rt△AHB中,AB2=AH2+BH2,即102=x2+(x+2)2,整理得,x2+2x-48=0,解得:x1=6,x2=-8(不符合题意,舍去),∴AH=6.故选:C.【点评】本题考查了正方形的性质、勾股定理、全等三角形的性质,根据题意得到线段的关系,然后根据勾股定理列出方程并求解是解题关键.二.填空题(共4小题)3“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=107,大正方形的面积为57,则小正方形的边长为 7 .【分析】观察图形可知,小正方形的面积=大正方形的面积-4个直角三角形的面积,利用已知(a+b)2= 107,大正方形的面积为57,可以得出直角三角形的面积,进而求出答案.【解答】解:如图所示:∵(a+b)2=107,∴a2+2ab+b2=107,∵大正方形的面积为57,∴2ab=107-57=50,∴小正方形的面积为57-50=7,故小正方形的边长为7.故答案为:7.【点评】本题考查勾股定理的证明,解题的关键是熟练运用勾股定理以及完全平方公式,本题属于基础题型.4如图,由四个全等的直角三角形拼成“赵爽弦图”.Rt △ABF 中,∠AFB =90°,AF =4,AB =5.四边形EFGH 的面积是1.【分析】四边形EFGH 的面积=四边形ABCD 的面积-四个全等直角三角形的面积.直角三角形的面积需利用勾股定理求出直角边后解答.【解答】解:因为AB =5,所以S 正方形ABCD =5×5=25.Rt △ABF 中,AF =4,AB =5,则BF =52-42=3,所以S Rt △ABF =12×3×4=6,四个直角三角形的面积为:6×4=24,四边形EFGH 的面积是25-24=1.故答案为1【点评】此题主要考查了勾股定理,以及正方形面积、三角形面积,难易程度适中.5如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形E 的边长为7cm ,则图中五个正方形A 、B 、C 、D 、E 的面积和为98cm 2.【分析】根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积.【解答】解:设正方形A 、B 、C 、D 的边长分别是a 、b 、c 、d ,则正方形A的面积=a2,正方形B的面积=b2,正方形C的面积=c2,正方形D的面积=d2,又∵a2+b2=x2,c2+d2=y2,∴正方形A、B、C、D、E的面积和=(a2+b2)+(c2+d2)+72=x2+y2+72=72+72=98(cm2).即正方形A,B,C,D、E的面积的和为98cm2.故答案为:98.【点评】本题考查了勾股定理:直角三角形中,两直角边的平方和等于斜边的平方.熟练运用勾股定理进行面积的转换是解题关键.6图(1)是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.在Rt△ABC中,若直角边AC=6cm,BC=5cm,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图(2)所示的“数学风车”.则①图中小正方形的面积为1cm2 ;②若给这个“数学风车”的外围装饰彩带,则需要彩带的长度至少是76cm.【分析】①表示出小正方形的边长,然后利用正方形的面积公式列式计算即可得解;②利用勾股定理求出外围直角三角形的斜边,然后根据周长公式列式计算即可得解.【解答】解:图①,小正方形的面积=(6-5)2=1cm2;图②,外围直角三角形的斜边=122+52=13cm,周长=4×(13+6)=4×19=76cm,即,需要彩带的长度至少是76cm.故答案为:1cm2,76cm.【点评】本题考查了勾股定理的证明,读懂题目信息并准确识图是解题的关键.三.解答题(共3小题)7如图①,美丽的弦图,蕴含着四个全等的直角三角形.(1)如图①弦图中包含了一大,一小两个正方形,已知每个直角三角形较长的直角边为a.较短的直角边为b,斜边长为c,可以验证勾股定理;(2)如图②,将八个全等的直角三角形紧密地拼接,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1、S2、S3,若S1+S2+S3=16,则S2= 163 .【分析】(1)由图可知,小正方形的面积可直用边长乘边长,为(a -b )2,也可用大正方形的面积减去四个全等的直角三角形的面积,为c 2-4×12ab ,以此即可证明;(2)设正方形MNKT 的面积为x ,八个全等的直角三角形的面积均为y ,可得S 1=8y +x ,S 2=4y +x ,S 3=x ,则S 1+S 2+S 3=12y +3x =16,根据整体思想即可求出S 2=4y +x =163.【解答】(1)证明:S 小正方形=a -b 2=a 2-2ab +b 2,另一方面S 小正方形=c 2-4×12ab =c 2-2ab ,即a 2-2ab +b 2=c 2-2ab ,则a 2+b 2=c 2;(2)解:设正方形MNKT 的面积为x ,八个全等的直角三角形的面积均为y ,∵S 1+S 2+S 3=16,∴S 1=8y +x ,S 2=4y +x ,S 3=x ,∴S 1+S 2+S 3=12y +3x =16,∴4y +x =163,∴S 2=4y +x =163.故答案为:163.【点评】本题主要考查勾股定理的证明,利用数形结合的思想来答题是解题关键.8我们发现,用不同的方式表示同一图形的面积可以解决线段长度之间关系的有关问题,这种方法称为等面积法,这是一种重要的数学方法.请你用等面积法来探究下列两个问题:(1)如图1是著名的赵爽弦图,由四个全等的直角三角形拼成,请你用它来验证勾股定理;(2)如图2,在Rt △ABC 中,∠ACB =90°,CD 是AB 边上的高,AC =4,BC =3,求CD 的长度.【分析】(1)根据题意,我们可在图中找等量关系,由中间的小正方形的面积等于大正方形的面积减去四个直角三角形的面积,列出等式化简即可得出勾股定理的表达式.(2)先由勾股定理求出AB 的长,再根据三角形的面积求CD 的长即可.【解答】解:(1)∵大正方形面积为c 2,直角三角形面积为12ab ,小正方形面积为:(b -a )2,∴c 2=4×12ab +(a -b )2=2ab +a 2-2ab +b 2即c2=a2+b2.(2)在Rt△ABC中,∵∠ACB=90°,∴由勾股定理,得:AB=AC2+BC2=42+32=5∵CD⊥AB,∴S△ABC=12AC•BC=12AB•CD∴CD=4×35=125.【点评】本题考查了学生对勾股定理的证明和对三角形和正方形面积公式的熟练掌握和运用,属于基本题型.9图甲是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成,面积为74的正方形.在Rt△ABC中,若直角边BC=5,将四个直角三角形中边长为5的直角边分别向外延长一倍,得到图乙所示的“数学风车”.(1)这个风车至少需要绕着中心旋转90°才能和本身重合;(2)求这个风车的外围周长(图乙中的实线).【分析】(1)根据旋转角及旋转对称图形的定义结合图形特点作答.(2)在直角△ABC中,已知BC,AB,根据勾股定理即可计算AC的长,AC=7,故求得BD即可计算风车的外围周长.【解答】解:(1):∵360°÷4=90°,∴该图形绕中心至少旋转90度后能和原来的图案互相重合.(2)在直角△BCD中,BD为斜边,已知BC=5,AB=74,由勾股定理得:AC=7,CD=7+5=12,∴BD=52+122=13,∵风车的外围周长为4(BD+AD)=4(13+5)=72.【点评】本题考查了旋转角的定义及勾股定理在直角三角形中的运用,考查了全等三角形对应边相等的性质,本题中正确的计算BD是解题的关键.【过关检测】一.选择题(共10小题)10(2022春•东城区期末)如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是()A.72B.52C.80D.76【分析】由题意∠ACB为直角,利用勾股定理求得外围中一条边,又由AC延伸一倍,从而求得风车的一个轮子,进一步求得四个.【解答】解:依题意,设“数学风车”中的四个直角三角形的斜边长为x,则x2=122+52=169所以x=13所以“数学风车”的周长是:(13+6)×4=76.故选:D.【点评】本题是勾股定理在实际情况中应用,并注意隐含的已知条件来解答此类题.11(2021秋•邳州市期中)公元3世纪切,中国古代书学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,勾a=3,弦c=5,则小正方形ABCD的面积为()A.1B.3C.4D.9【分析】根据勾股定理和正方形的面积公式可求解.【解答】解:如图,∵勾a=3,弦c=5,∴股b=52-32=4,∴小正方形的边长=4-3=1,∴小正方形的面积=12=1,故选:A.【点评】本题运用了勾股定理和正方形的面积公式,关键是运用了数形结合的数学思想.12(2021春•长垣市期末)“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形,如图,其直角三角形的两条直角边的长分别是2和4,则小正方形与大正方形的面积比是()A.1:2B.1:4C.1:5D.1:10【分析】根据题意求得小正方形的边长,根据勾股定理求出大正方形的边长,由正方形的面积公式即可得出结果.【解答】解:∵直角三角形的两条直角边的长分别是2和4,∴小正方形的边长为2,根据勾股定理得:大正方形的边长=22+42=25,∴小正方形面积大正方形面积=22252=420=15.故选:C.【点评】本题考查了勾股定理和正方形的面积.本题是用数形结合来证明勾股定理,锻炼了同学们的数形结合的思想方法.13(2022秋•青秀区校级期末)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,小正方形的面积为5,则大正方形的面积为()A.12B.13C.14D.15【分析】由题意可知:中间小正方形的边长为:a-b,根据勾股定理以及题目给出的已知数据即可求出大正方形的边长.【解答】解:由题意可知:中间小正方形的边长为:a-b=5,∵(a+b)2=(a-b)2+4ab=5+4ab=21,∴ab=4,∴大正方形的面积=4×12ab+5=13,故选:B.【点评】本题考查勾股定理的证明,解题的关键是熟练运用勾股定理以及完全平方公式,本题属于基础题型.14(2022秋•南岸区校级期中)我国是最早了解勾股定理的国家之一,根据《周髀算经》的记载,勾股定理的公式与证明是在商代由商高发现的,故又称之为“商高定理”.三国时代的蒋铭祖对《蒋铭祖算经》勾股定理作出了详细注释,并给出了另外一种证明.下面四幅图中,不能证明勾股定理的是()A. B. C. D.【分析】根据基础图形的面积公式表示出各个选项的面积,同时根据割补的思想可以写出另外一种面积表示方法,即可得出一个等式,进而可判断能否证明勾股定理.【解答】解:A 、大正方形的面积为:c 2;也可看作是4个直角三角形和一个小正方形组成,则其面积为:12ab ×4+(b -a )2=a 2+b 2,∴a 2+b 2=c 2,故A 选项能证明勾股定理;B 、大正方形的面积为:(a +b )2;也可看作是4个直角三角形和一个小正方形组成,则其面积为:12ab ×4+c 2=2ab +c 2,∴(a +b )2=2ab +c 2,∴a 2+b 2=c 2,故B 选项能证明勾股定理;C 、梯形的面积为:12(a +b )(a +b )=12(a 2+b 2)+ab ;也可看作是2个直角三角形和一个等腰直角三角形组成,则其面积为:12ab ×2+12c 2=ab +12c 2,∴ab +12c 2=12(a 2+b 2)+ab ,∴a 2+b 2=c 2,故C 选项能证明勾股定理;D 、大正方形的面积为:(a +b )2;也可看作是2个矩形和2个小正方形组成,则其面积为:a 2+b 2+2ab ,∴(a +b )2=a 2+b 2+2ab ,∴D 选项不能证明勾股定理.故选:D .【点评】本题考查勾股定理的证明方法,熟练掌握内弦图、外弦图是解题关键.15(2022秋•平湖市期末)在认识了勾股定理的赵爽弦图后,一位同学尝试将5个全等的小正方形嵌入长方形ABCD 内部,其中点M ,N ,P ,Q 分别在长方形的边AB ,BC ,CD 和AD 上,若AB =7,BC =8,则小正方形的边长为()A.5B.6C.7D.22【分析】将每个小正方形按照如图所示分成四个全等的直角三角形和一个正方形,设每个直角三角形的较大的直角边为x ,较小的直角边为y ,根据AB =7,BC =8,列出二元一次方程组,求出x 和y ,再求出边长即可.【解答】解:将每个小正方形按照如图所示分成四个全等的直角三角形和一个正方形,设每个直角三角形的较大的直角边为x ,较小的直角边为y ,∵AB =7,BC =8,∴3x+y=73x+2y=8 ,解得x=2 y=1 ,∴小正方形的边长为22+12=5.故选A.【点评】本题考查了勾股定理与二元一次方程组的应用,根据题意运用好赵爽弦图是解题关键.16(2022秋•鄄城县校级月考)如图,阴影部分是两个正方形,图中还有一个直角三角形和一个空白的正方形,阴影部分的面积为25cm2,直角三角形①中较长的直角边长12cm,则直角三角形 ①的面积是()A.16cm2B.25cm2C.30cm2D.169cm2【分析】两个阴影正方形的面积和等于直角三角形另一未知边的平方.利用勾股定理即可求出.【解答】解:∵两个阴影正方形的面积和等于直角三角形另一未知边的平方,∴直角三角形①中较短的直角边长5cm,∵直角三角形①中较长的直角边长12cm,∴直角三角形①的面积=12×5×12=30(cm2),故选:C.【点评】考查了正方形的面积以及勾股定理的应用.推知“正方形的面积和等于直角三角形另一未知边的平方”是解题的难点.17(2021秋•鹿城区校级期中)如图,Rt△ABC中,∠ACB=90°,∠ABC=30°,分别以AC,BC,AB 为一边在△ABC外面做三个正方形,记三个正方形的面积依次为S1,S2,S3,已知S1=4,则S3为()A.8B.16C.43D.43+4【分析】根据正方形的面积公式结合勾股定理就可发现大正方形的面积是两个小正方形的面积和,即可得出答案.【解答】解:∵S1=AC2=4,∴AC=2,∵Rt△ABC中,∠ACB=90°,∠ABC=30°,∴AB=2AC=4,∴S3=AB2=16,故选:B.【点评】本题考查了勾股定理和正方形面积的应用,注意:分别以直角三角形的边作相同的图形,则两个小图形的面积等于大图形的面积.18(2022秋•温州期末)如图,大正方形ABCD由四个全等的直角三角形和一个小正方形拼接而成.点E为小正方形的顶点,延长CE交AD于点F,连结BF交小正方形的一边于点G,若△BCF为等腰三角形,AG=5,则小正方形的面积为()A.15B.16C.20D.25【分析】由等腰三角形性质可得出BF=CF,利用HL可证得Rt△ABF≌Rt△DCF(HL),得出AB=AD =2AF,根据余角的性质得出∠BAG=∠ABF,进而推出CF=BF=2AG=10,利用面积法求得BN= 8,再运用勾股定理求得CN=4,即可求得答案.【解答】解:设小正方形为EHMN,如图,∵四边形ABCD和四边形EHMN是正方形,∴AB=AD=CD,∠BAD=90°,CF∥AG,∵△BCF为等腰三角形,且BF>AB=BC,CF>CD=BC,∴BF=CF,在Rt△ABF和Rt△DCF中,AB=CD BF=CF,∴Rt△ABF≌Rt△DCF(HL),∴∠AFB=∠CFD,AF=DF,∴AB=AD=2AF,∵CF∥AG,∴∠CFD=∠DAG,∴∠AFB=∠DAG,∴AG=FG,∵∠AFB+∠ABF=90°,∠DAG+∠BAG=90°,∴∠BAG=∠ABF,∴AG=BG,∴CF=BF=2AG=10,在Rt△ABF中,AB2+AF2=BF2,∴(2AF)2+AF2=102,∴AF=25,∴AB=BC=45,∵S△BCF=12BC•AB=12CF•BN,∴BN=BC⋅ABCF =45×4510=8,∴CN=BC2-BN2=452-82=4,∵△ABM≌△BCN,∴BM=CN=4,∴MN=BN-BM=8-4=4,∴S正方形EHMN=(MN)2=42=16,故选:B.【点评】本题主要考查了正方形的性质,全等三角形的判定和性质,等腰三角形的判定与性质,平行线的性质,勾股定理,三角形面积等,利用面积法求得BN是解题的关键.19(2022春•南浔区期末)赵爽弦图由四个全等的直角三角形所组成,形成一个大正方形,中间是一个小正方形(如图所示).某次课后服务拓展学习上,小浔绘制了一幅赵爽弦图,她将EG延长交CD于点I.记小正方形EFGH的面积为S1,大正方形ABCD的面积为S2,若DI=2,CI=1,S2=5S1,则GI的值是()A.105B.9202 C.58D.34【分析】如图,连接DG,先由已知条件分别求得S2=CD2=32=9,S1=95,小正方形边长为355,再由勾股定理得:EG=EH2+HG2=3105,设AE=BF=CG=DH=x,则AF=BG=CH=DE=x+355,由勾股定理得:CD2=DH2+CH2,即9=x2+(x+355)2,进而得AE=BF=CG=DH=x=355=EH,再得CH垂直平分ED,再由三角形的“三线合一”得∠DGH=∠HGE=45°进而得∠DGI=90°最后由勾股定理得:GI=DI2-DG2=22-31052=105,即得选项A.【解答】解:如图,连接DG,∵赵爽弦图由四个全等的直角三角形所组成,形成一个大正方形,中间是一个小正方形,∴AE=BF=CG=DH,AF=BG=CH=DE,CH⊥DE,∵DI=2,CI=1,∴CD=DI+CI=2+1=3,∵大正方形ABCD的面积为S2,∴S2=CD2=32=9,又∵小正方形EFGH的面积为S1,S2=5S1,∴S1=95,∴EF=FG=GH=HE=355,∵将EG延长交CD于点I,∴∠HGE=45°,在Rt△EHG中,由勾股定理得:EG=EH2+HG2=3105,设AE=BF=CG=DH=x,则AF=BG=CH=DE=x+35 5,在Rt△CDH中,由勾股定理得:CD2=DH2+CH2,即9=x2+(x+355)2,解得:x1=355,x2=-655(不合题意,舍去),即AE=BF=CG=DH=x=355,∴DH=EH=355,∴CH垂直平分ED,∴DG=EG=3105,∴∠DGH=∠HGE=45°,∴∠DGE=45°+45°=90°,∴∠DGI=90°,在Rt△DGI中,由勾股定理得:GI=DI2-DG2=22-31052=105,故选:A.【点评】本题是一道勾股定理的综合题,主要考查了全等三角形的性质,正方形的性质,勾股定理,线段的中垂线判定与性质,等腰三角形的“三线合一”,二次根式计算与化简,关键是巧添辅助线构等腰直角三角形,顺利实现求得答案.二.填空题(共7小题)20(2022秋•锡山区期中)如图,在△ABC中,∠C=90°,AC=5,BC=12.以AB为一边在△ABC 的同侧作正方形ABDE,则图中阴影部分的面积为139.【分析】首先利用勾股定理求得AB边的长度,然后由三角形的面积公式和正方形的面积公式解答.【解答】解:如图,Rt△ABC中,∠ACB=90°,BC=12,AC=5,由勾股定理知,AB=AC2+BC2=13.故S阴影=S正方形ABDE-S△ABC=132-12×5×12=169-30=139.故答案为:139.【点评】本题主要考查了勾股定理,求阴影部分的面积时,采用了“分割法”.21(2022秋•德惠市期末)如图,“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形EFGH拼成的大正方形ABCD.若AE=5,AB=13,则中间小正方形EFGH的面积是49.【分析】根据题意和题目中的数据,可以计算出小正方形的边长,即可得到小正方形的面积.【解答】解:∵AE=5,AB=13,∴BF=AE=5,在Rt△ABF中,AF=AB2+BF2=12,∴小正方形的边长EF=12-5=7,∴小正方形EFGH的面积为7×7=49.故答案为:49.【点评】本题考查了勾股定理的证明,熟练掌握勾股定理是解题的关键.22(2022秋•建邺区校级期中)将四个全等的直角三角形分别拼成正方形(如图1,2),边长分别为6和2.若以一个直角三角形的两条直角边为边向外作正方形(如图3),其面积分别为S1,S2.则S1-S2= 12.【分析】首先设四个全等的直角三角形的两条直角边分别为a,b(a>b),然后根据图1、2列出关于a、b的方程组即可求解.【解答】解:设四个全等的直角三角形的两条直角边分别为a,b(a>b),根据图1得:a+b=6,根据图2得:a-b=2,联立解得:a=4 b=2,∴S1=16,S2=4,则S1-S2=12.故答案为:12.【点评】此题主要考查了勾股定理证明的应用,解题的关键是正确理解图形中隐含的数量关系.23(2021秋•龙泉驿区校级月考)如图,是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,若大正方形的面积是17,小正方形的面积是1,直角三角形的两直角边分别为a ,b ,则(a +b )2的值是33.【分析】先由拼图列出关于面积的方程,再由勾股定理列一个直角三角形三边的方程并整理,最后把值整体代入和平方的展开式(a +b )2=a 2+b 2+2ab 即可得出答案.【解答】解:∵由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,大正方形的面积是17,小正方形的面积是1,直角三角形的两直角边分别为a ,b ,∴1+4×12ab =17a 2+b 2=172,即2ab =16a 2+b 2=17 ,∴(a +b )2=a 2+b 2+2ab =17+16=33.故答案为:33.【点评】这是一道勾股定理综合题,主要考查了拼图列方程,发现各个图形的面积和a ,b 的关系是解题关键.24(2022秋•金台区校级月考)如图是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC =6,BC =5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图所示的“数学风车”,则这个风车的外围周长是76.【分析】通过勾股定理可将“数学风车”的斜边求出,然后可求出风车外围的周长.【解答】解:设将AC 延长到点D ,连接BD ,根据题意,得CD =6×2=12,BC =5.∵∠BCD =90°∴BC 2+CD 2=BD 2,即52+122=BD 2∴BD =13∴AD +BD =6+13=19∴这个风车的外围周长是19×4=76.故答案为:76.【点评】本题考查勾股定理在实际情况中应用,并注意隐含的已知条件来解答此类题.25(2022秋•工业园区校级期中)如图,在弦图中,正方形ABCD 的对角线AC 与正方形EFHI 的对角线EH 交于点K ,对角线AC 交正方形EFHI 于G ,J 两点,记△GKH 面积为S 1,△JIC 面积为S 2,若AE =12,CD =410,则S 1+S 2的值为16.【分析】由题意可得AF =CI ,∠AFG =∠CIJ =90°,FH ∥EI ,即可证明△AFG ≌△CIJ ,FG =IJ ,再根据四边形EFHI 为正方形,得到△GHK ≌△JEK ,从而得到点K 为正方形EFHI 的中心,过点K 作KM ⊥FH 于点M ,由勾股定理得DE =4,FH =8,KM =4,设GH =a ,FG =b ,则a +b =FH =8,最后用a ,b 表示出S 1+S 2=2(a +b ),将a +b 的值代入即可求解.【解答】解:由题意可得,AF =CI ,∠AFG =∠CIJ =90°,FH ∥EI ,∵∠AGF =∠HGK ,∠IJC =∠KJE ,∵FH ∥EI ,∴∠HGK =∠KJE ,∴∠AGF =∠IJC ,在△AFG 和△CIJ 中,∠AGF =∠IJC ∠AFG =∠CIJ =90°AF =CI ,∴△AFG ≌△CIJ (AAS ),∴FG =IJ ,∵四边形EFHI 为正方形,∴EI -IJ =FH -FG ,即HG =EJ ,在△GHK 和△JEK 中,∠HGK =∠KJE ∠GKH =∠JKE HG =EJ,∴△GHK ≌△JEK (AAS ),∴HK =EK ,即点K 为正方形EFHI 的中心,如图,过点K 作KM ⊥FH 于点M ,∵AE=12,CD=410,∴BF=12,AD=410,在Rt△ADE中,由勾股定理得DE=AD2-AE2=4,∴AF=DE=4,EF=AE-AF=12-4=8,则FH=8,KM=4,设GH=a,FG=b,则a+b=FH=8,∴S1=12GH⋅MK=12a×4=2a,S2=S△AFG=12FG⋅AF=12b×4=2b,∴S1+S2=2a+2b=2(a+b)=16.故答案为:16.【点评】本题主要考查全等三角形的判定与性质,勾股定理,三角形的面积,正方形的性质,解题的关键是寻找全等三角形的条件解决问题.26(2022秋•宁德期中)我国古代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,它是由4个全等的直角三角形与1个小正方形拼成的一个大正方形,如图,若拼成的大正方形为正方形ABCD,面积为9,中间的小正方形为正方形EFGH,面积为2,连接AC,交BG于点P,交DE于点M,①△CGP≌△AEM,②S△AFP-S△CGP=12,③DH+HC=4,④HC=2+22,以上说法正确的是①③④.(填写序号)【分析】由全等三角形的性质,勾股定理,完全平方公式,结合“赵爽弦图”的特点,可以解决问题.【解答】解:∵Rt△BCG≌Rt△DAE,∴CG=AE,∠CGP=∠AEM,∵CH∥AF.∴∠GCP=∠MAE,∴△CGP≌△AEM(ASA),∴S△CGP=S△AEM,CP=ME,∴S△AFP-S△CGP=S四边形MEFP∵HE=GF,∴HM =PF ,∴S 四边形MEFP =S 四边形MHGP =12S 正方形EFGH=1,∴S △AFP -S △CGP =1,∵DH 2+CH 2=DC 2=9,∴(DH +CH )2=DH 2+CH 2+2DH •CH =9+2DH •CH ,∵CH -DH =HG ,∴(CH -DH )2=HG 2=2,∴CH 2+DH 2-2DH •CH =2,∴2DH •CH =7,∴(DH +CH )2=9+7=16,∴DH +CH =4,∵CH -DH =2,∴HC =4+22=2+22,故答案为:①③④.【点评】本题考查全等三角形的性质和判定,勾股定理,完全平方公式,关键是读懂“赵爽弦图”并灵活应用以上定理和公式.三.解答题(共2小题)27(2021秋•凤翔县期中)如图1是著名的赵爽弦图,由四个全等的直角三角形拼成,用它可以证明勾股定理,思路是:大正方形的面积有两种求法,一种是等于c 2,另一种是等于四个直角三角形与一个小正方形的面积之和,即12ab ×4+b -a 2,从而得到等式c 2=12ab ×4+b -a 2,化简便得结论a 2+b 2=c 2.这里用两种求法来表示同一个量从而得到等式或方程的方法,我们称之为“双求法”.现在,请你用“双求法”解决下面两个问题(1)如图2,在Rt △ABC 中,∠ACB =90°,CD 是AB 边上的高,AC =3,BC =4,求CD 的长度.(2)如图3,在△ABC 中,AD 是BC 边上的高,AB =4,AC =5,BC =6,设BD =x ,求x 的值.【分析】(1)先根据勾股定理先求出AB ,再根据“双求法”求出CD 的长度;(2)运用两个直角三角形根据勾股定理表示出AD ,德关于x 的方程求解.【解答】解:(1)在Rt △ABC 中AB =32+42=5,由面积的两种算法可得:12×3×4=12×5×CD ,解得:CD =125.(2)在Rt △ABD 中AD 2=42-x 2=16-x 2,在Rt △ADC 中AD 2=52-(6-x )2=-11+12x -x 2,所以16-x 2=-11+12x -x 2,解得x=2712=94.【点评】此题考查的知识点是勾股定理的应用,关键是运用勾股定理求解.28(2021春•利辛县期中)如图,小明用4个图1中的矩形组成图2,其中四边形ABCD,EFGH,MNPQ都是正方形,证明:a2+b2=c2.【分析】由题意可得:S正方形ABCD =(a+b)2,S正方形EFGH=c2,S△BEF=12×ab,再根据S正方形ABCD=S正方形EFGH+4S△BEF,即可证得结论.【解答】证明:∵四边形ABCD,EFGH,MNPQ都是正方形,∴S正方形ABCD =(a+b)2,S正方形EFGH=c2,S△BEF=12×ab,∵S正方形ABCD =S正方形EFGH+4S△BEF,∴(a+b)2=c2+4×12×ab,∴a2+2ab+b2=c2+2ab,∴a2+b2=c2.【点评】本题是勾股定理证明题,考查了直角三角形面积,正方形面积,利用图形面积得出结论是解题关键.。
勾股定理经典图形--赵爽弦图在中考的应用一、赵爽弦图的历史我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,如图1,后人称之为“赵爽弦 图”,流传至今.二、赵爽弦图的几何意义 1.证明勾股定理 :222c a b =+. 2.GH=b-a ;3. 222ABCD S c a b ==+正方形,2-a)S b =正方形EFGH (, S 阴影=ABCD S 正方形-S 正方形EFGH =2c -2-a)b (=(22a b +)-2-a)b (.三、赵爽弦图的应用1.正确识别赵爽弦图例1 (2019•湖北省咸宁市)勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是 ( )A .B .C .D .解析:“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,故选:B .点评:熟记赵爽弦图的基本构造,明白弦图的构成要素,清楚弦图的构造方式,懂的弦图的构造原理,把握弦图的意义,是解题的关键.通过弦图的识记,也培养自己的爱国热情.2.探求赵爽弦图中四个直角三角形的面积和例2(2020.绍兴)如图2,直角三角形纸片的一条直角边长为2,剪四块这样的直角三角形纸片,把它们按图3放入一个边长为3的正方形中(纸片在结合部分不重叠无缝隙),则图3中阴影部分面积为 .解析:由题意可得,223ABCD S c ==正方形=9,直角三角形的另一条直角边长为:=,∴S 阴影=ABCD S 正方形-S 正方形EFGH =2c -2-a)b (=9-25-2)(=9-(9-45)=45. 点评:运用勾股定理,求得直角三角形的另一直角边长是解题的关键.3.变式赵爽弦图,探求2a+b)(的值 例3(2020·宁夏)2002年8月,在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图4),且大正方形的面积是15,小正方形的面积是3,直角三角形的较短直角边为a ,较长直角边为b .如果将四个全等的直角三角形按如图5的形式摆放,那么图5中最大的正方形的面积为 .解析:根据赵爽弦图的几何意义,得22a b +=15,2-a)b (=3,图5中大正方形的面积为:2a+b)(,∵2-a)b (=3,∴222a ab b -+=3,∴15﹣2ab=3,∴2ab=12,∴2a+b)(=2-a)b (+4ab=3+2×12=27,或2a+b)(=22a b ++2ab=15+12=27. 点评:熟练运用赵爽弦图的几何意义是解题的关键,其次,灵活进行和的完全平方公式,差的完全平方公式的变形计算,也是解题的重要基本技能.4.构造赵爽弦图,探求直角边积的最值例4(2020·湖南娄底)由4个直角边长分别为a ,b 的直角三角形围成的“赵爽弦图”如图6所示,根据大正方形的面积2c 等于小正方形的面积2()a b -与4个直角三角形的面积。
【高中数学数学文化鉴赏与学习】专题2 赵爽弦图(以赵爽弦图为背景的高中数学考题题组训练)一、单选题1.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,由四个全等的直角三角形和一个正方形构成.现有六种不同的颜色可供涂色,要求相邻的区域不能用同一种颜色,则不同的涂色方案有()A.420B.1020C.1180D.1560【答案】D【解析】【分析】根据分步乘法原理计数,先涂中间小正方形,然后四个直角三角形按顺序涂色,注意相对的直角三角形颜色是否相同分类即可.【详解】第一步中间小正方形涂色,有6种方法,剩下5种颜色涂在四个直角三角形中,就按图中所示1234的顺序,1有5种方法,2有4种方法,3有4种方法,但要分类:与1相同和与1不相同,然后确定4的方法数,⨯⨯⨯⨯+⨯=.所以所求方法数为654(1433)1560故选:D.2.赵爽是我国古代数学家,大约在公元222年,赵爽在为《周髀算经》作序时,介绍了“勾股圆方图”,亦称为“赵爽弦图”.可类似地构造如图所示的图形,由三个全等的三角形与中间的一个小等边三角形拼成一个大的等边三角形,设2DF FA =,若AB =DF 的长为( )A .2 BC .3D .4【答案】D 【解析】 【分析】根据正三角形和全等三角形的性质得DB AF =,再运用余弦定理可求得DF 的长. 【详解】由题可知:在DEF 中,3EDA π∠=,则23ADB π∠=, 不妨设2DF k =,由2DF AF =知,AF k =,则3AD k =, 又因为AFC △与BDA 全等,所以DB AF k ==,由余弦定理可知:()22222231cos 2232k k AB AD BD AB ADB AD BD k k +-+-∠===-⋅⨯⨯,解得2213AB k =,而AB =2k =,所以4DF =. 故选:D.3.图1是我国古代数学家赵爽创制的一幅“赵爽弦图”,它是由四个全等的直角三角形和一个小的正方形拼成一个大的正方形.某同学深受启发,设计出一个图形,它是由三个全等的钝角三角形和一个小的正三角形拼成一个大的正三角形,如图2,若BD =1,且三个全等三角形的面积和与小正三角形的面积之比为94,则△ABC 的面积为( )A .94BC .134D【答案】D 【解析】 【分析】设小正三角形边长为x ,由面积比求得x ,再计算出小正三角形面积可得大正三角形面积. 【详解】设DE x =,则211sin 1(1)sin120134ABD DEFBD AD ADB x S x Sx ⋅∠⨯⨯+︒+====,解得2x =(23-舍去),所以22DEFS == 94ABCS==故选:D .4.赵爽是我国古代著名的数学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形组成),如图(1)类比“赵爽弦图”,可类似地构造如图(2)所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设3DF AF =,则图中阴影部分与空白部分面积之比为( )A .79B .34C .56D .37【答案】B 【解析】 【分析】设AF x =,根据几何关系求出AD 、DF 、BD 、ADB ∠,根据余弦定理求出AB ,再根据等边三角形面积即可计算. 【详解】设AF x =,则3DF x =,BD AF x ==,4AD x =,120ADB ∠=, 在ABD △中,根据余弦定理得,22222212cos 1624212AB AD BD AD BD ABD x x x x x ∠⎛⎫=+-⋅⋅=+-⋅⋅⋅-= ⎪⎝⎭,△2213sin60(3)24EFDS DF DE x =⋅⋅⋅==, 2213sin602124ABCSAB BC x x =⋅⋅⋅==, △73ABC EFDSS=, △图中阴影部分与空白部分面积之比为34.故选:B.5.如图是第24届国际数学家大会的会标,是根据中国古代数学家赵爽的弦图设计的.已知图中正方形ABCD 的边长为2,ADH α∠=,则小正方形EFGH 的面积为( )A .1sin 2α-B.1cos2α- C .44cos2α-D .44sin 2α-【答案】D 【解析】 【分析】根据设计图的几何特点,结合已知条件,求得小正方形的边长,再根据同角三角函数关系,以及正弦的二倍角公式,即可求得小正方形的面积. 【详解】根据设计图的几何特点可知:△ADH ≅△DCG ≅△CBF ≅△BAE ,在△ADH 中,cos 2cos DH AD ADH α=⨯∠=,sin 2sin AH AD ADH α=⨯∠=, 故小正方形的边长为2cos 2sin AE AH DH AH αα-=-=-, 故小正方形的面积为()22cos 2sin 48sin ?cos 44sin 2ααααα-=-=-. 故选:D .6.2002年在北京召开的国际数学家大会,会标是以我国古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么sin 2θ的值为( )A .2425B .2324C D .14【答案】A 【解析】 【分析】由直角三角形中的三角函数定义列出关于sin ,cos θθ的等式结合平方关系求得sin ,cos θθ,然后由正弦的二倍角公式计算.【详解】由题意大正方形边长为5,小正方形边长为1,所以5cos 5sin 1θθ-=,又22sin cos 1θθ+=,且θ为锐角,可解得4cos 5θ=,3sin 5θ=, 所以24sin 22sin cos 25θθθ==. 故选:A .7.我国东汉末数学家赵夾在《周髀算经》中利用一副“弦图”给出了勾股定理的证明,后人称其为“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如图所示.在“赵爽弦图”中,若BC a =,BA b =,3BE EF =,则BF =( )A .1292525a b + B .16122525a b + C .4355a b +D .3455a b +【答案】B 【解析】 【分析】根据给定图形,利用平面向量的加法法则列式求解作答. 【详解】因“弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,且BC a =,BA b =,3BE EF =,则34BF BC CF BC EA =+=+3()4BC EB BA =++33()44BC BF BA =+-+93164BC BF BA =-+,解得16122525BF BC BA =+,所以16122525a b BF =+. 故选:B8.勾股定理被称为几何学的基石,相传在商代由商高发现,又称商高定理.汉代数学家赵爽利用弦图(又称赵爽弦图,它由四个全等的直角三角形和一个小正方形组成,如图1),证明了商高结论的正确性.现将弦图中的四条股延长相同的长度(如将CA延长至D )得到图2.在图2中,若5AD =,BD =D 、E 两点间的距离为)A B C .1 D .2【答案】C 【解析】 【分析】利用余弦定理可求得cos DBE ∠的值,可求得BC 、CD 、AC 的长,进而可得出弦图中小正方形的边长. 【详解】由条件可得5BE AD ==, 在BDE 中,由余弦定理得2222225cos2BD BE DEDBE BD BE+-+-∠===⋅, 所以,()cos cos cosCBD DBE DBE π∠=-∠=-∠=所以,cos 3BC BD CBD =⋅∠==,9CD , 4AC CD AD ∴=-=,所以弦图中小正方形的边长为1CA CB -=. 故选:C.9.我国古代人民早在几千年以前就已经发现并应用勾股定理了,勾股定理最早的证明是东汉数学家赵爽在为《周髀算经》作注时给出的,被后人称为“赵爽弦图”.“赵爽弦图”是数形结合思想的体现,是中国古代数学的图腾,还被用做第24届国际数学家大会的会徽.如图,大正方形ABCD 是由4个全等的直角三角形和中间的小正方形组成的,若AB a =,AD b =,E 为BF 的中点,则AF =( )A .3455a b +B .4355a b +C .1233a b +D .2133a b +【答案】A 【解析】 【分析】根据向量数乘和加减法法则,结合几何图形即可求解. 【详解】()1124AF AB BF AB BC CF AB AD AE AB AD AB AF =+=++=+-=+-+, 即()14AF AB AD AB AF =+-+, △53344455A F a b b A a F =+⇒=+. 故选:A .10.“赵爽弦图”是中国古代数学的图腾,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如图,某人仿照赵爽弦图,用四个三角形和一个小的平行四边形拼成一个大平行四边形,其中,,,E F G H 分别是,,,DF AG BH CE 的中点,若AG x AB y AD =+,则xy =( )A .625B .625-C .825D .825-【答案】C 【解析】 【分析】根据平面向量的基本定理,化简得到4255AG AB BC =+,结合AG x AB y AD =+,求得,x y 的值,即可求解.【详解】由题意,可得()11112224AG AB BG AB BH AB BC CH AB BC CE =+=+=++=++,因为EFGH 是平行四边形,所以AG CE =-, 所以1124AG AB BC AG =+-,所以4255AG AB BC =+, 因为AG x AB y AD =+,所以42,55x y ==,则4285525xy =⨯=. 故选:C.11.赵爽弦图(如图1)中的大正方形是由4个全等的直角三角形和中间的小正方形拼接而成的,若直角三角形的两条直角边长为a ,b ,斜边长为c ,由大正方形面积等于4个直角三角形的面积与中间小正方形的面积之和可得勾股定理222+=a b c .仿照赵爽弦图构造如图2所示的菱形,它是由两对全等的直角三角形和中间的矩形拼接而成的,设直角三角形的斜边都为1,其中一对直角三角形含有锐角α,另一对直角三角形含有锐角β(位置如图2所示).借鉴勾股定理的推导思路可以得到结论( )A .()sin sin cos cos sin αβαβαβ-=-B .()sin sin cos cos sin αβαβαβ+=+C .()cos cos cos sin sin αβαβαβ-=+D .()cos cos cos sin sin αβαβαβ+=-【答案】B 【解析】 【分析】表示出直角三角形的边长,继而表示出面积,求得中间矩形的面积,根据菱形面积等于四个直角三角形面积加上中间矩形面积,化简可得答案. 【详解】由图形可知:含锐角α的直角三角形两直角边长为sin ,cos αα ,含锐角β的直角三角形两直角边长为sin ,cos ββ , 故菱形的面积为1211sin()sin()2αβαβ⨯⨯⨯⨯+=+ ,不妨假设αβ> ,中间长方形的面积为(sin sin )(cos cos )αββα-- ,故11sin()2sin cos 2sin cos (sin sin )(cos cos )22αβααββαββα+=⨯⨯⨯+⨯⨯⨯+-- ,即()sin sin cos cos sin αβαβαβ+=+, 故选:B12.如图,“赵爽弦图”是我国古代数学的瑰宝,它是由四个全等的直角三角形和一个正方形构成.现从给出的5种不同的颜色中最多可以选择4种不同的颜色给这5个区域涂色;要求相邻的区域不能涂同一种颜色,每个区域只涂一种颜色.则不同的涂色方案有( )种A .120B .240C .300D .360【答案】C 【解析】 【分析】依题意可以利用3或4种不同的颜色涂色,先选出颜色,再涂色,按照分步、分类计数原理计算可得; 【详解】解:依题意显然不能用少于2种颜色涂色,若利用3种不同的颜色涂色,首先选出3种颜色有35C 10=种选法,先涂区域△有3种涂法,再涂△有2种涂法,则△只有1种涂法,△也只有1种涂法,则△也只有1种涂法,故一共有35C 3211160⨯⨯⨯⨯⨯=种涂法;若利用4种不同的颜色涂色,首先选出4种颜色有45C 5=种选法,根据题意,分2步进行涂色:当区域△、△、△这三个区域两两相邻,有34A 24=种涂色的方法;当区域△、△,必须有1个区域选第4种颜色,有2种选法,选好后,剩下的区域有1种选法,则区域△、△有2种涂色方法,故共有4354C 2A 5224240⨯=⨯⨯=种涂色的方法;综上可得一共有60240300+=种涂法; 故选:C13.赵爽是我国古代著名的数学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形组成),如图(1)类比“赵爽弦图”,可类似地构造如图(2)所示的形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边角形,设3DF AF =,若向三角形ABC 内随机投一粒芝麻(忽略该芝麻的大小),则芝麻落在阴影部分的概率为( )A .79B .34C .56D .37【答案】D 【解析】 【分析】根据几何概型的概率公式,求出DEF 和AFC △的面积,计算所求的概率值. 【详解】由题意,π3DFE ∠=,π2ππ33AFC ∴∠=-=, 3DF AF =,4CF AF ∴=,由余弦定理可得2222π2cos3AC AF CF AF CF =+-⋅, 2221AC AF ∴=,∴22221πsin93231π217sin 23DEF ABCDF S AF SAF AC ===⋅, ∴芝麻落在阴影部分的概率为 37P =. 故选:D .14.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”.后人称其为“赵爽弦图”.如图,现提供5种颜色给图中的5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同.记事件A :“区域1和区域3颜色不同”,事件B :“所有区域颜色均不相同”,则()P B A =( )A .27B .12C .23D .34【答案】B 【解析】 【分析】根据条件概率的公式,分别计算出事件A 和事件B 的基本事件即可. 【详解】A 事件有21115322A C C C 个基本事件,B 事件有55A 个基本事件,()5521115322A 1|A C C C 2p B A ∴== ;故选:B.15.我国东汉末数学家赵爽在《周髀算经》中利用一副“弦图”给出了勾股定理的证明,后人称其为“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如图所示.在“赵爽弦图”中,若BE EF λ=,16122525BF BC BA =+,则实数λ=( )A .2B .3C .4D .5【答案】B 【解析】 【分析】依据题给条件利用()()()222BE BFBA =+列出关于λ的方程,解之即可求得实数λ的值【详解】由BE EF λ=,可得1BE BF λλ=+,又16122525BF BC BA =+ 则()()1612161212525251251BE BC BA BC BA λλλλλλ⎛⎫=+= +⎪+++⎝⎭ 又BF AE =,222BE AE AB =+, 则()()()222BEBFBA =+即()()222161216122512512525BC BA BC BA BA λλλλ⎛⎛⎫++= ⎪ ⎪+⎫+ ⎪+⎝⎭⎝⎭ 则()()()()()()22222222225614425614462562562516251BC BA BC BA BA λλλλ+++=++即()()2222256144256144162562562516251λλλλ++++=+,整理得271890λλ--= 解之得,3λ=或37λ=-(舍)故选:B16.“赵爽弦图”是我国古代数学的瑰宝,如图所示,它是由四个全等的直角三角形和一个正方形构成.现给这5个区域涂色,要求相邻的区域不能涂同一种颜色,每个区域只涂一种颜色,有5种不同的颜色可供使用,则不同的涂色方案有( )A .120种B .360种C .420种D .540种【答案】C 【解析】 【分析】要求相邻的区域不能涂同一种颜色,则涂5块区域至少需要3种颜色,然后对使用的颜色种数进行分类讨论,分别求出方案数,再运用分类加法计数原理求出最后结果. 【详解】要求相邻的区域不能涂同一种颜色,则涂5块区域至少需要3种颜色.若5块区域只用3种颜色涂色,则颜色的选法有35C 种,相对的直角三角形必同色,此时不同的涂色方案有335360C A =种;若5块区域只用4种颜色涂色,则颜色的选法有45C 种,其中一对相对的直角三角形必同色,余下的两个直角三角形不同色,此时不同的涂色方案有414524240C C A =种;若5块区域只用5种颜色涂色,则每块直角三角形都不同色,此时不同的涂色方案有55120A =种;综上,不同的涂色方案有:60240120420++=种. 故选:C.17.我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称为“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如图所示,若DA m =,DC n =,23AF AE =,则DE =( )A .641313m n + B .461313m n + C .691313m n + D .961313m n + 【答案】B 【解析】 【分析】由已知可得出23DE FB =,利用平面向量的线性运算得出1324939DE AB AD =-,再结合平面的基本定理可得结果. 【详解】 由题意得()()22222243333339DE FB AB AF AB AE AB AD DE ==-=-⨯=-+, 所以1324939DE AB AD =-,即644613131313DE DC DA m n =+=+, 故选:B .18.勾股定理被称为几何学的基石,相传在商代由商高发现,又称商高定理,汉代数学家赵爽利用弦图(又称赵爽弦图,它由四个全等的直角三角形和一个小正方形组成,如图1),证明了商高结论的正确性,现将弦图中的四条股延长,相同的长度(如将CA 延长至D )得到图2.在图2中,若5AD =,BD =,D ,E 两点间的距离)A B C .1 D【答案】C在BDE 中利用余弦定理可求出cos DBE ∠,则可得cos CBD ∠,再由锐角三角函数的定义可求出CB ,由勾股定理求出CD ,从而可求得答案 【详解】连接DE ,由条件可得5BE AD ==,在BDE 中,由余弦定理得2222225cos2BD BE DE DBE BD BE +-+-∠===⋅,△()cos cos cosCBD DBE DBE π∠=-∠=-∠=,△cos 3BC BD CBD =⋅∠==,9CD , △4CA =,所以弦图中小正方形的边长为1CA CB -=.故选:C19.我国东汉末数学家赵爽在《周髀算经》中利用一幅“弦图”给出了勾股定理的证明,后人称其为“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如图所示.在“赵爽弦图”中,若2BE EF =,则EF =( )A .311313BC BA + B .321313BC BA + C .231313BC BA + D .121313BC BA +【分析】由题,根据向量加减数乘运算得249391BC B EF A EF =+-,进而得313213B EFC BA =+.【详解】解:因为在“赵爽弦图”中,若2BE EF =,所以()()1111132223393933BF BC CF BC EA BC EA BC BA BE EF ⎛⎫=+=+=+=+⎪=- ⎝⎭()21329BC BA EF =+-, 所以249391BC B EF A EF =+-,所以1132993BC F BA E =+,所以313213B EFC BA =+. 故选:B20.我国汉代数学家赵爽为了证明勾股定理,创造了一幅“勾股圆方图”,后人称其为“赵爽弦图”.类比赵爽弦图,用3个全等的小三角形拼成了如图所示的等边ABC ,若ABC AF DE ⋅的最小值为( )A .0B .1-C 3D .3-【答案】D 【解析】 【分析】设AF BD x ==,DF DE y ==,利用余弦定理和基本不等式可求得()23xy ≤⨯,根据平面向量数量积的定义可求得结果.【详解】设AF BD x ==,DF DE y ==,在ABD △中,由余弦定理可得:()222()2cos120x x y x x y =++-+,即226333x y xy xy =++≥+,则()23xy ≤⨯y =时取等号),()11cos12023322AF DE xy xy ⋅==-≥--∴⨯⨯=故选:D. 二、填空题21.如图1是我国古代著名的“赵爽弦图”的示意图,它由四个全等的直角三角形围成,其中3sin 5BAC ∠=,现将每个直角三角形的较长的直角边分别向外延长一倍,得到如图2的数学风车,则图2“赵爽弦图”外面(图中阴影部分)的面积与大正方形面积之比为_______________.【答案】24:25 【解析】 【分析】设三角形ABC 三边的边长分别为3,4,5,分别求出阴影部分面积和大正方形面积即可求解. 【详解】解:由题意,“赵爽弦图”由四个全等的直角三角形围成,其中3sin 5BAC ∠=, 设三角形ABC 三边的边长分别为3,4,5,则大正方形的边长为5 ,所以大正方形的面积2525S ==,如图,将CA 延长到D ,则2CD CA =,所以CA AD =,又B 到AC 的距离即为B 到AD 的距离,所以三角形ABC 的面积等于三角形ABD 的面积,即13462ABCABDSS==⨯⨯=,所以“赵爽弦图”外面(图中阴影部分)的面积4624S '=⨯=,所以“赵爽弦图”外面(图中阴影部分)的面积与大正方形面积之比为24:25. 故答案为:24:25.22.如图是第24届国际数学家大会的会标,它是根据中国古代数学家赵爽的弦图设计的,大正方形ABCD 是由4个全等的直角三角形和中间的小正方形EFGH 组成的.若E 为线段BF 的中点,则AF BC ⋅=______.【答案】4 【解析】 【分析】利用数量积的几何意义求解. 【详解】 解:如图所示:设CF x =,由题可得2BF x =, 所以()2225x x +=, 解得1x =.过F 作BC 的垂线,垂足设为Q ,故24AF BC BQ BC BF ⋅=⋅==, 故答案为:4.23.国际数学家大会的会标是以我国古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图),如果小正方形的面积为4,大正方形的面积为100,直角三角形中较小的锐角为θ,则cos2θ=.【答案】725【解析】 【分析】根据题意,求得大、小正方形的边长分别为10和2,得到1cos sin 5θθ-=,其中(0,)4πθ∈,结合三角函数的基本关系式,求得242sin cos 25θθ=-,进而求得7cos sin 5θθ+=,利用22cos 2cos sin θθθ=-,即可求解. 【详解】由小正方形的面积为4,大正方形的面积为100,可得大、小正方形的边长分别为10和2,又由为直角三角形中较小的锐角为θ,可得10cos 10sin 2θθ-=,其中(0,)4πθ∈,即1cos sin 5θθ-=,则()21cos sin 12sin cos 25θθθθ-=-=,所以242sin cos 25θθ=,因为()24912sin cos sin cos 25θθθθ=+=+,所以7cos sin 5θθ+=,所以()()227cos 2cos sin cos sin cos sin 25θθθθθθθ=-=-+=. 故答案为:725. 24.如图,阴影部分由四个全等的直角三角形组成的图形是三国时代吴国赵爽创制的“勾股弦方图”,也称“赵爽弦图”.,则在大正方形内随机取一点,这一点落在小正方形内的概率为___________.【答案】15##0.2【解析】【分析】本题属于几何概型,分别求出面积,即可求概率.【详解】设直角三角形中较大锐角为θ,则sinθ=cosθ=设大正方形边长为1,则直角三角形两直角边长分别为1sinθ⋅,1cosθ⋅.故小=251=⎝⎭.而大正方形的面积为1,故所求概率为1 5 .故答案为:1 525.赵爽是我国古代数学家、天文学家.约公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方程”,亦称“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如图是一张弦图,已知大正方形的面积为25,小正方形的面积为1,若直角三角形较小的锐角为α,则34tanπα⎛-⎫⎪⎝⎭的值为______________.【答案】7【解析】【分析】设直角三角形较小直角边为x ,应用勾股定理求x ,即可得3tan 4α=,再应用差角正切公式求目标式的值即可. 【详解】若直角三角形较小直角边为x ,较大直角边为1x +,而正方形边长为5, △22(1)25x x ++=,解得3x =或4x =-(舍),△3tan 4α=,而3tan tan3tan 14tan()7341tan 1tan tan 4παπααπαα-+-===-+. 故答案为:7.26.赵爽是我国古代数学家,大约在公元222年,他为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形由4个全等的直角三角形再加上中间的一个小正方形组成).类比“赵爽弦图”,可构造如图所示的图形,它是由3个全等的三角形与中间一个小等边三角形拼成的一个较大的等边三角形,设20DF AF +=,若AD AB AC λμ=+,则可以推出λμ-=_________.【答案】613【解析】 【分析】设1AF =,建立如图所示的直角坐标系,结合余弦定理和正弦定理解三角形,利用坐标法即可得出结果. 【详解】设1AF =,则3,1AD BD AF === 如图:由题可知:120ADB ∠=,由2222cos 13AB AD BD AD BD ADB =+-⋅⋅∠=所以AB =AC AB ==所以),BC ⎝⎭,()0,0A又sin sin sin BD AB BAD BAD ADB =⇒∠=∠∠所以cos BAD ∠==所以()cos ,sin D AD AD BAD BAD ∠∠,即D ⎝⎭ 所以()2113339,13,026,26AD AB ⎛⎫==⎪ ⎪⎝⎭,132AC ⎛=⎝⎭又AD AB AC λμ=+所以913313λμ⎧==⎪⎪⇒⎨⎪==⎪⎩,所以613λμ-= 故答案为:613.27.赵爽是我国古代数学家,大约在公元222年,他为《周髀算经》一书作序时,介绍了“刈股圆方图”,亦称为“赵爽弦图”(以弦为边长得到的正方形由4个全等的直角三角形再加上中间的一个小正方形组成).类比,可构造如图所示的图形,它是由三个全等的三角形与中间一个小等边三角形组成的一个较大的等边三角形,设AD AB AC λμ=+,且DFkAF =,能推出130139λμ+=,则正实数k 的值为____________.【答案】73【解析】 【分析】先利用DE k BD =得到111k AD AB AE k k =+++,再利用EF kCE =求出111k AE AC AF k k =+++, 结合题目中AD AB AC λμ=+,解方程求出k 即可. 【详解】 由题意知DF EF DEk AF CE DB===,则(),,1DE kBD EF kCE AD k AF ===+,由DE k BD =得()AE AD k AD AB -=-, 即111k AD AB AE k k =+++,同理EF kCE =得111k AE AC AF k k =+++,又11AF AD k =+,所以()2111k AE AC AD k k =+++, 则()2111111111k k k AD AB AE AB AC AD k k k k k k ⎡⎤=+=++⎢⎥++++++⎢⎥⎣⎦,所以()()3211111k kAD AB AC k k k ⎡⎤-=+⎢⎥+++⎢⎥⎣⎦, 所以()()()()233111111k k k k AD AB AC k k ++=++-+-,又130139λμ+=,故()()()()233111301391111k k k k k k +++=+-+-,又0k >,解得73k =. 故答案为:73.28.我国汉代数学家赵爽为了证明勾股定理,创制了一副“勾股圆方图”,后人称其为“赵爽弦图”.类比赵爽弦图,由3个全等的小三角形拼成如图所示的等边ABC ,若ABC 的边长为AF FD =,则DEF 的面积为_______.【解析】 【分析】由条件得到2CF AD AF ==,在ACF 中用余弦定理即可求得DF ,进而求得DEF 的面积. 【详解】由3个小三角形全等以及AF FD =得2CF AD AF ==,120∠=AFC ,DEF 是等边三角形,设AF DF a ==,则2CF a =,在ACF 中由余弦定理得,(222422cos120a a a a =+-⋅⋅,解得2a =,所以12DEFSa a =⋅⋅=29.我国古代数学家赵爽在《周髀算经》中利用一副“弦图”给出了勾股定理的证明,后人称其为“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如图所示.记大正方形的面积为1S ,小正方形的面积为2S ,若1225S S =,则tan ABE ∠=___________.【答案】43【解析】 【分析】设BF CF ⊥,由已知可得()()22222525AE BE BF BE AE BE +=-=-,由AE BE >可求得AEBE的值,即可得解. 【详解】设BF CF ⊥,如下图所示:因为1225S S =,所以2225AB EF =,所以()()22222525AE BE BF BE AE BE +=-=-, 即221225120AE AE BE BE -⋅+=,则()()43340AE BE AE BE --=,AE BE >,则43AE BE =,故4tan 3AE ABE BE ∠==.故答案为:43.30.赵爽是我国古代数学家,大约在公元222年,他为《周髀算经》一书作序时,介绍了“刈股圆方图”,亦称为“赵爽弦图”(1弦为边长得到的正方形由4个全等的直角三角形再加上中间的一个小正方形组成).类比,可构造如图所示的图形,它是由三个全等的三角形与中间一个小等边三角形组成的一个较大的等边三角形,设AD AB AC λμ=+且3DF AF =,则可推出λμ+=___________.【答案】2021【解析】 【分析】设2AB =,根据3DF AF =与120ADB ∠=︒,利用余弦定理求出21DB =,AD =AG =m ,DG =n ,利用勾股定理求出m 与n 的值,建立直角坐标系,利用向量的坐标运算求出λ与μ的值,进而求出λμ+的值. 【详解】设2AB =,DB AF x ==,则3DF x =,4AD x =,因为ABC 和DEF 是等边三角形,故120ADB ∠=︒,由余弦定理得:2222cos120AB AD BD AD BD =+-⋅⋅︒,解得:x =4AD x ==,DB =D 作DG △AB 于点G ,设AG =m ,DG =n ,则BG =2-m,由勾股定理得:()2222222m n m n ⎧⎪+=⎪⎪⎝⎭⎨⎪-+=⎪⎪⎝⎭⎩,解得:127m n ⎧=⎪⎪⎨⎪=⎪⎩如图,以A 为坐标原点,AB 所在直线为x 轴,垂直AB 的直线为y 轴建立直角坐标系,则()0,0A ,()2,0B,127D ⎛ ⎝⎭,(C ,则127AD ⎛= ⎝⎭,()2,0AB =,(1,AC =,由AD AB AC λμ=+得:()(122,07λμ⎛=+ ⎝⎭,即1227λμ⎧+=⎪⎪=,解得:1621421λμ⎧=⎪⎪⎨⎪=⎪⎩,则2021λμ+=故答案为:2021。
专题12赵爽弦图模型与勾股树模型赵爽弦图分为内弦图与外弦图,是中国古代数学家赵爽发现,既可以证明勾股定理,也可以以此命题,相关的题目有一定的难度,但解题方法也常常是不唯一的。
弦图之美,美在简约,然不失深厚,经典而久远,被誉为“中国数学界的图腾”。
弦图蕴含的割补思想,数形结合思想、图形变换思想更是课堂教学中数学思想渗透的绝佳载体。
一个弦图集合了初中平面几何线与形,位置与数量,方法与思想,小身板,大能量,它就是数学教育里的不老神话。
广受数学教师和数学爱好者研究,近年来也成为了各地中考的热点问题。
模型1、弦图模型(1)内弦图模型:如图1,在正方形ABCD 中,AE ⊥BF 于点E ,BF ⊥CG 于点F ,CG ⊥DH 于点G ,DH ⊥AE 于点H ,则有结论:△ABE ≌△BCF ≌△CDG ≌△DAH ;S 正方形ABCD =4S △EAB +S 正方形EFGH 。
图1图2图3(2)外弦图模型:如图2,在正方形ABCD 中,E ,F ,G ,H 分别是正方形ABCD 各边上的点,且四边形EFGH 是正方形,则有结论:△AHE ≌△BEF ≌△CFG ≌△DGH ;S 正方形ABCD =4S △EAB +S 正方形EFGH 。
(3)内外组合型弦图模型:如图3,2S 正方形EFGH =S 正方形ABCD +S 正方形PQMN .例1.(2023春·安徽·八年级统考期末)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b ,若168ab =,大正方形的面积为625,则小正方形的边长为()A .7B .24C .17D .25【答案】C 【分析】勾股定理得:22625a b +=,又222()26252168289a b a b ab -=+-=-⨯=,由此即可求出17()a b a b -=>,因此小正方形的边长为17.【详解】解:由题意知小正方形的边长是a b -,由勾股定理得:22625a b +=,222()26252168289a b a b ab -=+-=-⨯= ,17()a b a b ∴-=>,A .8B .12【答案】C 【分析】设AE x =,3BE x =积公式可推导出FGQ AEP S S = 式求解即可.【详解】解:由题意,AEP ∠∴AE CF ∥,BE DG ∥,EF ∴()ASA AEP CGQ ≌,∴∵:3:1BE AE =,∴设AE =∴2EF GF CF CG x ==-=,∴∴阴影部分的面积之和为S 梯形例3.(2022·辽宁阜新·八年级期末)如图,是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC =12,BC =7,将四个直角三角形中边长为12的直角边分别向外延长一倍,得到如图所示的“数学风车”,则这个风车的外围周长是()A .148B .100C .196D .144【答案】A 【分析】通过勾股定理可求出“数学风车”的斜边长,然后求出风车外围的周长即可.【详解】解:如图,设将CA 延长到点D ,连接BD ,由题意得:12224,7,90CD BC BCD =⨯==∠=︒,25BD ∴=,122537AD BD ∴+=+=,∴这个风车的外围周长是374148⨯=,故选:A .【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题关键.例4.(2022·中山八年级期末)中国数学史上最先完成勾股定理证明的数学家是公元3世纪三国时期的赵爽,他为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.将图中正方形MNKT ,正方形EFGH ,正方形ABCD 的面积分别记为1S ,2 S ,3S .若12318S S S ++=,则正方形EFGH 的面积为_______.【答案】6【分析】设四边形MTKN 的面积为x ,八个全等的三角形面积一个设为y ,构建方程组,利用整体的思想思考问题,求出x+4y 即可.【解析】解:设四边形MTKN 的面积为x ,八个全等的三角形面积一个设为y ,∵正方形MNKT ,正方形EFGH ,正方形ABCD 的面积分别为S 1,S 2,S 3,S 1+S 2+S 3=18,∴得出S 1=x ,S 2=4y+x ,S 3=8y+x ,∴S 1+S 2+S 3=3x+12y=18,故3x+12y=18,x+4y=6,所以S 2=x+4y=6,即正方形EFGH 的面积为6.故答案为6【点睛】本题考查勾股定理的证明,正方形的性质、全等三角形的性质等知识,解题的关键是学会利用参数,构建方程组解决问题.【答案】①②③【分析】设“赵爽弦图”中,直角三角形的较短直角边为a ,较长直角边为为b a -,正方形ABCD 的边长为b ,正方形EFGH 的边长为a ,正方形公式,勾股定理逐项进行判断即可.【详解】设“赵爽弦图”中,直角三角形的较短直角边为a ,较长直角边为为b a -,正方形ABCD 的边长为b ,正方形EFGH 的边长为a ,正方形∴21S b =,22S a =,()2224MNPQ S c c ==四边形.∴22122S a S c b =++=.模型2.勾股树模型例1.(2022·重庆市八年级期中)如图所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,正方形A 、B 、C 的面积分别是28cm ,212cm ,214cm ,则正方形D 的面积是______2cm .【答案】15【分析】根据勾股定理有S 正方形1+S 正方形2=S 大正方形=49,S 正方形C +S 正方形D =S 正方形2,S 正方形A +S 正方形B =S 正方形1,等量代换即可求正方形D 的面积.【详解】解:如图,根据勾股定理可知,∵S 正方形1+S 正方形2=S 大正方形=49,S 正方形C +S 正方形D =S 正方形2,S 正方形A +S 正方形B =S 正方形1,∴S 大正方形=S 正方形C +S 正方形D +S 正方形A +S 正方形B =49.∴正方形D 的面积=49-8-12-14=15(cm 2);故答案为:15.【点睛】此题主要考查了勾股定理,注意根据正方形的面积公式以及勾股定理得到图中正方形的面积之间的关系:以直角三角形的两条直角边为边长的两个正方形的面积和等于以斜边为边长的面积.例2.(2022·浙江·乐清市八年级期中)如图,在四边形ABCD 中,90B D ∠=∠=︒,分别以AB ,BC ,CD ,DA 为一边向外作正方形甲、乙、丙、丁,若用S 甲,S 乙,S 丙,S 丁来表示它们的面积,那么下列结论正确的是()A .S S =甲丁B .S S =乙丙C .S S S S -=-甲乙丁丙D .S S S S +=+甲乙丁丙【答案】D 【分析】连接AC ,根据勾股定理可得甲的面积+乙的面积=丙的面积+丁的面积,依此即可求解.【详解】解:连接AC ,由勾股定理得AB 2+BC 2=AC 2,AD 2+CD 2=AC 2,∴甲的面积+乙的面积=丙的面积+丁的面积,故选:D .【点睛】本题考查了勾股定理的知识,要求能够运用勾股定理证明4个正方形的面积之间的关系.例3.(2022·江苏·八年级专题练习)如图,正方形ABCD 的边长为2,其面积标记为1S ,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为2S ,…,按照此规律继续下去,则2022S 的值为___________.【答案】201912【分析】根据勾股定理可得222DE CE DC +=,从而得到2112S S =,依次类推,即可得到3211124S S S ==,找出规律,进而得到S 2022的值.【详解】解:如图所示,△CDE 为等腰直角三角形,则CE =DE ,222DE CE DC +=,∴222DE CD =,即221112222S S ==´=,同理可得:32111124S S S ===,4311311112822S S S S ====,∴202212021202120191114222S S ==´=.故答案为:201912.【点睛】本题主要考查了勾股定理的运用,解题的关键是根据勾股定理与正方形面积的关键找出规律.例4.(2023春·重庆·八年级专题练习)如图是按照一定规律“生长”的“勾股树”:经观察可以发现:图(1)中共有3个正方形,图(2)在图(1)的基础上增加了4个正方形,图(3)在图(2)的基础上增加了8个正方形,……,照此规律“生长”下去,图(6)应在图(5)的基础上增加的正方形的个数是()A .12B .32C .64D .128【答案】C【分析】通过观察已知图形可以发现:图(2)比图(1)多出4个正方形,图(3)比图(2)多出8个正方形,图(4)比图(3)多出16个正方形,……,以此类推可得图形的变换规律.【详解】解:由题可得,图(2)比图(1)多出4个正方形,222=2=4⨯图(3)比图(2)多出8个正方形,342=2=8⨯;图(4)比图(3)多出16个正方形,482=2=16⨯;图(5)比图(4)多出32个正方形,5162=2=32⨯;照此规律,图(n )比图(n -1)多出正方形的个数为:2n故图(6)比图(5)多出正方形的个数为:62=64;故答案为:C .【点睛】此题考查了图形的变化类问题,主要考核学生的观察能力和空间想象能力.首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.例5.(2022·广东珠海·八年级期末)如图ABC 为直角三角形,斜边4AC =,以两条直角边为直径构成两个半圆,则两个半圆的面积之和为()A .2πB .4πC .8πD .16π【答案】A 【分析】先根据勾股定理得出22216AB BC AC +==,再根据圆的面积公式表示出2212112222AB BC S S ππ⎛⎫⎛⎫+=⨯+⨯ ⎪ ⎪⎝⎭⎝⎭,整理解得得出答案.【详解】解:∵ABC 为直角三角形,斜边4AC =,∴22216AB BC AC +==,∴2212112222AB BC S S ππ⎛⎫⎛⎫+=⨯+⨯ ⎪ ⎪⎝⎭⎝⎭22244AB BC π⎛⎫=+ ⎪⎝⎭()228AB BC π=+168π=⨯2π=故选:A .【点睛】本题主要考查了勾股定理的应用,解题的关键是熟练掌握勾股定理的内容.例6.(2023·江苏八年级期末)如图,Rt △ABC 中,∠BAC =90°,分别以△ABC 的三条边为直角边作三个等腰直角三角形:△ABD 、△ACE 、△BCF ,若图中阴影部分的面积S 1=6.5,S 2=3.5,S 3=5.5,则S 4=_____.【答案】2.5【分析】DE 分别交BF 、CF 于点G 、点H ;设AB =BD =a ,AC =CE =b ,BC =CF =c ,ABG S m =△,ACH S n =△,由222+=a b c ,可得ABD ACE BCF S S S +=△△△,由此构建关系式,通过计算即可得到答案.【详解】如图,DE 分别交BF 、CF 于点G 、点H∵△ABD 、△ACE 、△BCF 均是等腰直角三角形∴AB =BD ,AC =CE ,BC =CF ,设AB =BD =a ,AC =CE =b ,BC =CF =c ,ABG S m =△,ACH S n=△∵222+=a b c ∴ABD ACE BCF S S S +=△△△∵1ABD S S m =+△,4ACE S n S =+△,23BCF S S S m n =+++△∴1423S m n S S S m n +++=+++∴4231=3.5 5.5 6.5 2.5S S S S =+-+-=故答案为:2.5.【点睛】本题考查了等腰三角形、直角三角形的知识;解题的关键是熟练掌握等腰三角形、勾股定理的性质,从而完成求解.例7.(2023·四川达州·八年级校考阶段练习)勾股定理有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了二枚以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形构成(图1:△ABC 中,∠BAC =90°).(1)如图2,若以直角三角形的三边为边向外作等边三角形,则它们的面积1S 、2S 、3S 之间的数量关系是().(2)如图3,若以直角三角形的三边为直径向外作半圆,则它们的面积1S 、2S 、3S 之间的数量关系是(),请说明理由.(3)如图4,在四边形ABCD 中,AD ∥BC ,∠ABC +∠BCD =90°,BC =2AD ,分别以AB 、CD 、AD 、BC 为边向四边形外作正方形,其面积分别为1S 、2S 、3S 、4S ,则1S 、2S 、3S 、4S 之间的数量关系式为(),请说明理由.【答案】(1)123S S S +=;(2)123S S S +=;理由见解析;(3)123412S S S S =++,理由见解析.【分析】(1)利用直角ABC 的边长就可以表示出等边三角形1S 、2S 、3S 的大小,满足勾股定理;【点睛】本题主要考查的是三角形、正方形、圆形的计算面积以及勾股定理,熟练掌握三角形、正方形、圆形的面积的计算公式是解答本题的关键.课后专项训练1.(2023·北京初二期中)如图所示,直角三边形三边上的半圆面积从小到大依次记为1S 、2S 、3S ,则1S 、2S 、3S 的关系是()A .1S +2S =3S B .222123S S S +=C .222123S S S +>D .222123S S S +<【答案】A 分析:设直角三角形各边长为2a 、2b 、2c ,如图所示:【解析】∵三角形是直角三角形,∴(2a )2+(2b )2=(2c )2,化简得:a 2+b 2=c 2,S 1=12πa 2,S 2=12πb 2,S 3=12πc 2;S 1+S 2=12π(a 2+b 2)=12πc 2=S 3.故选A .考点:勾股定理.2.(2022成都市八年级数学期中)有一个面积为1的正方形,经过一次“生长”后,在它的左右“肩”上“生出”两个小正方形,这3个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了如图所示的图形,如果继续“生长”下去,它将变得“枝繁叶茂”,则“生长”了2021次后形成的图形中所有正方形的面积和为()A .2019B .2020C .2021D .2022【答案】D【分析】根据勾股定理求出“生长”了1次后形成的图形中所有的正方形的面积和,结合图形总结规律,根据规律解答即可.【详解】解:如图,设直角三角形的三条边分别是a ,b ,c ,根据勾股定理,得222+=a b c ,即正方形A 的面积+正方形B 的面积=正方形C 的面积1=,同理:正方形D 的面积+正方形E 的面积+正方形F 的面积+正方形G 的面积=正方形A 的面积+正方形B 的面积=正方形C 的面积1=,推而广之,“生长”了2021次后形成的图形中所有的正方形的面积和是202212022⨯=.故选:D【点评】本题考查了勾股定理,熟练掌握勾股定理,理解“勾股树”的关系是解题关键.3.(2022·四川成都·模拟预测)勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再将较小的两个正方形分别绕直角三角形斜边上的两顶点旋转得到图2.则图2中阴影部分面积等于()A .直角三角形的面积B .最大正方形的面积C .最大正方形与直角三角形的面积和D .较小两个正方形重叠部分的面积【答案】D 【分析】根据勾股定理得到222c a b =+,再根据正方形的面积公式、矩形面积公式计算即可.【详解】解:如图,设直角三角形的较短直角边为a ,较长直角边为b ,斜边为c ,由勾股定理可得,222c a b =+,阴影部分面积222()()()c b a c b a a c b a a b c =---=--=+-,较小两个正方形重叠部分的面积()a a b c =+-,∴阴影部分面积=较小两个正方形重叠部分的面积.故选:D .【点睛】本题主要考查了勾股定理的知识,解题关键是利用数形结合的数学思想分析问题.4.(2022·江苏·八年级课时练习)如图,△ABC 中,90ACB ∠= ,以其三边分别向外侧作正方形,然后将整个图形放置于如图所示的长方形中,若要求图中两个阴影部分面积之和,则只需知道()A .以BC 为边的正方形面积B .以AC 为边的正方形面积C .以AB 为边的正方形面积D .△ABC 的面积【答案】D 【分析】如图所示,过点C 作CN ⊥AB 于N ,延长AB 、BA 分别交正方形两边于H 、E ,证明△ADE ≌△CAN 得到=ADE CAN S S △△,AE =CN 同理可证△BGH ≌△CBN ,得到=BGH CBN S S △△,BH =CN ,则==ADE BGH CAN CBN ABC S S S S S ++△△△△△,即可推出=5ABC S S △阴影由此即可得到答案.【详解】解:如图所示,过点C 作CN ⊥AB 于N ,延长AB 、BA 分别交正方形两边于H 、E ,∴∠CNA =∠DEA =∠DAC =90°,∴∠DAE +∠EDA =∠DAE +∠CAN =90°,∴∠ADE =∠CAN ,又∵AD =CA ,∴△ADE ≌△CAN (AAS ),∴=ADE CAN S S △△,AE =CN同理可证△BGH ≌△CBN ,∴=BGH CBN S S △△,BH =CN ∴==ADE BGH CAN CBN ABC S S S S S ++△△△△△,∴=ABC S AB AE AB BH S ⋅+⋅+△阴影=2ABC AB CN S ⋅+△=5ABC S △,∴只需要知道△ABC 的面积的面积即可求出阴影部分的面积,故选D【点睛】本题主要考查全等三角形的性质与判定,解题的关键在于能够正确作出辅助线,构造全等三角形.5.(2022·广东湛江·八年级期末)如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,若正方形A、B、D的面积依次为6、10、24,则正方形C的面积为()A.4B.6C.8D.12【答案】C【分析】根据勾股定理的几何意义:S正方形A+S正方形B=S正方形E,S正方形D-S正方形C=S正方形E解得即可.【详解】解:由题意:S正方形A +S正方形B=S正方形E,S正方形D-S正方形C=S正方形E,∴S正方形A+S正方形B=S正方形D-S正方形C∵正方形A、B、D的面积依次为6、10、24,∴24-S正方形C=6+10,∴S正方形C=8.故选:C.【点睛】本题考查了勾股定理,要熟悉勾股定理的几何意义,知道直角三角形两直角边的平方和等于斜边的平方.6.(2023春·广东潮州·九年级校考期末)我国古代数学家赵爽巧妙地用“弦图”证明了勾股定理,标志着中国古代的数学成就.如图所示的“弦图”,是由四个全等的直角三角形和中间的一个小正方形拼成的一个大正方形.直角三角形的斜边长为13,一条直角边长为12,则小正方形ABCD的面积的大小为()A.144【答案】C【分析】首先利用勾股定理求得另一直角边的长度,然后结合图形求得小正方形的边长,易得小正方形的根据勾股定理,得AF所以正方形ABCD的面积为:【点睛】本题考查了勾股定理的应用,解题的关键是利用勾股定理求得直角三角形的另一直角边的长度.7.(2023春·湖北武汉A.1B.2【答案】C△≌△【分析】先证明EDO【点睛】本题考查了正方形的性质、全等三角形的判定和性质、等腰三角形的性质等知识,熟练掌握相关图形的性质定理、证明三角形全等是解题的关键8.(2023春·山东临沂·八年级统考期末)勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五积关系验证勾股定理.图2G,H,I都在长方形KLMJA .420B .440【答案】B 【分析】延长AB 交KL 于P ,延长AC 交LM 相等可得PB AC CQ AB ==,,然后求出IP 和【详解】解:如图,延长AB 交KL 于P ,延长由题意得,90BAC BPF FBC ===︒∠∠∠,【点睛】本题考查了勾股定理的证明,全等三角形的性质与判定,作辅助线构造出全等三角形并得到长方形的邻边的长是解题的关键,也是本题的难点.9.(2023春·广西南宁·八年级统考期末)勾股定理,如图所示的“弦图角形较短直角边长为a ,较长直角边长为为.【答案】1【分析】结合图形,得出【详解】解:根据题意得:【答案】4π【分析】先分别算出1S 、【详解】解:∵12AC S π⎛= ⎝∴211S S AB BC ππ+=+【答案】63【分析】由已知图形观察规律,即可得到第五代勾股树中正方形的个数.【详解】解:由题意可知第一代勾股树中正方形有123+=(个),第二代勾股树中正方形有21227++=(个),第三代勾股树中正方形有234512222263+++++=(个)故答案为:13.(2022·广西·八年级课时练习)如图,Rt △ABC 的两条直角边6BC =,8AC =.分别以Rt △ABC 的三边为边作三个正方形.若四个阴影部分面积分别为1S ,2S ,3S ,4S ,则4S 的值为______,231S S S +-的值为______.【答案】240【分析】先证明,ADE ABC V V ≌从而可得4,S 再利用图形的面积关系可得:223451567864,10100,S S S S S S S ++==+++==两式相减可得:17336,S S S +-=而227636,S S +==证明132,S S S -=从而可得第二空的答案.【详解】解:如图,以Rt △ABC 的三边为边作三个正方形,,,90,AC AE AB AD EAC DAB \==Ð=Ð=°226810,AB =+=,EAD CAB \Ð=Ð,ADE ABC \V V ≌46116824,22S S AC BC \===创=g 223451567864,10100,S S S S S S S ++==+++==两式相减可得:17336,S S S +-=而227636,S S +==132,S S S \-=23113310.S S S S S S S -=-+-=∴+故答案为:24,0【点睛】本题考查的是正方形的性质,全等三角形的判定与性质,图形面积之间的关系,证明ADE ABC ≌是解本题的关键.【答案】55n(3)新知运用:根据你所发现的结论完成下列问题.①某个直角三角形的两条直角边a 、b 满足式子②由①中结论,此三角形斜边c 上的高为形组成的,若正方形A 、B 、C 、D 的面积分别为【答案】(1)b a -(2)222+=a b c (3)①5c =根据勾股定理可得:222,a b c +=∴正方形,G H 的面积之和等于正方形E 的面积,同理可得:正方形E 的面积等于正方形A ,B ,C ,D 的面积的和,所以正方形E 的面积为2+4+1+2=9,所以正方形E 的边长为3,故答案为:3.【点睛】本题考查了勾股定理及勾股定理的证明方法,因为勾股定理涉及到各边的平方,而边长的平方正是正方形的面积,所以勾股定理与正方形的面积密切相关,理解勾股定理与正方形或其它图形的关系,对后面的解题非常重要.17.(2022春·广西南宁·八年级南宁三中校考期末)【背景阅读】勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了验证勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.【实践操作】勾股定理的证明,人们已经找到了400多种方法,图1、图2、图3是三种常见的证明方法,请你从中任选一种证明勾股定理(图中出现的直角三角形大小形状均相同).【探索发现】如图4,以直角三角形的三边为边向外部作等边三角形,请判断1S 、2S 、3S 的数量关系并说明理由.【答案】【实践操作】见解析;【探索发现】123S S S +=,理由见解析【分析】在图1中,根据大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和,即可得222+=a b c .在图2中,梯形的面积等于三个直角三角形的面积的和.即可得222+=a b c .在图3中,根据大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和.即可得:222+=a b c .由等边三角形的性质、三角形面积公式以及勾股定理即可得出结论.即()22142c ab b a =⨯+,整理得:222+a b c ,在图2中,连接,则梯形的面积等于三个直角三角形的面积的和,即()()11+2a b a b +=222+=a b c ;中,大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和,18.(2022·北京昌平·七年级期末)数学王老师在探索乘法公式时利用了面积法,面积法可以帮助我们直观地推导或验证公式,俗称“无字证明”,我国三国时期的数学家赵爽创造了一幅“勾股圆方图”(也称“赵爽弦图”)证明了勾股定理.2002年在北京召开的国际数学家大会把“赵爽弦图”作为会徽(如图1),彰显了这一中国古代的重大成就.运用“赵爽弦图”证明勾股定理的基本思路如下:“赵爽弦图”是将四个完全相同的直角三角形(如图2,其中构成直角的两条边叫直角边,边长分别为a 和b ,且a b <;最长的那条边叫做斜边,边长为c )围成一个边长为c 的大正方形(如图3),中间空的部分是一个边长为b a -的小正方形.(1)验证过程:大正方形的面积可以表示为2S c =,又可用四个直角三角形和一个小正方形的和表示为214()2S ab b a =⨯+-,∴2214()2c ab b a =⨯+-.化简等号右边的式子可得∴2c =_______.即直角三角形两直角边的平方和等于斜边的平方.(2)爱动脑筋的小新把这四个相同的直角三角形拼成了另一个大的正方形(如图4),模仿上述过程也能验证这个结论,请你帮助小新完成验证的过程.【答案】(1)a 2+b 2;(2)见解析【分析】(1)化简等号右边的式子,即可得出答案;(2)利用以c 为边的正方形和4个直角三角形的面积和等于以边为a +b 的正方形的面积建立方程,即可得出结论.(1)解:(1)验证过程:大正方形的面积可以表示为S =c 2,又可用四个直角三角形和一个小正方形的和表示为S=4×12ab+(b-a)2,∴c2=4×12ab+(b-a)2.化简等号右边的式子可得c2=a2+b2.即直角三角形两直角边的平方和等于斜边的平方.故答案为:a2+b2;(2)如图4,∵大的正方形的面积可以表示为(a+b)2,大的正方形的面积又可以表示为c2+4×12ab,∴c2+2ab=a2+b2+2ab,∴a2+b2=c2.【点睛】本题考查了勾股定理的证明.求面积时,利用了“分割法”.。
赵爽弦图模型模型讲解◎结论1:在正方形ABCD的四边AB,BC,CD,DA上分别取点E,F,G,H,使得BE=CF= GD=AH,则四边形EHGF是正方形.◎结论2:如图所示,在正方形ABCD的四边AB,BC,CD,DA上分别取点E,F,G,H,使得BE=CF=GD=AH,此外EQ∥BC,HP∥CD,GO∥DA,FR∥AB,则四边形ORQP是正方形.◎结论3:如图所示,在正方形ABCD的四边AB,BC,CD,DA上分别取点E,F,G,H,使得BE=CF=GD=AH,此外EQ∥BC,HP∥CD,GO∥DA,FR∥AB,则:(1)S正方形ABCD =4SΔAEH十S正方形EFGH;(2)S正方形EFGH =4SΔHPE十S正方形OPQR;(3)S正方形ABCD -S正方形EFGH=S正方形EFGH-S正方形OPQR.(4)2S正方形EFGH =S正方形ABCD十S正方形OPQR注:常见的勾股数组合①3,4,5; ②5,12,13;③6,8,10;④8,15,17;⑤9,12,15;1(2023春·四川南充·八年级四川省南充高级中学校考阶段练习)如图所示的“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.该图由四个全等的直角三角形和一个小正方形拼成一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b.若ab=10,大正方形面积为25,则小正方形边长为()A .3B .2C .5D .3【答案】C【分析】根据小正方形的面积等于大正方形的面积减去4个全等的三角形的面积,由此即可求解.【详解】解:如图所示,∵大正方形面积为25,四个全等的直角三角形较长直角边长为a ,较短直角边长为b ,ab =10,∴S 正方形ABCD =25,S △ABG =S △BCH =S △CDE =S △ADF =12ab =12×10=5,∴S 正方形EFGH =FG 2=S 正方形ABCD -4S △ABG =25-4×5=5,∴FG =5,即小正方形边长为5,故选:C .【点睛】本题主要考查勾股定理,理解图示的意思,掌握面积法与勾股定理的计算方法是解题的关键.2(2023春·河北沧州·八年级校考阶段练习)如图,用4个相同的直角三角形与一个小正方形拼成的大正方形,若图中直角三角形较短的直角边长是5,小正方形的边长是7,则大正方形的面积是()A .121B .144C .169D .196【答案】C【分析】直角三角形较短的直角边长是5厘米,即a =5厘米;小正方形的边长是7厘米,则较长直角边为b=5+7=12厘米,最后再根据勾股定理解答即可.【详解】解:∵直角三角形较短的直角边长是5厘米,即a=5厘米∴直角三角形较长的直角边长是5+7=12厘米,即b=12厘米∴c2=52+122=169.故答案为:C.【点睛】本题考查了直角三角形的勾股定理,确定直角三角形较长直角边的长度是解答本题的关键.3(2022秋·福建三明·八年级统考期末)某大会会标如图所示,它是由相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积是13,小正方形的面积是1,直角三角形中较长的直角边为a,较短的直角边为b,则a+b2的值()A.13B.19C.25D.169【答案】C【分析】大正方形的面积是13求得a2+b2=13,结合小正方形的面积是1求出阴影部分面积即ab=6,将a+b2变形代入求解即可.【详解】解:直角三角形中较长的直角边为a,较短的直角边为b,故斜边长为:a2+b2即大正方形边长为:a2+b2大正方形的面积是13,小正方形的面积是1∴a2+b2=13阴影部分的面积为:13-1=12ab=124×12即ab=6∴a+b2=a2+b2+2ab=13+12=25故选:C.【点睛】本题是以弦图为背景的计算题,考查了勾股定理,图形的面积,关键是用a、b表示面积.4(2021秋·贵州六盘水·八年级统考阶段练习)如图,这是“赵爽弦图”,△ABH,△BCG,△CDF,△DAE是四个全等的直角三角形,四边形ABCD和四边形EFGH都是正方形,如果EF=1,AH=3,那么AB等于()A.4B.5C.9D.10【答案】B【分析】根据正方形的性质得到HG=EF=1,∠AHB=∠GHE=90°,再由全等三角形的性质得BG=AH=3,则BH=4,最后根据勾股定理求解即可.【详解】解:∵四边形EFGH是正方形,EF=1,∴HG=EF=1,∠AHB=∠GHE=90°,∵AH=3,△ABH、△BCG,△CDF和△DAE是四个全等的直角三角形,∴BG=AH=3,∴BH=4,∴在直角三角形AHB中,由勾股定理得到:AB=AH2+BH2=32+42=5,故选B.【点睛】此题考查了正方形的性质,勾股定理和全等三角形的性质,解题的关键是得到直角三角形ABH的两直角边的长度.5(2023春·全国·八年级专题练习)如图是由4个全等的直角三角形与1个小正方形拼成的正方形图案.已知大正方形面积为25,小正方形面积为1,若用a、b表示直角三角形的两直角边(a>b),则下列说法:①a2+b2=25,②a-b=1,③ab=12,④a+b=7.正确的是()A.①②B.①②③C.①②④D.①②③④【答案】D【分析】由大的正方形的边长为c,结合勾股定理可判断①,由小的正方形的边长为a-b, 结合小正方形的面积可判断②,再利用a2-2ab+b2=1, 结合a2+b2=25,可判断③,再由a2+2ab+b2=25+24,可判断④,从而可得答案.【详解】解:由题意得:大正方形的边长为c,∴a2+b2=c2=25, 故①符合题意;用a、b表示直角三角形的两直角边(a>b),则小正方形的边长为:a-b,∴a-b2=1, 则a-b=1(负值不合题意舍去)故②符合题意;∵a-b2=1,∴a2-2ab+b2=1, 而a2+b2=25,∴25-2ab=1,∴ab=12, 故③符合题意;∵a2+b2=25,∴a2+2ab+b2=25+24,∴a+b2=49,∴a+b=7(负值不合题意舍去)故④符合题意;故选D【点睛】本题考查的是以勾股定理为背景的几何面积问题,同时考查了完全平方公式的应用,熟练的应用完全平方公式的变形求值是解本题的关键.6(2023春·全国·八年级专题练习)用四个全等的直角三角形拼成如图①所示的大正方形,中间也是一个正方形,它是美丽的弦图,其中四个直角三角形的直角边长分别为a,b a<b,斜边长为c.(1)结合图①,求证:a2+b2=c2;(2)如图②,将这四个全等的直角三角形无缝隙无重叠地拼接在一起,得到图形ABCDEFGH.若该图形的周长为48,OH=6.求该图形的面积.【答案】(1)证明见解析(2)96【分析】(1)根据图①,外面大正方形面积等于中间小正方形面积与四个完全形同的直角三角形面积的和,列出等式化简即可得到结论;(2)由图形的周长为48,得到AB+BC=48÷4=12,设AH=BC=x,则AB=12-x,在Rt△AOB中,由勾股定理列方程得x=2,从而OB=OH=6,OA=OH+AH=6+2=8,根据图形即可得到面积为4×12OB⋅OA=2OB⋅OA=2×6×8=96.【详解】(1)证明:由题意知,S大正方形=S小正方形+4S直角三角形,∴c2=b-a2+4×12ab,即c2=a2-2ab+b2+2ab=a2+b2,∴a2+b2=c2;(2)解:∵AB+BC=48÷4=12,设AH=BC=x,则AB=12-x,在Rt△AOB中,由勾股定理得:OB2+OA2=AB2,即62+6+x2=12-x2,解得:x=2,即在Rt△AOB中,OB=OH=6,OA=OH+AH=6+2=8,∴该图形面积为4×12OB⋅OA=2OB⋅OA=2×6×8=96.【点睛】本题考查几何法证明勾股定理及不规则图形面积求解,数形结合,将图中各个线段长度及面积关系搞清楚是解决问题的关键.7(2023秋·河南洛阳·八年级统考期末)八年级课外兴趣小组活动时,老师提出了如下问题:将2a-3ab-4+6b因式分解.【观察】经过小组合作交流,小明得到了如下的解决方法:解法一:原式=2a-3ab-4-6b=a2-3b-22-3b=2-3ba-2解法二:原式=2a-4-3ab-6b=2a-2-3b a-2=a-22-3b【感悟】对项数较多的多项式无法直接进行因式分解时,我们可以将多项式分为若干组,再利用提公因式法、公式法达到因式分解的目的,这就是因式分解的分组分解法.分组分解法在代数式的化简、求值及方程、函数等学习中起着重要的作用.(温馨提示:因式分解一定要分解到不能再分解为止)【类比】(1)请用分组分解法将x2-a2+x+a因式分解;【应用】(2)“赵爽弦图”是我国古代数学的骄傲,我们利用它验证了勾股定理.如图,“赵爽弦图”是由四个全等的直角三角形围成的一个大正方形,中间是一个小正方形.若直角三角形的两条直角边长分别是a和b(a>b),斜边长是3,小正方形的面积是1.根据以上信息,先将a4-2a3b+2a2b2-2ab3+b4因式分解,再求值.【答案】(1)(x+a)(x-a+1);(2)9【分析】(1)用分组分解法将x2-a2+x+a因式分解即可;(2)先将a4-2a3b+2a2b2-2ab3+b4因式分解,再求值即可;【详解】解:(1)原式=(x2-a2)+(x+a)=(x+a)(x-a)+(x+a)=(x+a)(x-a+1);(2)原式=(a4+2a2b2+b4)-(2ab3+2a3b)=(a2+b2)2-2ab(a2+b2)=(a2+b2)(a2+b2-2ab)=(a2+b2)(a-b)2,∵直角三角形的两条直角边长分别是a和b(a>b),斜边长是3,小正方形的面积是1,∴a2+b2=32=9,(a-b)2=1,∴原式=9.【点睛】本题主要考查因式分解的知识,熟练掌握因式分解的应用是解题的关键.8(2023春·全国·八年级专题练习)我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形(如图1)与中间的一个小正方形拼成一个大正方形(如图2).(1)利用图2正方形面积的等量关系得出直角三角形勾股的定理,该定理的结论用字母表示:;(2)用图1这样的两个直角三角形构造图3的图形,满足AE=BC=a,DE=AC=b,AD=AB=c,∠AED=∠ACB=90°,求证(1)中的定理结论;(3)如图,由四个全等的直角三角形拼成的图形,设CE=m,HG=n,求正方形BDFA的面积.(用m,n表示)【答案】(1)c2=a2+b2(2)见解析(3)m2+n22【分析】(1)由大正方形的面积的两种表示列出等式,可求解;(2)由四边形ABCD的面积两种计算方式列出等式,即可求解;(3)分别求出a,b,由勾股定理可求解.【详解】(1)解:∵大正方形的面积=c2,大正方形的面积=4×12×a×b+b-a2,∴c2=4×12×a×b+b-a2,∴c2=a2+b2,故答案为:c2=a2+b2;(2)证明:如图:连接BD,∵Rt△ABC≌Rt△DAE,∴∠ADE=∠BAC,∴∠DAE+∠ADE=90°=∠DAE+∠BAC,∴∠DAB=90°,∵S四边形ABCD =12c2+12a b-a,S四边形ABCD=2×12ab+12b b-a,∴1 2c2+12a b-a=2×12ab+12b b-a,∴c2=a2+b2;(3)解:由题意可得:CE=CD+DE,GH=AG-AH,∴m=a+b,n=b-a,∴a=m-n2,b=m+n 2,∴BD2=BC2+CD2=a2+b2=m2+n22,∴正方形BDFA 的面积为m 2+n 22.【点睛】本题考查了全等三角形的性质,正方形的性质,勾股定理等知识,灵活运用这些性质解决问题是解题的关键.9(2020秋·广东佛山·八年级统考期中)我们在探索乘法公式时,设置由图形面积的不同表示方法验证了乘法公式.我国著名的数学家赵爽,早在公元3世纪,就把一个矩形分成四个全等的直角三角形,用四个全等的直角三角形拼成了一个大的正方形(如图①),这个图形称为赵爽弦图,验证了一个非常重要的结论:在直角三角形中两直角边a ,b 与斜边c 满足关系式a 2+b 2=c 2,称为勾股定理.(1)爱动脑筋的小明把这四个全等的直角三角形拼成了另一个大的正方形(如图②),也能验证这个结论,请你帮助小明完成验证的过程.(2)如图,在每个小正方形边长为1的方格纸中,△ABC 的顶点都在方格纸格点上.请在图中画出△ABC 的高BD ,利用上面的结论,求高BD 的长.【答案】(1)证明见解析;(2)画图见解析,95.【分析】(1)根据四个全等的直角三角形的面积+阴影部分小正方形的面积=大正方形的面积,代入数值,即可证明;(2)先根据高的定义画出BD ,由(1)中结论求出AC 的长,再根据△ABC 的面积不变列式,即可求出高BD 的长.【详解】1 证明:由图②得:12ab ×4+c 2=a +b 2整理得:2ab +c 2=a 2+b 2+2ab 即a 2+b 2=c 2.2 解:△ABC 的高BD 如图所示.由图可得:AC=32+42=5,AB=3,AB边上的高为3.∵S△ABC=12AC⋅BD=12AB×3,∴BD=3ABAC=3×35=95.【点睛】本题考查了用数形结合来证明勾股定理,勾股定理的应用,三角形的高与面积,锻炼了同学们的数形结合的思想方法.10(2022春·安徽芜湖·八年级统考期中)图①是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.(1)在Rt△ABCC中,AC=a,BC=b,∠ACB=90°,若图①中大正方形的面积为61,小正方形的面积为1,求a+b2;(2)在(1)的条件下,若将图①中的四个直角三角形中较长的直角边分别向外延长一倍,得到图②所示的“数学风车”,求这个风车的外围周长(图中实线部分).【答案】(1)121;(2)76【分析】(1)由题意推出2ab=60,可得a+b2=a2+2ab+b2=121.(2)由(1)可知a+b=11b-a=1,求出a,b的值,再利用勾股定理求解即可.【详解】(1)由题意(b-a)2=1,a2+b2=61,∴2ab=60,∴a+b2=a2+2ab+b2=121;(2)由(1)可知(b-a)2=1,a+b2=121,∴a+b=11 b-a=1 ,11∴a=5b=6,∴AC=5,BC=6,∵∠ACB=90°,AC=5,CD=12,∴AD=AC2+CD2=52+122=13,∴这个风车的外围周长=413+6=76.【点睛】本题是勾股定理在实际情况中应用,并注意隐含的已知条件来解答此类题.读懂题目信息并准确识图是解题的关键.。
赵爽弦图
中国最早的一部数学著作—《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:
周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地的数据呢?”
商高回答说:“数的产生来源于对方和圆这些形体的认识.其中有一条原理:当直角三角形的一条直角边“勾”等于3,另一条直角边“股”等于4的时候,那么它的斜边“弦”就必定是5.这个原理是大禹在治水的时候就总结出来的啊.”
我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.
2000多年来,人们对勾股定理的证明颇感兴趣.不但因为这个定理重要、基本,还因为这个定理贴近人们的生活实际.以至于古往今来,下至平明百姓,上至帝王总统都愿意探讨、研究它的证明,新的证法不断出现.下面介绍几种用来证明勾股定理的图形,你能根据这些图形及提示证明勾股定理吗?
传说中毕达哥拉斯的证法(图1)
提示:(1)中拼成的正方形与(2)中拼成的正方形面积相等.
2.弦图的另一种证法(图2)
提示:以斜边为边长的正方形的面积+4个三角形的面积=外正方形的面积.
3.美国第20任总统詹姆斯加菲尔德的证法(图3)
提示:3个三角形的面积之和=梯形的面积.。