领世培优导数压轴必刷母题50道
- 格式:pdf
- 大小:1018.15 KB
- 文档页数:52
全国名校高中数学优质专题汇编汇编(附详解)函数导数压轴小题一、单选题1.已知数列中,,若对于任意的,不等式恒成立,则实数的取值范围为()A.B.C.D.2.已知实数,满足,则的值为()A.B.C.D.3.定义在上的函数,单调递增,,若对任意,存在,使得成立,则称是在上的“追逐函数”.若,则下列四个命题:①是在上的“追逐函数”;②若是在上的“追逐函数”,则;③是在上的“追逐函数”;④当时,存在,使得是在上的“追逐函数”.其中正确命题的个数为()A.①③B.②④C.①④D.②③4.若,恒成立,则的最大值为()A.B.C.D.5.设,,若三个数,,能组成一个三角形的三条边长,则实数m的取值范围是A.B.C.D.6.已知定义域为的函数的图象是连续不断的曲线,且,当时,,则下列判断正确的是()A.B.C.D.7.不等式对任意恒成立,则实数的取值范围()A.B.C.D.8.若函数的图象与曲线C:存在公共切线,则实数的取值范围为()A.B.C.D.9.设函数(,e为自然对数的底数).定义在R上的函数满足,且当时,.若存在,且为函数的一个零点,则实数a的取值范围为( )A.B.C.D.10.已知函数在上可导,其导函数为,若满足:当时,>0,,则下列判断一定正确的是 ( )A.B.C.D.11.已知函数有两个零点,则的取值范围为()A.B.C.D.12.已知函数,方程有四个不同的根,记最大的根的所有取值为集合,若函数有零点,则的取值范围是()A.B.C.D.全国名校高中数学优质专题汇编汇编(附详解)13.设函数的定义域为D,若满足条件:存在,使在上的值域为,则称为“倍缩函数”.若函数为“倍缩函数”,则实数t的取值范围是( )A.B.C.D.14.设定义在R上的函数f(x)是最小正周期为2π的偶函数,f'(x)是f(x)的导函数,当x∈[0,π]时,0≤f(x)≤1;当x∈(0,π)且x≠时,,则函数y=f(x)-|sinx|在区间上的零点个数为( )A.4B.6C.7D.815.已知函数是定义在上的可导函数,且对于,均有,则有()A.B.C.D.16.已知函数,若函数的图象上存在点,使得在点处的切线与的图象也相切,则的取值范围是A.B.C.D.17.已知函数,对任意的实数,,,关于方程的的解集不可能是()A.B.C.D.18.设函数,其中,若仅存在两个正整数使得,则的取值范围是A.B.C.D.19.己知函数,若关于的方程恰有3个不同的实数解,则实数的取值范围是( )A.B.C.D.20.已知函数为定义域R上的奇函数,且在R上是单调递增函数,函数,数列为等差数列,且公差不为0,若,则( )A.45B.15C.10D.021.设函数,函数,若对任意的,总存在,使得,则实数的取值范围是()A.B.C.D.22.已知函数,若x=2 是函数f(x)的唯一的一个极值点,则实数k 的取值范围为()A.(-∞,e]B.[0,e]C.(-∞,e)D.[0,e)23.设在的导函数为,且当时,有(k为常数),若,全国名校高中数学优质专题汇编汇编(附详解)则在区间 内,方程的解的个数为( ) A .0 B .1 C .0或1D .424.设函数,函数,若对任意的,总存在,使得,则实数的取值范围是( )A .B .C .D . 25.已知函数,,若成立,则的最小值是( )A .B .C .D .26.已知函数,则函数的零点的个数为( )A .B .C .D .27.已知函数函数有两个零点,则实数的取值范围为( )A .B .C .D .28.已知当()1,x ∈+∞时,关于x 的方程()ln 21x x k xk+-=-有唯一实数解,则k 值所在的范围是( )A .()3,4B .()4,5C .()5,6D .()6,7 29.已知函数满足,若对任意正数都有,则的取值范围是 ( )A.B.C.D.30.已知,若方程有一个零点,则实数的取值范围是()A.B.C.D.31.函数的定义域为D,若对于任意的,,当时,都有,则称函数在D上为非减函数设函数在上为非减函数,且满足以下三个条件:;;,则等于A.B.C.D.32.定义在上的偶函数,当时,,且在上恒成立,则关于的方程的根的个数叙述正确的是()A.有两个B.有一个C.没有D.上述情况都有可能33.已知函数的定义域为,当时,,且对任意的实数,等式成立,若数列满足,且,则下列结论成立的是()A.B.C.D.34.函数的值域为()A.B.C.D.35.已知函数,对于任意且.均存在唯一实数,使得,且.若关于的方程有4个不相等的实数根,则的取值范围全国名校高中数学优质专题汇编汇编(附详解)是 ( )A.B.C.D.36.已知定义在R上的函数y=f(x)对于任意的x都满足f(x+1)=-f(x),当-1≤x<1时,f(x)=x3,若函数g(x)=f(x)-log a|x|至少有6个零点,则a的取值范围是( )A.∪(5,+∞)B.∪C.∪(5,7)D.∪[5,7)37.定义在上的函数满足,且当时,,对,,使得,则实数的取值范围为()A.B.C.D.38.已知函数,若方程有四个不同的实数根,,,,则的取值范围是()A.B.C.D.39.定义在上的函数对任意都有,且函数的图象关于成中心对称,若满足不等式,则当时,的取值范围是()A.B.C.D.40.已知函数是上的单调函数,且对任意实数,都有,则()A.1 B.C.D.041.已知,,,则,,的大小关系是()A.B.C.D.42.若函数恰有一个零点,则实数的值为A.B.2C.D.43.已知函数,且函数恰有三个不同的零点,则实数的取值范围是()A.B.C.D.44.设函数,若,则的取值范围是()A.B.C.D.45.已知是函数的导函数,且对任意的实数都有是自然对数的底数),,若不等式的解集中恰有两个整数,则实数的取值范围是()A.B.C.D.46.若函数有两个不同的零点,则实数的取值范围是A.B.C.D.47.已知定义在R上的函数f(x)是奇函数,且满足f(3-x)=f(x),f(-1)全国名校高中数学优质专题汇编汇编(附详解)=3,数列{a n}满足a1=1且a n=n(a n+1-a n)(n∈N*),则f(a36)+f(a37)=()A.B.C.2D.348.设函数是上可导的偶函数,且,当,满足,则的解集为()A.B.C.D.49.已知函数,若存在互不相等的实数,,,,满足,则()A.0B.1C.2D.450.已知直线为函数图象的切线,若与函数的图象相切于点,则实数必定满足()A.B.C.D.51.已知,则的最小值为()A.B.C.D.52.已知函数f(x)=,对任意的x1,x2≠±1且x1≠x2,给出下列说法:①若x1+x2=0,则f(x1)-f(x2)=0;②若x1•x2=1,则f(x1)+f(x2)=0;③若1<x2<x1,则f(x2)<f(x1)<0;④若()g(x)=f(),且0<x2<x1<1.则g(x1)+g(x2)=g(),其中说法正确的个数为()A.1B.2C.3D.453.如果函数有两个极值点,则实数的取值范围是()A.B.C.D.54.函数的零点个数为()A.10B.8C.6D.455.下列命题为真命题的个数是;;;A.1B.2C.3D.456.设是定义在R上的偶函数,对任意的,都有,且当时,,若关于的方程在区间内恰有三个不同实根,则实数的取值范围是()A.B.C.D.57.若函数在其图象上存在不同的两点,其坐标满足条件:的最大值为0,则称为“柯西函数”,则下列函数:①;②;③;④.其中为“柯西函数”的个数为()A.1B.2C.3D.458.已知函数,,若与的图象上存在关于直线对称的点,则实数m的取值范围是A.B.C.D.59.已知函数,若方程有3个不同的实根,则实数的取值范围为()A.B.C.D.全国名校高中数学优质专题汇编汇编(附详解)60.设是函数的导函数,若,且,,则下列选项中不一定正确的一项是()A.B.C.D.61.已知函数f(x)=-x2+x+t(≤x≤3)与g(x)=3lnx的图象上存在两组关于x轴对称的点,则实数t的取值范围是()(参考数据:ln2≈0.7,ln3≈1.1)A.B.C.D.62.已知函数恰好有两个极值点,则的取值范围是()A.B.C.D.63.已知函数在上的最大值为,若函数有4个零点,则实数的取值范围为A.B.C.D.64.已知函数是定义在上的可导函数,对于任意的实数x,都有,当时,若,则实数a的取值范围是()A.B.C.D.65.定义在R上的可导函数f(x)满足f'(x)+f(x)<0,则下列各式一定成立的是()A.B.C.D.66.在中,,,,点在边上,点关于直线的对称点分别为,则的面积的最大值为A.B.C.D.67.设函数,若曲线上存在点使得,则a的取值范围是()A.[ln3-6,0]B.[ln3-6,ln2-2]C.[2ln2-12,0]D.[2ln2-12,ln2-2]68.已知是自然对数的底数,不等于1的两正数,满足,若,则的最小值为()A.-1B.C.D.69.设,已知函数,对于任意,都有,则实数的取值范围为()A.B.C.D.70.已知,,且,,恒成立,则实数的取值范围是()A.B.C.D.71.设函数.若不等式对一切恒成立,则的取值范围为()A.B.C.D.72.设,,,则()A.B.C.D.73.如果把一个平面区域内两点间的距离的最大值称为此区域的直径,那么曲线围成的平面区域的直径为( )全国名校高中数学优质专题汇编汇编(附详解)A.B.C.D.74.定义域为的奇函数,当时,恒成立,若,,则()A.B.C.D.75.已知的定义域为,为的导函数,且满足,则不等式的解集是()A.B.C.D.76.已知定义在上的函数关于轴对称,其导函数为,当时,不等式.若对,不等式恒成立,则正整数的最大值为()A.B.C.D.77.已知函数,,若对,均有,则实数a的最小值为A.B.C.1D.e78.若函数为自然对数的底数有两个极值点,则实数a的取值范围是A.B.C.D.79.已知函数(为自然对数的底),若方程有且仅有四个不同的解,则实数的取值范围是()A.B.C.D.80.棱长为4的正方体的顶点在平面内,平面与平面所成的二面角为,则顶点到平面的距离的最大值()A.B.C.D.81.已知若方程有唯一解,则实数的取值范围是()A.B.C.D.82.已知定义在上的奇函数满足:当及时,不等式恒成立.若对任意的,不等式恒成立,则的最大值是()A.B.C.D.83.已知函数,若对,,使成立,则的取值范围是()A.B.C.D.84.已知函数,且在上单调递增,且函数与的图象恰有两个不同的交点,则实数的取值范围是()A.B.C.D.85.定义域为的函数,若关于的方程有5个不同的实数解,,,,,则的值为()A.B.C.D.全国名校高中数学优质专题汇编汇编(附详解)86.已知函数,若对,,使成立,则的取值范围是()A.B.C.D.87.已知函数,若方程有且只有三个不相等的实数解,则实数的取值范围是()A.B.C.D.88.已知定义在上的函数满足,且函数在上是减函数,若,则的大小关系为()A.B.C.D.89.已知,曲线与有公共点,且在公共点处的切线相同,则实数的最小值为()A.0B.C.D.90.若函数与函数的图象存在公切线,则实数的取值范围是()A.B.C.D.91.已知函数存在极值点,且,其中,A.3B.2C.1D.092.若函数恰有两个极值点,则实数的取值范围为()A.B.C.D.93.已知,为动直线与和在区间上的左,右两个交点,,在轴上的投影分别为,.当矩形面积取得最大值时,点的横坐标为,则()A.B.C.D.94.已知,若,且,使得,则满足条件的的取值个数为()A.5B.4C.3D.295.已知函数在上有两个极值点,且在上单调递增,则实数的取值范围是()A.B.C.D.96.函数的图象上存在不同的两点关于原点对称,则正数的取值范围为()A.B.C.D.97.设函数,,其中,若存在唯一的整数使得,则a的取值范围是A.B.C.D.98.已知表示不超过实数的最大整数(),如:,,.定义,给出如下命题:①使成立的的取值范围是;②函数的定义域为,值域为;③.全国名校高中数学优质专题汇编汇编(附详解)其中正确的命题有( )A.0个B.1个C.2个D.3个99.已知正数满足,则的最小值是( ) A.B.C.D.100.已知,若存在,使,则称函数与互为“度零点函数”。
培优导数专题1、(本大题满分12分) 设函数f (x )=.cos 2sin xx+(Ⅰ)求f (x )的单调区间;(Ⅱ)如果对任何,0≥x 都有f (x )ax ≤,求a 的取值范围. 2.(本小题满分12分)已知.)2()(,02xe ax x xf a -=≥函数(Ⅰ)当x 为何值时,f (x )取得最小值?证明你的结论; (Ⅱ)设)(x f 在[-1,1]上是单调函数,求a 的取值范围.3、已知函数21()ln (1)(0).2f x x ax a x a R a =-+-∈≠且(1)求函数()f x 的单调递增区间;(2)记函数()y F x =的图象为曲线C .设点A (x 1,y 1),B (x 2,y 2)是曲线C 上的不同两点.如果在曲线C 上存在点M (x 0,y 0),使得:①1202x x x +=;②曲线C 在点M 处的切线平行于直线AB ,则称函数F (x )夺在“中值相依切线”, 试问:函数f (x )是否存在“中值相依切线”,请说明理由.4、对于函数()f x ,若存在0x R ∈,使00()f x x =成立,则称0x 为()f x 的不动点。
如果函数2()(,*)x a f x b c N bx c +=∈-有且仅有两个不动点0、2,且1(2)2f -<-。
(1)试求函数()f x 的单调区间;(2)已知各项均为负的数列{}n a 满足1)1(4=nn a f s ,求证:1111ln n n n a n a ++-<<-;(3)设1n nb a =-,n T 为数列{}n b 的前n 项和,求证:201120101ln 2011T T -<<。
5、(12分)设函数f (x ) = x 2+bln (x +1),(1)若对定义域的任意x ,都有f (x )≥f (1)成立,求实数b 的值; (2)若函数f (x )在定义域上是单调函数,求实数b 的取值范围; (3)若b =-1,证明对任意的正整数n ,不等式33311......31211)1(nk f nk ++++∑=π都成立;6、(12分)已知函数)()(R x kx e x f x∈-= (1)若e k =,试确定函数)(x f 的单调区间;(2)若0>k 且对任意R x ∈,0|)(|>x f 恒成立,试确定实数k 的取值范围;(3)设函数)()()(x f x f x F -+=,求证:)()2()()2()1(21*+∈+>⋅N n en F F F nn Λ1解: (I ).)cos 2(1cos 2)cos 2()sin (sin cos )cos 2()(22x x x x x x x x f ++=+--+=' ……2分分是减函数在每一个区间是增函数在每一区间因此即时当即时当6.))(342,322()(,))(322,322()(.0)(,21cos ,)(342322;0)(,21cos ,)(322322ΛΛZ Z Z Z ∈++∈+-<'-<∈+<<+>'->∈+<<-k k k x f k k k x f x f x k k x k x f x k k x k ππππππππππππππππ(II )令则),()(x f ax x g -=.31)31cos 21(3)cos 2(3cos 22)cos 2(1cos 2)(222-+-+=+++-=++-='a x x x a x x a x g故当.)(,0)0()(,0,0)0(.0)(,31ax x f g x g x g x g a ≤=≥≥=≥'≥即时所以当又时[)[).2021)2(,0.3sin cos 2sin )(,)3arccos ,0(,.3sin ,0)0()(,)3arccos ,0(.3arccos ,0)(.0)(,3arccos ,0.3cos )(,3sin )(,310ππ⋅≥>=≤>>+=∈>=>∈>'∈-='-=<<a f a ax xx x x f a x ax x h x h a x a x h x h a x a x x h ax x x h a 有时当时当于是即时故当上单调增加在因此时故当则令时当因此,a 的取值范围是.,31⎪⎭⎫⎢⎣⎡+∞……12分2.解:(I )对函数f (x )求导数,得 .]2)1(2[)22()2()(22xx x e a x a x e a x e ax x x f --+=-+-='令0)(='x f ,得 [x 2+2(1-a )x -2a ]e x =0,从而x 2+2(1-a )x -2a =0.解得 212221,11,11x x a a x a a x <++-=+--=其中,当x 变化时,)(x f ',f (x )的变化如下表:当f (x )在x =x 1处取到极大值,在x =x 2处取到极小值,……………………4分 当a ≥0时,x 1<-1, x 2≥0,f (x )在(x 1 , x 2)为减函数,在(x 2,+ ∞)为增函数.而当x <0时,f (x )=x (x -2a )e x>0;当x =0时,f (x )=0.所以当x =a -1+21a +时, f (x )取得最小值. …………………8分(II )当a ≥0时,f (x )在[-1,1]上单调函数的充要条件是x 2≥1,即a -1+21a +≥1.解得a ≥43;综上:f (x )在[-1,1]上为单调函数的充分必要条件为a ≥43;即a 的取值范围是),43[+∞… 3、解:(Ⅰ) 函数()f x 的定义域是(0,)+∞. ………1分由已知得,1(1)()1'()1a x x a f x ax a x x-+=-+-=-. ………2分 ⅰ 当0a >时, 令'()0f x >,解得01x <<;∴函数()f x 在(0,1)上单调递增 ⅱ 当0a <时,①当11a -<时,即1a <-时, 令'()0f x >,解得10x a<<-或1x >; ∴函数()f x 在1(0,)a-和(1,)+∞上单调递增②当11a -=时,即1a =-时, 显然,函数()f x 在(0,)+∞上单调递增;③当11a ->时,即10a -<<时, 令'()0f x >,解得01x <<或1x a>-∴函数()f x 在(0,1)和1(,)a-+∞上单调递增 。
高中数学:导数压轴30道解答题(含解析与考点)
昨天我们说了,关于导数的30道选择题,不少家长都纷纷私信我说,很实用。
今天,要和大家分享的,仍然是关于导数这部分的内容。
导数是历年高考压轴最后一题,而这道题也是高分同学和一般同学的一个分水岭。
想要考高分,想要占领数学制高点,那么,我们必须得突破导数瓶颈。
昨天我们已经提到了,导数这部分主要的考点,如果没有看过的家长们,大家可以翻看我昨天的文章。
同样,今天这部分也为大家整理了电子完整打印版,私信“数学”,即可免费领取。
导数和圆锥曲线并称高考数学两大难点,在过去的文章里,我们都已经逐一地去分析总结。
大家需要掌握的是方法,深刻理解和体会,每道题所考察的知识点,了解了出题人的意图,这对我们来说,是非常重要的。
不仅如此,我们能够立刻想到该运用哪块的知识点或公式,还会大大提高我们的解题速度。
希望各位家长给自己的孩子看,转发并收藏。
导数小题【题型1 函数切线问题】 (4)【题型2 导数中函数的单调性问题】 (4)【题型3 导数中函数的极值问题】 (5)【题型4 导数中函数的最值问题】 (6)【题型5 函数零点(方程根)个数问题】 (7)【题型6 利用导数解不等式】 (9)【题型7 导数中的不等式恒成立问题】 (10)【题型8 任意存在性问题】 (10)【题型9 函数零点嵌套问题】 (11)【题型10 双变量问题】 (13)导数是高考数学的必考内容,是高考常考的热点内容,主要涉及导数的运算及几何意义,利用导数研究函数的单调性,函数的极值和最值问题等,考查分类讨论、数形结合、转化与化归等思想.从近三年的高考情况来看,导数的计算和几何意义是高考命题的热点,多以选择题、填空题形式考查,难度较小;利用导数研究函数的单调性、极值、最值多在选择题、填空题靠后的位置考查,难度中等偏上,属综合性问题,解题时要灵活求解.【知识点1 切线方程的求法】1.求曲线“在”某点的切线方程的解题策略:①求出函数y=f(x)在x=x0处的导数,即曲线y=f(x)在点(x0,f(x0))处切线的斜率;②在已知切点坐标和切线斜率的条件下,求得切线方程为y=y0+f'(x0)(x-x0).2.求曲线“过”某点的切线方程的解题通法:①设出切点坐标T(x0,f(x0))(不出现y0);②利用切点坐标写出切线方程:y=f(x0)+f'(x0)(x-x0);③将已知条件代入②中的切线方程求解.【知识点2 导数中函数单调性问题的解题策略】1.确定函数单调区间的步骤;(1)确定函数f(x)的定义域;(2)求f'(x);(3)解不等式f'(x)>0,解集在定义域内的部分为单调递增区间;(4)解不等式f'(x)<0,解集在定义域内的部分为单调递减区间.2.含参函数的单调性的解题策略:(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)若导函数为二次函数式,首先看能否因式分解,再讨论二次项系数的正负及两根的大小;若不能因式分解,则需讨论判别式△的正负,二次项系数的正负,两根的大小及根是否在定义域内.3.根据函数单调性求参数的一般思路:(1)利用集合间的包含关系处理:y=f(x)在(a,b)上单调,则区间(a,b)是相应单调区间的子集.(2)f(x)为增(减)函数的充要条件是对任意的x∈(a,b)都有f'(x)≥0(f'(x)≤0),且在(a,b)内的任一非空子区间上,f'(x)不恒为零,应注意此时式子中的等号不能省略,否则会漏解.(3)函数在某个区间上存在单调区间可转化为不等式有解问题.【知识点3 函数的极值与最值问题的解题思路】1.运用导数求函数f(x)极值的一般步骤:(1)确定函数f(x)的定义域;(2)求导数f'(x);(3)解方程f'(x)=0,求出函数定义域内的所有根;(4)列表检验f'(x)在f'(x)=0的根x0左右两侧值的符号;(5)求出极值.2.根据函数极值求参数的一般思路:已知函数极值,确定函数解析式中的参数时,要注意:根据极值点的导数为0和极值这两个条件列方程组,利用待定系数法求解.3.利用导数求函数最值的解题策略:(1)利用导数求函数f(x)在[a,b]上的最值的一般步骤:①求函数在(a,b)内的极值;②求函数在区间端点处的函数值f(a),f(b);③将函数f(x)的各极值与f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值.(2)求函数在无穷区间(或开区间)上的最值的一般步骤:求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值.【知识点4 导数的综合应用】1.导数中函数的零点(方程的根)的求解策略(1)利用导数研究方程根(函数零点)的技巧①研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等.②根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置.③利用数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现.(2)已知函数零点个数求参数的常用方法①分离参数法:首先分离出参数,然后利用求导的方法求出构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.②分类讨论法:结合单调性,先确定参数分类的标准,在每个小范围内研究零点的个数是否符合题意,将满足题意的参数的各小范围并在一起,即为所求参数范围.2.导数中恒成立、存在性问题的求解策略恒成立(或存在性)问题常常运用分离参数法,转化为求具体函数的最值问题.如果无法分离参数,可以考虑对参数或自变量进行分类讨论,利用函数性质求解,常见的是利用函数单调性求解函数的最大、最小值;当不能用分离参数法或借助于分类讨论解决问题时,还可以考虑利用函数图象来求解,即利用数形结合思想解决恒成立(或存在性)问题,此时应先构造函数,结合函数图象,利用导数来求解.【题型1 函数切线问题】【例1】(2023·全国·模拟预测)若曲线y=(1−x)e x有两条过点A(a,0)的切线,则a的取值范围是()A.(−∞,−1)∪(3,+∞)B.(−3,1)C.(−∞,−3)D.(−∞,−3)∪(1,+∞)【变式1-1】(2023·陕西咸阳·校考模拟预测)已知函数f(x)=1e x−1,则曲线y=f(x)在点(−1,f(−1))处的切线方程为()A.e x+y+1=0B.e x−y+1=0C.e x+y−1=0D.e x−y−1=0【变式1-2】(2023·四川雅安·统考一模)若直线y=kx与曲线y=ln x相切,则k=()A.1e2B.2e2C.1eD.2e【变式1-3】(2023·四川凉山·统考一模)函数f(x)=12x2+alnx在区间(1,2)的图象上存在两条相互垂直的切线,则a的取值范围为()A.(−2,1)B.(−2,−1)C.(−2,0)D.(−3,−2)【题型2 导数中函数的单调性问题】【例2】(2023·吉林长春·长春吉大附中实验学校校考模拟预测)下列函数中,既是偶函数,又在区间(0,+∞)上单调递增的是()A.y=1x2B.y=e−2x C.y=−x2+1D.y=lg|x|【变式2-1】(2023·陕西商洛·统考一模)已知函数f(x)=2(x−1)e x−x2−ax在R上单调递增,则a的最大值是()A.0B.1eC.e D.3【变式2-2】(2023·全国·模拟预测)已知x=ln56,y=2425ln45,z=−16,则()A.y<x<z B.y<z<x C.z<x<y D.x<y<z【变式2-3】(2023·河南·模拟预测)已知函数f(x)=e x(x+a)x在(0,+∞)上单调递增,则实数a的取值范围是()A.[0,+∞)B.(−∞,−4]C.(−∞,−4]∪[0,+∞)D.[−4,0]【题型3 导数中函数的极值问题】【例3】(2023·四川成都·校考模拟预测)已知函数f(x)=x3−2ax2+a2x+1在x=1处有极小值,则a的值为()A.1B.3C.1或3D.−1或3【变式3-1】(2023·全国·模拟预测)函数f(x)=2x−tanx−π在区间(−π2,π2)的极大值、极小值分别为()A .π2+1,−π2+1 B .−π2+1,−3π2+1 C .3π2−1,−π2+1D .−π2−1,−3π2+1【变式3-2】(2023·甘肃兰州·校考一模)已知函数f (x )=e x +x 22−lnx 的极值点为x 1,函数ℎ(x )=lnx 2x的最大值为x 2,则( )A .x 1>x 2B .x 2>x 1C .x 1≥x 2D .x 2≥x 1【变式3-3】(2023·广东广州·广州校考模拟预测)设函数f (x )=sin (ωx +π5)(ω>0),已知f (x )在[0,2π]有且仅有5个零点,下述四个结论错误的是( )A .ω的取值范围是[125,2910)B .f (x )在(0,π10)单调递增C .若x =3π25是f (x )在(0,2π)上的第一个极值点,则ω=165;D .若x =3π25是f (x )在(0,2π)上的第一个极值点,y =−52x +4π5是f (x )的切线【题型4 导数中函数的最值问题】【例4】(2023·陕西宝鸡·统考二模)函数f (x )=x 2+(a −1)x −3lnx 在(1,2)内有最小值,则实数a 的取值范围为( )A .(−32,2)B .[−32,2]C .(−43,2)D .(−43,1]【变式4-1】(2023·广西南宁·统考模拟预测)若函数f(x)=2x3−ax2+1(a∈R)在(0,+∞)内有且仅有一个零点,则f(x)在[−1,1]上的最大值与最小值的和为()A.1B.−4C.−3D.5【变式4-2】(2023·广东湛江·校考模拟预测)已知函数f(x)=e x+x3+(a−3)x+1在区间(0,1)上有最小值,则实数a的取值范围是()A.(-e,2)B.(-e,1-e)C.(1,2)D.(−∞,1−e)【变式4-3】(2023·浙江嘉兴·校考模拟预测)已知函数f(x)=xlnx,g(x)=x e x,若存在t>0,使得f(x1)= g(x2)=t成立,则x1−2x2的最小值为()A.2−ln4B.2+ln4C.e−ln2D.e+ln2【题型5 函数零点(方程根)个数问题】,若函数g(x)=【例5】(2023·辽宁大连·大连二十四中校考模拟预测)已知函数f(x)={x3+2x2+x,x≥0−2x,x<0f(x)−|kx2−4x|,(k∈R)恰有4个零点,则k的取值范围()A.(−∞,−1)∪(2√5,+∞)B.(−∞,−√5)∪(0,2)C.(−∞,0)∪(0,2+2√2)D.(−∞,0)∪(2+2√5,+∞)【变式5-1】(2023·海南省直辖县级单位·校联考二模)已知函数f(x)={e x,x≥0−3x,x<0,若函数g(x)=f(−x)−f(x),则函数g(x)的零点个数为()A.1B.3C.4D.5【变式5-2】(2023·陕西商洛·陕西校考模拟预测)已知函数f(x)={x e x,x<0−x2+2x,x≥0,若关于x的方程f2(x)−(2+t)f(x)+2t=0有3个不同的实数根,则实数t的取值范围为()A.(−∞,−1e )B.(−1e,0)C.[−1e,1]D.(−e,2)【变式5-3】(2023·四川泸州·泸县五中校考模拟预测)已知函数f(x)=(x2−2x)e x,若方程f(x)=a有3个不同的实根x1,x2,x3(x1<x2<x3),则ax2−2的取值范围为()A.[−1e ,0)B.[−2e,0)C.(−√2e−√2,0)D.(−√2e−√2,√2e√2)【题型6 利用导数解不等式】【例6】(2023·陕西榆林·校考模拟预测)已知定义在(0,+∞)上的函数f (x )满足f ′(x )−f (x )x−1>0,且f (1)=1,则不等式f (e x )−(x +1)e x >0的解集为( )A .(0,+∞)B .(1,+∞)C .(−∞,0)D .(−∞,1)【变式6-1】(2023·全国·模拟预测)若函数f(x)为偶函数,且当x ≥0时,f(x)=x 3+2x 2+3.若f(−9)≥f (a 2−2a +1),则实数a 的取值范围为( )A .[−2√3,4]B .[−4,2]C .[−2,4]D .[−4,2√3]【变式6-2】(2023·陕西西安·校联考模拟预测)设函数f ′(x )是函数f(x)(x ∈R )的导函数,f (3)=e 3,且f ′(x )−f (x )>0恒成立,则不等式f (x )−e x >0的解集为( )A .(0,3)B .(1,3)C .(−∞,3)D .(3,+∞)【变式6-3】(2023·四川达州·统考一模)已知f (x )=lnx −ax 3,g (x )=x e x −lnx −x −34,若不等式f (x )g (x )>0的解集中只含有两个正整数,则a 的取值范围为( )A .[ln327,ln28) B .(ln327,ln28) C .[ln232,ln327) D .(ln232,ln327)【题型7 导数中的不等式恒成立问题】【例7】(2023·全国·模拟预测)已知函数f(x)=ln(√x2+1+x)+e x−e−x−2x+3,若f(a e x)+f(lna−lnx)>6对于x∈(0,+∞)恒成立,则实数a的取值范围是.【变式7-1】(2023·陕西咸阳·咸阳校考模拟预测)已知f(x),g(x)分别是定义域为R的偶函数和奇函数,且f(x)+g(x)=e x,若关于x的不等式2f(x)−ag2(x)≥0在(0,ln2)上恒成立,则实数a的最大值是.【变式7-2】(2023·陕西咸阳·武功校考模拟预测)已知f(x)是定义在(0,+∞)上的可导函数,若xf′(x)−f(x)=xe x ,f(1)=−1e,且x≥1时,f(x e x)≤f(x+lnx−a)恒成立,则a的取值范围是.【变式7-3】(2023·宁夏石嘴山·平罗中学校考模拟预测)已知函数f(x)=e x+ax−2,其中a∈R,若对于任意的x1,x2∈[2,+∞),且x1<x2,都有x2f(x1)−x1f(x2)<a(x1−x2)成立,则实数a的取值范围是.【题型8 任意存在性问题】【例8】(2023·四川乐山·统考二模)若存在x0∈[−1,2],使不等式x0+(e2−1)lna≥2ae x0+e2x0−2成立,则a 的取值范围是( )A .[12e ,e 2]B .[1e2,e 2]C .[1e2,e 4]D .[1e,e 4]【变式8-1】(2023·四川南充·统考三模)已知函数f(x)=13x 3,g(x)=e x −12x 2−x ,∃x 1,x 2∈[1,2]使|g (x 1)−g (x 2)|>k |f (x 1)−f (x 2)|(k 为常数)成立,则常数k 的取值范围为( )A .(−∞,e −2]B .(−∞,e −2)C .(−∞,e 2−34] D .(−∞,e 2−34)【变式8-2】(2023·四川成都·石室中学校考模拟预测)已知函数f (x )=x 2e x,x >0.若存在实数a ∈[0,1],使得f (2−1m )≤a 3−12a 2−2a +e −1成立,则正实数m 的取值范围为( )A .(12,1] B .[12,1]C .(0,1)D .(0,1]【变式8-3】(2023·贵州·校联考二模)已知函数f (x )=x e x +2a ,g (x )=eln x x,对任意x 1∈[1,2],∃x 2∈[1,3],都有不等式f (x 1)≥g (x 2)成立,则a 的取值范围是( )A .[−e 2,+∞)B .[1−e 2,+∞)C .[−e2,+∞)D .[12−e 2,+∞)【题型9 函数零点嵌套问题】【例9】(2023·四川成都·石室中学校考一模)已知函数f (x )=(ln x )2−a2x ln x +aex 2有三个零点x 1、x 2、x 3且x 1<x 2<x 3,则2lnx 1x 1+lnx 2x 2+lnx 3x 3的取值范围是( )A.(−1e2−e ,0)B.(−1e2,0)C.(−12e,0)D.(−2e,0)【变式9-1】(2023·四川成都·四川校考模拟预测)已知a>1,x1,x2,x3为函数f(x)=a x−x2的零点,x1< x2<x3,若x1+x3=2x2,则()A.x3x2<2ln a B.x3x2=2ln aC.x3x2>2ln a D.x3x2与2ln a大小关系不确定【变式9-2】(2023·河南郑州·统考模拟预测)已知函数f(x)=e x−1x +xe x−1+x+a,若f(x)=0有3个不同的解x1,x2,x3且x1<x2<x3,则2e x1x1+e x2x2+e x3x3的取值范围是()A.(e,+∞)B.[2e,+∞)C.(−8e,+∞)D.(e,2e)【变式9-3】(2023·江西南昌·统考二模)已知正实数a使得函数f(x)=(e x−ax)(x−alnx)有且只有三个不同零点x1,x2,x3,若x1<x2<x3,则下列x1,x2,x3的关系式中,正确的是()A.x1+x3=2x2B.x1+x2=√ax3C.x1x3=√a2x22D.x1x3=x22【题型10 双变量问题】【例10】(2023下·福建福州·高二校考期中)已知函数f(x)=(x−2)e x,若f(x1)=f(x2),且x1≠x2,x1⋅x2> 0,则()A.x1>12B.x2<32C.x1x2>1D.x1+x2<2【变式10-1】(2023·广西河池·校联考模拟预测)若实数x,y满足4lnx+2ln(2y)≥x2+8y−4,则()A.xy=√24B.x+y=√2C.x+2y=1+√2D.x2y=1【变式10-2】(2023下·河南信阳高二淮滨高中校考阶段练习)设函数f(x)=e x(x−ae x)(其中e为自然对数的底数)恰有两个极值点x1,x2(x1<x2),则下列说法中正确的是()A.0<a<13B.0<x2<1C.−12<f(0)<0D.f(x1)+f(x2)>0【变式10-3】(2023·全国·高三专题练习)已知a>b>0,blna=alnb,有如下四个结论:①b<e;②b>e;③∃a,b满足a⋅b<e2;④a⋅b>e2.则正确结论的序号是()A.①③B.②③C.①④D.②④1.(2023·全国·统考高考真题)曲线y =e x x+1在点(1,e2)处的切线方程为( )A .y =e4xB .y =e2xC .y =e 4x +e4D .y =e 2x +3e42.(2023·全国·统考高考真题)已知函数f (x )=a e x −lnx 在区间(1,2)上单调递增,则a 的最小值为( ). A .e 2 B .eC .e −1D .e −23.(2023·全国·统考高考真题)函数f (x )=x 3+ax +2存在3个零点,则a 的取值范围是( ) A .(−∞,−2) B .(−∞,−3) C .(−4,−1) D .(−3,0)4.(2022·全国·统考高考真题)当x =1时,函数f(x)=alnx +bx 取得最大值−2,则f ′(2)=( )A .−1B .−12C .12D .15.(2022·全国·统考高考真题)已知a=3132,b=cos14,c=4sin14,则()A.c>b>a B.b>a>c C.a>b>c D.a>c>b6.(2022·全国·统考高考真题)已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为36π,且3≤l≤3√3,则该正四棱锥体积的取值范围是()A.[18,814]B.[274,814]C.[274,643]D.[18,27]7.(2021·全国·统考高考真题)若过点(a,b)可以作曲线y=e x的两条切线,则()A.e b<a B.e a<bC.0<a<e b D.0<b<e a8.(2023·全国·统考高考真题)已知函数f(x)的定义域为R,f(xy)=y2f(x)+x2f(y),则().A.f(0)=0B.f(1)=0C.f(x)是偶函数D.x=0为f(x)的极小值点9.(2023·全国·统考高考真题)若函数f(x)=alnx+bx +cx2(a≠0)既有极大值也有极小值,则().A.bc>0B.ab>0C.b2+8ac>0D.ac<010.(2022·全国·统考高考真题)已知函数f(x)=x3−x+1,则()A.f(x)有两个极值点B.f(x)有三个零点C.点(0,1)是曲线y=f(x)的对称中心D.直线y=2x是曲线y=f(x)的切线11.(2023·全国·统考高考真题)设a∈(0,1),若函数f(x)=a x+(1+a)x在(0,+∞)上单调递增,则a的取值范围是.12.(2022·全国·统考高考真题)已知x=x1和x=x2分别是函数f(x)=2a x−ex2(a>0且a≠1)的极小值点和极大值点.若x1<x2,则a的取值范围是.导数小题【题型1 函数切线问题】 (3)【题型2 导数中函数的单调性问题】 (4)【题型3 导数中函数的极值问题】 (6)【题型4 导数中函数的最值问题】 (9)【题型5 函数零点(方程根)个数问题】 (12)【题型6 利用导数解不等式】 (16)【题型7 导数中的不等式恒成立问题】 (19)【题型8 任意存在性问题】 (22)【题型9 函数零点嵌套问题】 (25)【题型10 双变量问题】 (30)导数是高考数学的必考内容,是高考常考的热点内容,主要涉及导数的运算及几何意义,利用导数研究函数的单调性,函数的极值和最值问题等,考查分类讨论、数形结合、转化与化归等思想.从近三年的高考情况来看,导数的计算和几何意义是高考命题的热点,多以选择题、填空题形式考查,难度较小;利用导数研究函数的单调性、极值、最值多在选择题、填空题靠后的位置考查,难度中等偏上,属综合性问题,解题时要灵活求解.【知识点1 切线方程的求法】1.求曲线“在”某点的切线方程的解题策略:①求出函数y=f(x)在x=x0处的导数,即曲线y=f(x)在点(x0,f(x0))处切线的斜率;②在已知切点坐标和切线斜率的条件下,求得切线方程为y=y0+f'(x0)(x-x0).2.求曲线“过”某点的切线方程的解题通法:①设出切点坐标T(x0,f(x0))(不出现y0);②利用切点坐标写出切线方程:y=f(x0)+f'(x0)(x-x0);③将已知条件代入②中的切线方程求解.【知识点2 导数中函数单调性问题的解题策略】1.确定函数单调区间的步骤;(1)确定函数f(x)的定义域;(2)求f'(x);(3)解不等式f'(x)>0,解集在定义域内的部分为单调递增区间;(4)解不等式f'(x)<0,解集在定义域内的部分为单调递减区间.2.含参函数的单调性的解题策略:(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)若导函数为二次函数式,首先看能否因式分解,再讨论二次项系数的正负及两根的大小;若不能因式分解,则需讨论判别式△的正负,二次项系数的正负,两根的大小及根是否在定义域内.3.根据函数单调性求参数的一般思路:(1)利用集合间的包含关系处理:y=f(x)在(a,b)上单调,则区间(a,b)是相应单调区间的子集.(2)f(x)为增(减)函数的充要条件是对任意的x∈(a,b)都有f'(x)≥0(f'(x)≤0),且在(a,b)内的任一非空子区间上,f'(x)不恒为零,应注意此时式子中的等号不能省略,否则会漏解.(3)函数在某个区间上存在单调区间可转化为不等式有解问题.【知识点3 函数的极值与最值问题的解题思路】1.运用导数求函数f(x)极值的一般步骤:(1)确定函数f(x)的定义域;(2)求导数f'(x);(3)解方程f'(x)=0,求出函数定义域内的所有根;(4)列表检验f'(x)在f'(x)=0的根x0左右两侧值的符号;(5)求出极值.2.根据函数极值求参数的一般思路:已知函数极值,确定函数解析式中的参数时,要注意:根据极值点的导数为0和极值这两个条件列方程组,利用待定系数法求解.3.利用导数求函数最值的解题策略:(1)利用导数求函数f(x)在[a,b]上的最值的一般步骤:①求函数在(a,b)内的极值;②求函数在区间端点处的函数值f(a),f(b);③将函数f(x)的各极值与f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值.(2)求函数在无穷区间(或开区间)上的最值的一般步骤:求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值.【知识点4 导数的综合应用】1.导数中函数的零点(方程的根)的求解策略(1)利用导数研究方程根(函数零点)的技巧①研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等.②根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置.③利用数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现.(2)已知函数零点个数求参数的常用方法①分离参数法:首先分离出参数,然后利用求导的方法求出构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.②分类讨论法:结合单调性,先确定参数分类的标准,在每个小范围内研究零点的个数是否符合题意,将满足题意的参数的各小范围并在一起,即为所求参数范围.2.导数中恒成立、存在性问题的求解策略恒成立(或存在性)问题常常运用分离参数法,转化为求具体函数的最值问题.如果无法分离参数,可以考虑对参数或自变量进行分类讨论,利用函数性质求解,常见的是利用函数单调性求解函数的最大、最小值;当不能用分离参数法或借助于分类讨论解决问题时,还可以考虑利用函数图象来求解,即利用数形结合思想解决恒成立(或存在性)问题,此时应先构造函数,结合函数图象,利用导数来求解.【题型1 函数切线问题】【例1】(2023·全国·模拟预测)若曲线y=(1−x)e x有两条过点A(a,0)的切线,则a的取值范围是()A.(−∞,−1)∪(3,+∞)B.(−3,1)C.(−∞,−3)D.(−∞,−3)∪(1,+∞)【解题思路】根据题意,由导数的几何意义表示出切线方程,然后列出不等式代入计算,即可得到结果.【解答过程】设切点为(x0,(1−x0)e x0),由已知得y′=−xe x,则切线斜率k=−x0e x0,切线方程为y−(1−x0)e x0=−x0e x0(x−x0).∵直线过点A(a,0),∴−(1−x0)e x0=−x0e x0(a−x0),化简得x02−(a+1)x0+1=0.∵切线有2条,∴Δ=(a+1)2−4>0,则a的取值范围是(−∞,−3)∪(1,+∞),故选:D.【变式1-1】(2023·陕西咸阳·校考模拟预测)已知函数f(x)=1e x−1,则曲线y=f(x)在点(−1,f(−1))处的切线方程为()A.ex+y+1=0B.ex−y+1=0C.ex+y−1=0D.ex−y−1=0【解题思路】先由导数求切线的斜率,再求出切点,结合点斜式方程写出即可.【解答过程】由f(x)=1e x −1,得f′(x)=−1e x,所以f′(−1)=−e,又f(−1)=e−1,故曲线y=f(x)在点(−1,f(−1))处的切线的方程为y−(e−1)=−e(x+1),即ex+y+1=0.故选:A.【变式1-2】(2023·四川雅安·统考一模)若直线y=kx与曲线y=lnx相切,则k=()A.1e2B.2e2C.1eD.2e【解题思路】利用导数的几何意义计算即可.【解答过程】设切点为(x0,lnx0),则由题意可知f′(x)=1x ⇒f′(x0)=1x0=k,所以{1x0=kkx0=lnx0⇒{x0=ek=1e.故选:C.【变式1-3】(2023·四川凉山·统考一模)函数f(x)=12x2+alnx在区间(1,2)的图象上存在两条相互垂直的切线,则a的取值范围为()A.(−2,1)B.(−2,−1)C.(−2,0)D.(−3,−2)【解题思路】利用导数的几何意义结合导函数的单调性计算即可.【解答过程】由f(x)=12x2+alnx⇒f′(x)=x+ax(x>0),不妨设这两条相互垂直的切线的切点为(x1,f(x1)),(x2,f(x2)),且f′(x1)⋅f′(x2)=−1若a≥0,则f′(x)>0恒成立,不符合题意,可排除A项;所以a<0,此时易知y=f′(x)单调递增,要满足题意则需{f′(1)=1+a<0 f′(2)=2+a2>0f′(1)f′(2)=(1+a)(2+a2)<−1⇒a∈(−3,−2).故选:D.【题型2 导数中函数的单调性问题】【例2】(2023·吉林长春·长春吉大附中实验学校校考模拟预测)下列函数中,既是偶函数,又在区间(0,+∞)上单调递增的是()A.y=1x2B.y=e−2x C.y=−x2+1D.y=lg|x|【解题思路】求导判断函数单调性,并结合偶函数的定义逐一判断即可.【解答过程】对于A选项:当x∈(0,+∞)时,y=1x2的导函数为y′=−2x3<0,所以y=1x2在x∈(0,+∞)时单调递减,故A选项不符合题意;对于B选项:当x∈(0,+∞)时,y=e−2x的导函数为y=−2e−2x<0,所以y=e−2x在x∈(0,+∞)时单调递减,故B选项不符合题意;对于C选项:当x∈(0,+∞)时,y=−x2+1的导函数为y′=−2x<0,所以y=−x2+1在x∈(0,+∞)时单调递减,故C选项不符合题意;对于D选项:当x∈(0,+∞)时,y=lg|x|=lgx的导函数为y′=1x⋅ln10>0,所以y=1x2在x∈(0,+∞)时单调递增,又函数y=lg|x|的定义域为(−∞,0)∪(0,+∞),且f(x)=lg|x|=lg|−x|=f(−x),故D选项符合题意.故选:D.【变式2-1】(2023·陕西商洛·统考一模)已知函数f(x)=2(x−1)e x−x2−ax在R上单调递增,则a的最大值是()A.0B.1eC.e D.3【解题思路】结合导数,将f(x)在R上单调递增转化为f′(x)=2xe x−2x−a≥0恒成立,再参变分离,转化为a≤2xe x−2x恒成立,即求出2xe x−2x的最小值即可得.【解答过程】由题意可得f′(x)=2xe x−2x−a,因为f(x)在R上单调递增,所以f′(x)=2xe x−2x−a≥0恒成立,即a≤2xe x−2x恒成立,设g(x)=2xe x−2x,则g′(x)=(2x+2)e x−2,令ℎ(x)=(2x+2)e x−2,则ℎ′(x)=(2x+4)e x,当x<−2时,ℎ′(x)<0,x>−2时,ℎ′(x)>0,故ℎ(x)在(−∞,−2)为减函数,在(−2,+∞)上为增函数,故ℎ(x)min=ℎ(−2)<0,但ℎ(0)=0,x→−∞时,ℎ(x)→−2,故当x<0时,g′(x)<0,当x>0时,g′(x)>0,则g(x)在(−∞,0)上单调递减,在(0,+∞)上单调递增,故g(x)min=g(0)=0,即a≤0.故选:A.【变式2-2】(2023·全国·模拟预测)已知x=ln56,y=2425ln45,z=−16,则()A.y<x<z B.y<z<x C.z<x<y D.x<y<z【解题思路】设函数f (x )=xlnx ,利用函数单调性,比较x ,y 的大小,再结合lnx ≤x −1,比较x ,z 的大小.【解答过程】设f (x )=xlnx (x >0),则f ′(x )=lnx +1>0 ⇒ x >1e,所以函数f (x )在(1e,+∞)上为增函数.又1e <45<56所以f (45)<f (56)即2425ln 45<ln 56 ⇒ x >y ; 设g (x )=lnx −x +1,则g ′(x )=1x −1=1−x x>0 ⇒ 0<x <1,故g (x )在(0,1)上递增,在(1,+∞)上递减.所以g (x )≤g (1)=0,故lnx −x +1≤0 ⇒ lnx ≤x −1(当x =1时取“=”) 所以ln 56≤56−1=−16,即x <z .故选:A.【变式2-3】(2023·河南·模拟预测)已知函数f (x )=e x (x+a )x在(0,+∞)上单调递增,则实数a 的取值范围是( )A .[0,+∞)B .(−∞,−4]C .(−∞,−4]∪[0,+∞)D .[−4,0]【解题思路】由导函数f ′(x)≥0在(0,+∞)上恒成立可得. 【解答过程】f ′(x )=e x (x 2+ax−a )x 2,因为函数f (x )=e x (x+a )x在(0,+∞)上单调递增,所以当x ∈(0,+∞)时,f ′(x )=e x (x 2+ax−a )x 2≥0恒成立,即当x ∈(0,+∞)时,g (x )=x 2+ax −a ≥0恒成立,因为对称轴为x =−a2,当a >0时,x =−a 2<0,g (0)=−a <0,所以当x ∈(0,+∞)时,g (x )=x 2+ax −a ≥0不恒成立,不符题意;当a ≤0时,x =−a2≥0,当x ∈(0,+∞)时,g (x )=x 2+ax −a ≥0恒成立,则Δ=a 2+4a ≤0,解得−4≤a ≤0. 故选:D .【题型3 导数中函数的极值问题】【例3】(2023·四川成都·校考模拟预测)已知函数f (x )=x 3−2ax 2+a 2x +1在x =1处有极小值,则a 的值为( )A .1B .3C .1或3D .−1或3【解题思路】由f (x )在x =1处有极小值可知,f ′(1)=0解出a 的值,并根据单调性验证. 【解答过程】因为f (x )=x 3−2ax 2+a 2x +1,所以f ′(x )=3x 2−4ax +a 2,因为函数f (x )=x 3−2ax 2+a 2x +1在x =1处有极小值, 所以f ′(1)=3−4a +a 2=0,解得a =1或a =3, 当a =1时,f ′(x )=3x 2−4x +1=(3x −1)(x −1), 当f ′(x )>0时,x <13或x >1,当f ′(x )<0时,13<x <1, f (x )在x =1处取到极小值,符合题意;当a =3时,f ′(x )=3x 2−12x +9=3(x −1)(x −3), 当f ′(x )>0时,x <1或x >3,当f ′(x )<0时,1<x <3, f (x )在x =1处取到极大值,不符合题意; 综上:a 的值为1. 故选:A.【变式3-1】(2023·全国·模拟预测)函数f(x)=2x −tanx −π在区间(−π2,π2)的极大值、极小值分别为( )A .π2+1,−π2+1B .−π2+1,−3π2+1 C .3π2−1,−π2+1D .−π2−1,−3π2+1【解题思路】求出f ′(x ),由f ′(x)<0、f ′(x)>0可得答案. 【解答过程】由题意,得f ′(x)=2−(sinx cosx)′=2−1cos 2x =2cos 2x−1cos 2x,当x ∈(−π2,−π4)∪(π4,π2)时,2cos 2x −1<0,f ′(x)<0; 当x ∈(−π4,π4)时,2cos 2x −1>0,f ′(x)>0.所以f(x)在(−π2,−π4)上单调递减,在(−π4,π4)上单调递增,在(π4,π2)上单调递减. 当x =−π4时,f(x)取得极小值,为f (−π4)=−3π2+1;当x =π4时,f(x)取得极大值,为f (π4)=−π2−1. 故选:D .【变式3-2】(2023·甘肃兰州·校考一模)已知函数f (x )=e x +x 22−lnx 的极值点为x 1,函数ℎ(x )=lnx 2x的最大值为x 2,则( )A .x 1>x 2B .x 2>x 1C .x 1≥x 2D .x 2≥x 1【解题思路】根据题目条件求出x1∈(14,12),x2=12e<14,即可判断.【解答过程】f(x)=e x+x22−lnx的定义域为(0,+∞),f′(x)=e x+x−1x 在(0,+∞)上单调递增,且f(12)=e12−32>0,f(14)=e14−154<0,所以∃x1∈(14,12),e x1+x1−1x1=0,所以当0<x<x1时f′(x)<0,当x>x1时f′(x)>0,即f(x)在(0,x1)上单调递减,在(x1,+∞)上单调递增,则f(x)在x=x1处取得极小值且x1∈(14,12 ).ℎ(x)=lnx2x 的定义域为(0,+∞),由ℎ′(x)=2−2lnx4x2=1−lnx2x2,当x∈(0,e)时,ℎ′(x)>0,当x∈(e,+∞)时,ℎ′(x)<0,故ℎ(x)=lnx2x 在x=e处取得极大值,也是最大值,ℎ(x)max=ℎ(e)=lne2e=12e,即x2=12e <14.所以x1>x2.故选:A.【变式3-3】(2023·广东广州·广州校考模拟预测)设函数f(x)=sin(ωx+π5)(ω>0),已知f(x)在[0,2π]有且仅有5个零点,下述四个结论错误的是()A.ω的取值范围是[125,29 10)B.f(x)在(0,π10)单调递增C.若x=3π25是f(x)在(0,2π)上的第一个极值点,则ω=165;D.若x=3π25是f(x)在(0,2π)上的第一个极值点,y=−52x+4π5是f(x)的切线【解题思路】选项A,利用函数有5个零点,根据整体思想,可得答案;选项B,根据正弦函数的单调性,利用整体思想,结合选项A,求其最值,可得答案;选项C,根据正弦函数零点的计算公式,建立方程,可得答案;选项D,先求直线与三角函数的公共点,根据导数的几何意义,可得答案.【解答过程】∵f(x)=sin(ωx+π5)(ω>0),在[0,2π]有且仅有5个零点,∴0≤x≤2π,π5≤ωx+π5≤2πω+π5,则5π≤2πω+π5<6π,125≤ω<2910,A正确;当0<x<π10时,π5<ωx+π5<ωπ10+π5,当ω=2910时,ωπ10+π5=29π100+20π100=49π100<π2,B 正确;若x =3π25是f (x )在(0,2π)上的第一个极值点,ω3π25+π5=π2,ω=52,C 错误;由C 得f (x )=sin (52x +π5),直线y =−52x +4π5过定点M (8π25,0),点M 在f (x )上,f ′(x )=52cos (52x +π5)=−52,f ′(8π25)=−52, 所以直线y =−52x +4π5是f (x )的切线,D 正确.故选:C.【题型4 导数中函数的最值问题】【例4】(2023·陕西宝鸡·统考二模)函数f (x )=x 2+(a −1)x −3lnx 在(1,2)内有最小值,则实数a 的取值范围为( )A .(−32,2) B .[−32,2] C .(−43,2)D .(−43,1]【解题思路】求出f ′(x)=2x 2+(a−1)x−3x,设g(x)=2x 2+(a −1)x −3,得出g(x)=0有一正根一负根,因此题意说明正根在区间(1,2)内,从而由{g(1)<0g(2)>0得参数范围.【解答过程】f ′(x)=2x +(a −1)−3x =2x 2+(a−1)x−3x,设g(x)=2x 2+(a −1)x −3,因为Δ=(a −1)2+24>0,因此g(x)=0有两个不同实根, 又g(0)=−3<0,因此g(x)=0两根一正一负, 由题意正根在(1,2)内,所以{g(1)=2+(a −1)−3<0g(2)=8+2(a −1)−3>0 ,解得−32<a <2,故选:A .【变式4-1】(2023·广西南宁·统考模拟预测)若函数f(x)=2x 3−ax 2+1(a ∈R)在(0,+∞)内有且仅有一个零点,则f(x)在[−1,1]上的最大值与最小值的和为( )A .1B .−4C .−3D .5【解题思路】分类参数可得a =2x +1x 2(x >0),构造函数ℎ(x )=2x +1x 2(x >0),利用导数求出函数ℎ(x )的单调区间及极值,作出其大致函数图象,结合函数图象求出a ,再利用导数求出函数f (x )在[−1,1]上的最值即可.【解答过程】函数f(x)=2x3−ax2+1(a∈R)在(0,+∞)内有且仅有一个零点,即方程f(x)=2x3−ax2+1=0在(0,+∞)内有且仅有一个实根,分离参数可得a=2x+1x2(x>0),令ℎ(x)=2x+1x2(x>0),则函数y=ℎ(x),y=a只有一个交点,ℎ′(x)=2−2x3=2(x3−1)x3,当0<x<1时,ℎ′(x)<0,当x>1时,ℎ′(x)>0,所以函数ℎ(x)在(0,1)上单调递减,在(1,+∞)上单调递增,所以ℎ(x)min=ℎ(1)=3,又当x→0时,ℎ(x)→+∞,当x→+∞时,ℎ(x)→+∞,如图,作出函数ℎ(x)=2x+1x2(x>0)的大致图像,由图可知a=3,所以f(x)=2x3−3x2+1,则f′(x)=6x2−6x=6x(x−1),当−1<x<0时,f′(x)>0,当0<x<1时,f′(x)<0,所以函数f(x)在(−1,0)上单调递增,在(0,1)上单调递减,又f(−1)=−4,f(0)=1,f(1)=0,所以f(x)在[−1,1]上的最大值为1,最小值为−4,所有f(x)在[−1,1]上的最大值与最小值之和为1−4=−3.故选:C.【变式4-2】(2023·广东湛江·校考模拟预测)已知函数f(x)=e x +x 3+(a −3)x +1在区间(0,1)上有最小值,则实数a 的取值范围是( )A .(-e ,2)B .(-e ,1-e )C .(1,2)D .(−∞,1−e)【解题思路】f ′(x )在(0,1)上递增,根据f (x )在(0,1)上有最小值,可知f (x )有极小值点,也即最小值点,由此列不等式来求得a 的取值范围.【解答过程】∵f ′(x )=e x +3x 2+(a −3)在区间(0,1)上单调递增,由题意只需 {f ′(0)<0f ′(1)>0 ⇒{a −2<0e +a >0⇒−e <a <2, 这时存在x 0∈(0,1),使得f(x)在区间(0,x 0)上单调递减,在区间[x 0,1)上单调递增,即函数f(x)在区间(0,1)上有极小值也即是最小值. 所以a 的取值范围是(−e,2). 故选:A.【变式4-3】(2023·浙江嘉兴·校考模拟预测)已知函数f (x )=xlnx ,g (x )=xe x ,若存在t >0,使得f (x 1)=g (x 2)=t 成立,则x 1−2x 2的最小值为( )A .2−ln4B .2+ln4C .e −ln2D .e +ln2【解题思路】由题设知f(x 1)=f(e x 2)=t ,研究f(x)的单调性及最值,画出函数图象,数形结合确定y =t >0、f(x)的交点个数得x 1=e x 2,进而将目标式化为x 1−2x 2=x 1−2lnx 1且x 1>1,构造函数研究最小值即可.【解答过程】由题设x 1lnx 1=x 2e x 2=e x 2lne x 2=t ,即f(x 1)=f(e x 2)=t ,由f ′(x)=1+lnx ,则(0,1e )上f ′(x)<0,f(x)递减;(1e ,+∞)上f ′(x)>0,f(x)递增; f(x)≥f(1e )=−1e ,且f(1)=0,f(x)图象如下:由图知:t ∈(0,+∞)时,x 1=e x 2,即x 2=lnx 1且x 1>1,所以x 1−2x 2=x 1−2lnx 1, 令ℎ(x)=x −2lnx 且x ∈(1,+∞),则ℎ′(x)=1−2x =x−2x,。
2016-2017学年度???学校10月月考卷1.设函数ln ,x f x x ax g x e ax ,其中a 为实数. (1)若f x 在1,上是单调减函数, 且g x 在1,上有最小值, 求a 的取值范围;(2)若g x 在1,上是单调增函数, 试求f x 的零点个数, 并证明你的结论. 2.已知函数222220,6x f x e x x a a g x x x c c R .(1)若曲线y f x 在点0,0f 处的切线方程为42y x ,求a 的值;(2)求函数f x 的单调区间;(3)当1a时, 对122,2,2,2x x ,使得12f x g x 成立, 则实数c 的取值范围.3.设函数21ln 12fx x ax x .(1)当2a时,求函数f x 的极值点;(2)当0a时,证明:x xe f x 在0,上恒成立.4.已知函数2()1(0)1mxf x m x ,2()(axg x x e a R ).(1)求函数()f x 的单调区间;(2)当0m 时,若对任意12,[02]x x ,,12()()f x g x 恒成立,求a 的取值范围.5.设函数222ln R f xx ax x bx a b ,,.(Ⅰ)当10ab ,时,求曲线y f x 在点11f ,处的切线方程;(Ⅱ)当2b时,若对任意[1)x ,,不等式223f x x a 恒成立,求实数a 的取值范围.6.已知函数()x af x lnx x ,其中a 为常数.(1)若曲数()yf x 在点(1,(1))f 处的切线与直线1y x 垂直,求函数()f x 的单调递减区间;(2)若函数()f x 在区间[1,3]上的最小值为13,求a 的值.7.已知函数2ln ,f xax bx x a b R .(1)当1,3a b 时,求函数f x 在1,22上的最大值和最小值;(2)设0a ,且对于任意的0,1x f x f ,试比较ln a 与2b 的大小.8.已知函数),(22)(R a R x ax e x f x .(1)当1a时,求曲线)(x f y 在1x 处的切线方程;(2)当0x时,若不等式0)(x f 恒成立,求实数a 的取值范围.9.已知函数3().f x x x (1)求曲线()y f x 在点(1,0)M 处的切线方程;(2)如果过点(1,)b 可作曲线()yf x 的三条切线, 求实数b 的取值范围.10.已知函数ln 0f x kx x k 有极小值1e .(1)求实数k 的值;(2)设函数12x g x x e .证明:当0x 时,x e f x g x .11.已知函数))(ln )(ln ()(2R a x x x ax x f .(1)当6a 时,求曲线)(x f y 在点))1(,1(f 处的切线方程;(2)若0)(x f 恒成立,求实数a 的取值范围.12.已知函数f (x )=alnx ﹣x+3(y=kx+2k ),曲线y=f (x )在点(1,f (1))处的切线方程为y=x+b (b ∈R )(Ⅰ)求a ,b 的值;(Ⅱ)求f (x )的极值.13.(2014?抚州一模)已知函数,m ∈R .(1)当m=1时,求曲线y=f (x )在点(2,f (2))处的切线方程;(2)若f (x )在区间(﹣2,3)上是减函数,求m 的取值范围.14.已知函数()ln af x x x ,()()6lng x f x ax x ,其中a R .(1)讨论()f x 的单调性;(2)设函数2()4h x x mx ,当2a 时,若1(0,1)x ,2[1,2]x ,总有12()()g x h x 成立,求实数m 的取值范围.15.已知函数3()3f x x x .求函数()f x 在3[3,]2上的最大值和最小值.16.设函数21ln 2fx x x .(1)讨论函数f x 的单调性;(2)若12g xf x ax 在区间1,上没有零点,求实数a 的取值范围.17.已知函数),(31)(23R b a bx ax x x f .若)(x f y 图象上的点)311,1(处的切线斜率为-4,求)(x f y的极大值。
导数压轴题4(1) 当a = 3时,求f(x)的极值点.1 3(2) 若 f(x)为2,2上的单调函数,求a 的取值范围.ax 2— 2ax + 1 e[解析]行’(x)二丹 1 + ax4 13(1)当 a = 3时,若 f'(x)= 0,则 4x 2 — 8x + 3= 0? x 1 =㊁,x 2 —:X1 — 是极大值点,x 2 — 2是极小值点.(2)记 g(x)— ax 2— 2ax + 1,则2g(x) — a(x — 1) + 1— a ,1 3••g(x)>0或 g(x)<0对 x € 2,2 恒成立, 1又g(x)的对称轴为x — 1,故g(x)的最小值为g(1),最大值为g 2 . 1 4由 g(1) >0 或 g 2 W 0? 0<a < 1 或 a >3,4•的取值范围是0<a < 1或a >3.10. (能力挑战题)函数 f(x) — xln x — ax 2— x(a € R).vf(x)为3,3上的单调函数,贝U f ' (x)在 刁3上不变号,9.(能力挑战题)设f(x) = 1 + ax 1 2,其中a 为正实数. 1 + ax 2 2>0,⑴若函数f(x)在x= 1处取得极值,求a的值.(2)若函数f(x)的图象在直线y= —x图象的下方,求a的取值范围.⑶求证:2 0133 4 012<2 0122 013[解析]⑴函数定义域为(0,+%), F(x)= In x—2ax,■-'f(x)在x= 1处取得极值,.•.f' (1) = 0,即一2a= 0,.°.a = 0.•••f' (x) = In x,当x€ (0,1)时,f' (x)<0,当x€ (1 ,+x)时,f' (x)>0,•■•f(x)在x= 1处取得极值.⑵由题意,得xln x—ax2—x< —x,•'•xln x—a点<0.(0,+^),In xa>vIn x设h(x)=—,1 —In x则h' (x) = —x—入令h' (x)>0,得0<x<e,•••h(x)在(0, e)上为增函数;令h' (x)<0,得x>e,•■•h(x)在(e,+x)上为减函数.3 a> .e1 •■•h(x) max=DIn x⑶由(2)知h(x) = p 在(e ,+^)上为减函数, 入 •••h(x)>h(x + 1), In x ln x + 5 6 .•— > ----- xx + 1 '-■.(x + 1)ln x>x ln(x + 1), •n x x + 1>l n(x + 1)x ,•••xx + 1>(x + 1)x .令 x = 2 012,得 2 0122 013>2 0132 012 ax 11. 已知函数 f(x) = ln(1 + x) — (a € R).1 — x2x — 2 + a x + 1 — a2 ,6 + x 1 — x由 f ' (x) = 0,得 x 2 — (2 + a)x + 1 — a = 0,(1) 求函数f(x)的单调区间;(2) 若数列{a }的通项公a m =12 0132m 1•k a 1 a 2 …a m <3(m € N ).[解析](1)由题意,函数的定义域为(一1,1)U (1, +013(m € N *),求证:1%), f ' (x)二 —1 + x2'1 a当a < 0时,注意到 >0, 产0,1 + x 1 — x所以f ' (x)>0,即函数f(x)的增区间为(—1,1), (1 , + ),无减区间;当 a>0 时,f ' (x) =1 1+ x1— xa + 2 —、/a2+ 8a a+ 2+、/a2+ 8a此方程的两根X1= 2 ,X2= 2 ,其中一1<X1<1<X2, 注意到(1 + x)(1 - X)2>0,所以f' (X)>0? - 1<x<x i 或X>X2,f' (X)<0? X1<X<1 或1<X<X2,即函数f(x)的增区间为(-1 , X1), (X2,+x),减区间为(X1,1), (1 , X2).综上,当a< 0时,函数f(X)的增区间为(一1,1)(1,+x),无减区间;当a>0时,函数f(x)的增区间为(-1, X1),(X2,+X),减区间为(X1,1), (1,X2),a + 2-、/a2+ 8a其中X1二2 ----------a + 2+ a2+ 8a x2= 2x⑵当a= 1时,由(1)知,函数f(x) = ln(1 + x)- 在(0,1)上为减函数,1 - xx则当0<X<1时,f(x) = ln(1 + x) —<f(0)= 0,1 - xX即ln(1 + X)<1-x令 * ^013^ 加N*),则1 + ______________________ln 2 013X 2m+ 1 <2 013X 2m,丄严才丄2 013 X 2" + 1 ) ' 2" T< e< 3.X212.已知函数f(x) = + a3ln(x —a—a2), a€ R 且a^0.(1)讨论函数f(x)的单调性;⑵当a<0时,若a2+ a<x i<x2<a2—a,证明:2f x2 —f x i a< 石—a. x2 —x i 2a3[解析](1 )由题意,f' (X)= X+ 2x—a—ax2—a+ a2 x+ a3x—a —a22x—a x—a= 2x —a —a令f' (x)>0,因为x— a —a2>0,故(x—a)(x —a2)>0.当a>0 时,因a+ a2>a 且a+ a2>a2,所以上面不等式的解集为(a+ a2,+x),从而此时函数f(x)在(a+ a2,+^)上单调递增.当a<0时,因a<a+ a2<a2,所以上面不等式的解集为(a2,+^),从而此时函数f(x)在(a2,+x)上单调递增,同理此时f(x)在(a+ a2,a2]上单调递减.⑵证法一:要证原不等式成立,只需证明2af(x2)—f(x i)<(x2 —x i) ——a,2 2 a a只需证明f(x2)——— a x2<f(x i)—~2— ax i.在x € (a 6 + a , a 2 — a)内单调递减.2a 由(1)知 h ' (x) = x — 2 — a4323 2 a a 2x —护 x + 2 + — ax — a — a 2因为 x — a — a 2>0,我们考察函数 g(x) = x 2 — |a 2x + 庁 + 亍—a 2, x € (a 2 + a , a 2 — a). 因 a + a + a _a = a 2>x 对称轴=警,且 7f<a 2 — a , 所以 g(x)< g(a 2— a) = 0.从而知 h ' (x)<0在 x € (a 2 + a , a 2 — a)上恒成立,2a 2 2所以函数h(x) = f(x) — — a x 在x € (a + a , a — a)内单调递减.6 2a a只需证明 f(x 2) — "2 — a x 2<f(x i )— — a x i . 又 a 2 + a<x i <x 2<a 2— a , 设 g(x) = f(x) — — a x ,则欲证原不等式只需证明函数 g(x) = f(x) — a ; — ax 在x € (a 2 + a,a 2 — a)内单 调递减.由⑴可知3a + 2x — a —a从而原命题成立.证法二:要证原不等式成立,2a 只需证明f(X2)—f(X1)V(X2—x i) — a ,g ' (x)二f ' (x)—冷—a 3 2aa—x + 2 — 2 — ax —a —a 232 . a—x — a — a + 2+ a +x — a — aa 32在(a 2 + a , a 2 — a)上为增函数, x — a — a 所以 g ' (x )w g ' (a 2— a) 2 2+ a + a 2— f — a = 0. a —a — a —a 2从而知g ' (x)<0在x € (a 2 + a , a 2 — a)上恒成立,2所以函数g(x) — f(x)—卡—a x 在x € (a 2 + a , a 2 — a)内单调递减. 从而原命题成立.13.已知函数 f(x) = e x sin x. (1) 求函数f(x)的单调区间; 冗(2)如果对于任意的x € 1, , f(x) > kx 总成立,求实数k 的取值范围;数F(x)图象的所有切线,令各切点的横坐标构成数列 之和S 的值.[解析](1)由于f(x) = e x sin x ,所以 f ' (x) = e x sin x + e x cos x = e x (sin x + cos x) =2e x sin x +.n — n 3 n 当 x + 4^ (2 k n 2k n+ n,即卩 x € 2k n- 4, 2k n+^ 时,f ' (x)>0;当 x +(2k n+ n, 2k n+ 2 n,)即 x € 2k n+ 手 2k n+ 于时,f ' (x)<0.a 22 a ~2— a .因为 a<0,所以 y =x — a — a 2+ 3—a 2— a — a — a 2+a(3)设函数 F(x) — f(x) + e xcos x , x € ?2 011 n 2 013 n - n 一 1寸【过点M —一- , 0作函{X n },求数列{X n }的所有项3nn 3 n所以f(x)的单调递增区间为2k n- 4,2k n+才化€ Z),3 n 7 n单调递减区间为2k n+j, 2k n+* (k€ Z).. n⑵令g(x)= f(x)- kx= e x sin x-kx,要使f(x) >kx 总成立,只需x€ 0, 2 时g(x)min》0.g' (x)= e<(sin x+ cos x) —k,n 令h(x) = e x(sin x+ cos x),贝U h' (x) = 2e x cos x>0, x€ 0, 2 ,n所以h(x)在o, 2上为增函数,所以h(x)€ [1, e'].对k分类讨论:n①当k< 1时,g' (x)>0恒成立,所以g(x)在0, 2上为增函数,所以g(x)min =g(0) = 0, 即卩g(x)>0 恒成立;n②当1<k<e时,g' (x)= 0在[1, e]上有实根x o,因为h(x)在0, 2上为增函数,所以当x€ (0, x o)时,g' (x)<0,所以g(x o)vg(0) = 0,不符合题意;▼n③当k>e时,g' (x)< 0恒成立,所以g(x)在0, 2上为减函数,则g(x)<g(0) =0,不符合题意;综合①②③可得,所求的实数k的取值范围是(―%, 1].(3) 因为F(x) = f(x) + e x cos x= e x(sin x+ cos x),所以F' (x)= 2e x cos x,设切点坐标为(x0, ex0(sin X0+ cos x。
导数练习题1.(本题满分12分)已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所示. (I )求d c ,的值;(II )若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式;(III )在(II )的条件下,函数)(x f y =与m x x f y ++'=5)(31的图象有三个不同的交点,求m 的取值范围.2.(本小题满分12分)已知函数)(3ln )(R a ax x a x f ∈--=.(I )求函数)(x f 的单调区间;(II )函数)(x f 的图象的在4=x 处切线的斜率为,23若函数]2)('[31)(23mx f x x x g ++=在区间(1,3)上不是单调函数,求m 的取值范围.3.(本小题满分14分)已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I )求实数a 的取值范围;(II )若方程9)32()(2+-=a x f 恰好有两个不同的根,求)(x f 的解析式;(III )对于(II )中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f . 4.(本小题满分12分)已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=.(I )写出)(x f 的单调递增区间,并证明a e a >; (II )讨论函数)(x g y =在区间),1(a e 上零点的个数.已知函数()ln(1)(1)1f x x k x =---+. (I )当1k =时,求函数()f x 的最大值;(II )若函数()f x 没有零点,求实数k 的取值范围; 6.(本小题满分12分)已知2x =是函数2()(23)xf x x ax a e =+--的一个极值点(⋅⋅⋅=718.2e ).(I )求实数a 的值;(II )求函数()f x 在]3,23[∈x 的最大值和最小值.已知函数)0,(,ln )2(4)(2≠∈-+-=a R a x a x x x f (I )当a=18时,求函数)(x f 的单调区间;(II )求函数)(x f 在区间],[2e e 上的最小值. 8.(本小题满分12分)已知函数()(6)ln f x x x a x =-+在(2,)x ∈+∞上不具有...单调性. (I )求实数a 的取值范围;(II )若()f x '是()f x 的导函数,设22()()6g x f x x '=+-,试证明:对任意两个不相等正数12x x 、,不等式121238|()()|||27g x g x x x ->-恒成立.已知函数.1,ln )1(21)(2>-+-=a x a ax x x f (I )讨论函数)(x f 的单调性;(II )证明:若.1)()(,),,0(,,521212121->--≠+∞∈<x x x f x f x x x x a 有则对任意10.(本小题满分14分)已知函数21()ln ,()(1),12f x x a xg x a x a =+=+≠-.(I )若函数(),()f x g x 在区间[1,3]上都是单调函数且它们的单调性相同,求实数a 的取值范围;(II )若(1,]( 2.71828)a e e ∈=,设()()()F x f x g x =-,求证:当12,[1,]x x a ∈时,不等式12|()()|1F x F x -<成立.设曲线C :()ln f x x ex =-( 2.71828e =⋅⋅⋅),()f x '表示()f x 导函数.(I )求函数()f x 的极值;(II )对于曲线C 上的不同两点11(,)A x y ,22(,)B x y ,12x x <,求证:存在唯一的0x 12(,)x x ∈,使直线AB 的斜率等于0()f x '. 12.(本小题满分14分)定义),0(,,)1(),(+∞∈+=y x x y x F y ,(I )令函数22()(3,log (24))f x F x x =-+,写出函数()f x 的定义域;(II )令函数322()(1,log (1))g x F x ax bx =+++的图象为曲线C ,若存在实数b 使得曲线C 在)14(00-<<-x x 处有斜率为-8的切线,求实数a 的取值范围;(III )当,*x y ∈N 且x y <时,求证(,)(,)F x y F y x >.导数练习题(B )答案1.(本题满分12分)已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所示. (I )求d c ,的值;(II )若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式;(III )在(II )的条件下,函数)(x f y =与m x x f y ++'=5)(31的图象有三个不同的交点,求m 的取值范围.解:函数)(x f 的导函数为 b a c bx ax x f 2323)(2'--++= …………(2分) (I )由图可知 函数)(x f 的图象过点(0,3),且0)1('=f得 ⎩⎨⎧==⇒⎩⎨⎧=--++=03023233c d b a c b a d …………(4分) (II )依题意 3)2('-=f 且5)2(=f⎩⎨⎧=+--+-=--+534648323412b a b a b a b a 解得 6,1-==b a 所以396)(23++-=x x x x f …………(8分)(III )9123)(2+-='x x x f .可转化为:()m x x x x x x +++-=++-534396223有三个不等实根,即:()m x x x x g -+-=8723与x 轴有三个交点;2',()m g m g --=-=⎪⎭⎫ ⎝⎛164,276832. …………(10分) 当且仅当()01640276832<--=>-=⎪⎭⎫ ⎝⎛m g m g 且时,有三个交点, 故而,276816<<-m 为所求. …………(12分)2.(本小题满分12分)已知函数)(3ln )(R a ax x a x f ∈--=. (I )求函数)(x f 的单调区间;(II )函数)(x f 的图象的在4=x 处切线的斜率为,23若函数]2)('[31)(23mx f x x x g ++=在区间(1,3)上不是单调函数,求m 的取值范围.解:(I ))0()1()('>-=x xx a x f (2分) 当(][)+∞>,1,1,0)(,0减区间为的单调增区间为时x f a 当[)(];1,0,,1)(,0减区间为的单调增区间为时+∞<x f a 当a=1时,)(x f 不是单调函数 (5分)(II )32ln 2)(,22343)4('-+-=-==-=x x x f a a f 得 2)4()(',2)22(31)(223-++=∴-++=∴x m x x g x x mx x g (6分)2)0(',)3,1()(-=g x g 且上不是单调函数在区间⎩⎨⎧><∴.0)3(',0)1('g g (8分)⎪⎩⎪⎨⎧>-<∴,319,3m m (10分))3,319(--∈m(12分)3.(本小题满分14分)已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I )求实数a 的取值范围;(II )若方程9)32()(2+-=a x f 恰好有两个不同的根,求)(x f 的解析式;(III )对于(II )中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f . 解:(I ),23)(,00)0(2b ax x x f c f ++='=⇒=320)1(--=⇒='a b f),323)(1()32(23)(2++-=+-+='∴a x x a ax x x f由33210)(+-==⇒='a x x x f 或,因为当1=x 时取得极大值,所以31332-<⇒>+-a a ,所以)3,(:--∞的取值范围是a ;…………(4分)(II 依题意得:9)32()32(2762+-=++a a a ,解得:9-=a 所以函数)(x f 的解析式是:x x x x f 159)(23+-=…………(10分)(III )对任意的实数βα,都有,2sin 22,2sin 22≤≤-≤≤-βα在区间[-2,2]有:230368)2(,7)1(,7430368)2(=+-==-=---=-f f f,7)1()(=f x f 的最大值是7430368)2()(-=---=-f x f 的最小值是函数]2,2[)(-在区间x f 上的最大值与最小值的差等于81, 所以81|)sin 2()sin 2(|≤-βαf f .…………(14分)4.(本小题满分12分)已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=.(I )写出)(x f 的单调递增区间,并证明a e a >; (II )讨论函数)(x g y =在区间),1(a e 上零点的个数.解:(I )01)(≥-='x e x f ,得)(x f 的单调递增区间是),0(+∞, …………(2分)∵0>a ,∴1)0()(=>f a f ,∴a a e a >+>1,即a e a >. …………(4分)(II )a x a x ax x g )22)(22(22)(-+=-=',由0)(='x g ,得2a x =,列表当2x )222 …………(6分)由(I )a e a >,∵⎪⎩⎪⎨⎧>>22a a e e aa ,∴22a e a>,∴22a e a >01)1(>=g ,0))(()(22>-+=-=a e a e a e e g a a a a …………(8分) (i )当122≤a,即20≤<a 时,函数)(x g y =在区间),1(a e 不存在零点 (ii )当122>a,即2>a 时 若0)2ln 1(2>-aa ,即e a 22<<时,函数)(x g y =在区间),1(a e 不存在零点若0)2ln 1(2=-aa ,即e a 2=时,函数)(x g y =在区间),1(a e 存在一个零点e x =;若0)2ln 1(2<-aa ,即e a 2>时,函数)(x g y =在区间),1(a e 存在两个零点;综上所述,)(x g y =在(1,)ae 上,我们有结论: 当02a e <<时,函数()f x 无零点; 当2a e = 时,函数()f x 有一个零点; 当2a e >时,函数()f x 有两个零点.…………(12分) 5.(本小题满分14分)已知函数()ln(1)(1)1f x x k x =---+. (I )当1k =时,求函数()f x 的最大值;(II )若函数()f x 没有零点,求实数k 的取值范围;解:(I )当1k =时,2()1xf x x -'=- )(x f 定义域为(1,+∞),令()0,2f x x '==得, ………………(2分) ∵当(1,2),x ∈时()0f x '>,当(2,),x ∈+∞时()0f x '<,∴()(1,2)f x 在内是增函数,(2,)+∞在上是减函数∴当2x =时,()f x 取最大值(2)0f = ………………(4分) (II )①当0k ≤时,函数ln(1)y x =-图象与函数(1)1y k x =--图象有公共点, ∴函数()f x 有零点,不合要求; ………………(8分)②当0k >时,1()11()111kk x k kx k f x k x x x +-+-'=-==---- ………………(6分) 令1()0,k f x x k +'==得,∵1(1,),()0,k x f x k +'∈>时1(1,),()0x f x k '∈++∞<时,∴1()(1,1)f x k +在内是增函数,1[1,)k++∞在上是减函数,∴()f x 的最大值是1(1)ln f k k+=-,∵函数()f x 没有零点,∴ln 0k -<,1k >,因此,若函数()f x 没有零点,则实数k 的取值范围(1,)k ∈+∞.………………(10分) 6.(本小题满分12分)已知2x =是函数2()(23)xf x x ax a e =+--的一个极值点(⋅⋅⋅=718.2e ). (I )求实数a 的值;(II )求函数()f x 在]3,23[∈x 的最大值和最小值.解:(I )由2()(23)x f x x ax a e =+--可得22()(2)(23)[(2)3]x x x f x x a e x ax a e x a x a e '=+++--=++--……(4分)∵2x =是函数()f x 的一个极值点,∴(2)0f '=∴2(5)0a e +=,解得5a =- ……………(6分)(II )由0)1)(2()(>--='x e x x x f ,得)(x f 在)1,(-∞递增,在),2(+∞递增,由0)(<'x f ,得)(x f 在在)2,1(递减∴2)2(e f =是()f x 在]3,23[∈x 的最小值; ……………(8分)2347)23(e f =,3)3(e f = ∵)23()3(,0)74(4147)23()3(23233f f e e e e e f f >>-=-=- ∴()f x 在]3,23[∈x 的最大值是3)3(e f =. ……………(12分)7.(本小题满分14分)已知函数)0,(,ln )2(4)(2≠∈-+-=a R a x a x x x f (I )当a=18时,求函数)(x f 的单调区间;(II )求函数)(x f 在区间],[2e e 上的最小值.解:(Ⅰ)x x x x f ln 164)(2--=,xx x x x x f )4)(2(21642)('-+=--= 2分由0)('>x f 得0)4)(2(>-+x x ,解得4>x 或2-<x 注意到0>x ,所以函数)(x f 的单调递增区间是(4,+∞) 由0)('<x f 得0)4)(2(<-+x x ,解得-2<x <4, 注意到0>x ,所以函数)(x f 的单调递减区间是]4,0(.综上所述,函数)(x f 的单调增区间是(4,+∞),单调减区间是]4,0( 6分(Ⅱ)在],[2e e x ∈时,x a x x x f ln )2(4)(2-+-= 所以xax x x a x x f -+-=-+-=242242)('2, 设a x x x g -+-=242)(2 当0<a 时,有△=16+4×208)2(<=-a a ,此时0)(>x g ,所以0)('>x f ,)(x f 在],[2e e 上单调递增, 所以a e e e f x f -+-==24)()(2min 8分当0>a 时,△=08)2(2416>=-⨯-a a , 令0)('>x f ,即02422>-+-a x x ,解得221a x +>或221a x -<; 令0)('<x f ,即02422<-+-a x x ,解得221a -221ax +<<. ①若221a +≥2e ,即a ≥22)1(2-e 时, )(x f 在区间],[2e e 单调递减,所以a e e e f x f 244)()(242min -+-==.②若2221e ae <+<,即222)1(2)1(2-<<-e a e 时间, )(x f 在区间]221,[a e +上单调递减,在区间],221[2e a +上单调递增,所以min )(x f )221(a f +=)221ln()2(322aa a a +-+--=.③若221a +≤e ,即a <0≤22)1(-e 时,)(x f 在区间],[2e e 单调递增,所以a e e e f x f -+-==24)()(2min综上所述,当a ≥222)1(-e 时,a e a x f 244)(24min -+-=;当222)1(2)1(2-<<-e a e 时,)221ln()2(322)(min aa a a x f +-+--=; 当a ≤2)1(2-e 时,a e e x f -+-=24)(2min14分 8.(本小题满分12分)已知函数()(6)ln f x x x a x =-+在(2,)x ∈+∞上不具有...单调性. (I )求实数a 的取值范围;(II )若()f x '是()f x 的导函数,设22()()6g x f x x'=+-,试证明:对任意两个不相等正数12x x 、,不等式121238|()()|||27g x g x x x ->-恒成立. 解:(I )226()26a x x af x x x x-+'=-+=, ………………(2分)∵()f x 在(2,)x ∈+∞上不具有...单调性,∴在(2,)x ∈+∞上()f x '有正也有负也有0, 即二次函数226y x x a =-+在(2,)x ∈+∞上有零点 ………………(4分) ∵226y x x a =-+是对称轴是32x =,开口向上的抛物线,∴222620y a =⋅-⋅+< 的实数a 的取值范围(,4)-∞ ………………(6分) (II )由(I )22()2a g x x x x =+-, 方法1:2222()()62(0)a g x f x x x x x x '=-+=+->, ∵4a <,∴323233444244()22a x x g x x x x x x -+'=-+>-+=,…………(8分)设2344()2h x x x =-+,3448124(23)()x h x x x x -'=-=()h x 在3(0,)2是减函数,在3(,)2+∞增函数,当32x =时,()h x 取最小值3827∴从而()g x '3827>,∴38(())027g x x '->,函数38()27y g x x =-是增函数,12x x 、是两个不相等正数,不妨设12x x <,则22113838()()2727g x x g x x ->-∴212138()()()27g x g x x x ->-,∵210x x ->,∴1212()()3827g x g x x x ->- ∴1212()()g x g x x x --3827>,即121238|()()|||27g x g x x x ->- ………………(12分)方法2: 11(,())M x g x 、22(,())N x g x 是曲线()y g x =上任意两相异点,121222121212()()2()2g x g x x x ax x x x x x -+=+--,12x x +>4a <12221212122()22x x a a x x x x x x +∴+->1242x x > ………(8分)设0t t =>,令32()244MN k u t t t ==+-,()4(32)u t t t '=-,由()0u t '>,得2,3t >由()0u t '<得20,3t << ()u t ∴在)32,0(上是减函数,在),32(+∞上是增函数,)(t u ∴在32=t 处取极小值2738,38()27u t ∴≥,∴所以1212()()g x g x x x --3827>即121238|()()|||27g x g x x x ->- ………………(12分) 9.(本小题满分12分)已知函数.1,ln )1(21)(2>-+-=a x a ax x x f(I )讨论函数)(x f 的单调性;(II )证明:若.1)()(,),,0(,,521212121->--≠+∞∈<x x x f x f x x x x a 有则对任意(1))(x f 的定义域为),0(+∞,xa x x x a ax x x a a x x f )1)(1(11)('2-+-=-+-=-+-= 2分(i )若2,11==-a a 即,则 .)1()('2xx x f -=故)(x f 在),0(+∞单调增加. (ii )若.0)(',)1,1(,21,1,11<-∈<<><-x f a x a a a 时则当故而)1,1()(,0)(',),1()1,0(->+∞∈-∈a x f x f x a x 在故时及当单调减少,在(0,a-1), ),1(+∞单调增加.(iii )若),1(),1,0(,)1,1()(,2,11+∞-->>-a a x f a a 在单调减少在同理可得即单调增加.(II )考虑函数x x f x g +=)()( .ln )1(212x x a ax x +-+-=由 .)11(1)1(121)1()('2---=---⋅≥-+--=a a xa x x a a x x g由于单调增加在即故),0()(,0)(',5+∞><x g x g a a ,从而当021>>x x 时有 ,0)()(,0)()(212121>-+->-x x x f x f x g x g 即故1)()(2121->--x x x f x f ,当210x x <<时,有1)()()()(12122121->--=--x x x f x f x x x f x f10.(本小题满分14分)已知函数21()ln ,()(1),12f x x a xg x a x a =+=+≠-. (I )若函数(),()f x g x 在区间[1,3]上都是单调函数且它们的单调性相同,求实数a 的取值范围;(II )若(1,]( 2.71828)a e e ∈=,设()()()F x f x g x =-,求证:当12,[1,]x x a ∈时,不等式12|()()|1F x F x -<成立.解:(I )(),()1af x xg x a x''=+=+, ……………(2分)∵函数(),()f x g x 在区间[1,3]上都是单调函数且它们的单调性相同,∴当[1,3]x ∈时,2(1)()()()0a x a f x g x x++''⋅=≥恒成立, ……………(4分) 即2(1)()0a x a ++≥恒成立,∴21a a x >-⎧⎨≥-⎩在[1,3]x ∈时恒成立,或21a a x <-⎧⎨≤-⎩在[1,3]x ∈时恒成立, ∵91x -≤≤-,∴1a >-或9a ≤- ………………(6分) (II )21()ln ,(1)2F x x a x a x =+-+,()(1)()(1)a x a x F x x a x x--'=+-+=∵()F x 定义域是(0,)+∞,(1,]a e ∈,即1a >∴()F x 在(0,1)是增函数,在(1,)a 实际减函数,在(,)a +∞是增函数∴当1x =时,()F x 取极大值1(1)2M F a ==--,当x a =时,()F x 取极小值21()ln 2m F a a a a a ==--, ………………(8分)∵12,[1,]x x a ∈,∴12|()()|||F x F x M m M m -≤-=- ………………(10分)设211()ln 22G a M m a a a =-=--,则()ln 1G a a a '=--, ∴1[()]1G a a''=-,∵(1,]a e ∈,∴[()]0G a ''> ∴()ln 1G a a a '=--在(1,]a e ∈是增函数,∴()(1)0G a G ''>=∴211()ln 22G a a a a =--在(1,]a e ∈也是增函数 ………………(12分)∴()()G a G e ≤,即2211(1)()1222e G a e e -≤--=-, 而22211(1)(31)1112222e e e ----=-<-=,∴()1G a M m =-< ∴当12,[1,]x x a ∈时,不等式12|()()|1F x F x -<成立. ………………(14分)11.(本小题满分12分)设曲线C :()ln f x x ex =-( 2.71828e =⋅⋅⋅),()f x '表示()f x 导函数.(I )求函数()f x 的极值;(II )对于曲线C 上的不同两点11(,)A x y ,22(,)B x y ,12x x <,求证:存在唯一的0x 12(,)x x ∈,使直线AB 的斜率等于0()f x '. 解:(I )11()0exf x e x x-'=-==,得1x e =当x 变化时,()f x '与()f x 变化情况如下表:∴当1x e =时,()f x 取得极大值()2f e=-,没有极小值; …………(4分)(II )(方法1)∵0()AB f x k '=,∴2121021ln ln ()1x x e x x e x x x ----=-,∴21201ln 0x x xx x --=即20211ln ()0x x x x x --=,设2211()ln ()xg x x x x x =--211211()ln ()x g x x x x x =--,1/211()ln 10x x g x x =->,1()g x 是1x 的增函数,∵12x x <,∴2122222()()ln ()0xg x g x x x x x <=--=;222211()ln ()x g x x x x x =--,2/221()ln 10x x g x x =->,2()g x 是2x 的增函数,∵12x x <,∴1211111()()ln ()0xg x g x x x x x >=--=,∴函数2211()ln ()xg x x x x x =--在12(,)x x 内有零点0x , …………(10分)又∵22111,ln 0x x x x >∴>,函数2211()ln ()xg x x x x x =--在12(,)x x 是增函数,∴函数2121()ln x x xg x x x -=-在12(,)x x 内有唯一零点0x ,命题成立…………(12分)(方法2)∵0()AB f x k '=,∴2121021ln ln ()1x x e x x e x x x ----=-,即020112ln ln 0x x x x x x -+-=,012(,)x x x ∈,且0x 唯一设2112()ln ln g x x x x x x x =-+-,则1121112()ln ln g x x x x x x x =-+-, 再设22()ln ln h x x x x x x x =-+-,20x x <<,∴2()ln ln 0h x x x '=-> ∴22()ln ln h x x x x x x x =-+-在20x x <<是增函数 ∴112()()()0g x h x h x =<=,同理2()0g x >∴方程2112ln ln 0x x x x x x -+-=在012(,)x x x ∈有解 …………(10分) ∵一次函数在12(,)x x 2112()(ln ln )g x x x x x x =-+-是增函数∴方程2112ln ln 0x x x x x x -+-=在012(,)x x x ∈有唯一解,命题成立………(12分) 注:仅用函数单调性说明,没有去证明曲线C 不存在拐点,不给分. 12.(本小题满分14分)定义),0(,,)1(),(+∞∈+=y x x y x F y,(I )令函数22()(3,log (24))f x F x x =-+,写出函数()f x 的定义域;(II )令函数322()(1,log (1))g x F x ax bx =+++的图象为曲线C ,若存在实数b 使得曲线C 在)14(00-<<-x x 处有斜率为-8的切线,求实数a 的取值范围;(III )当,*x y ∈N 且x y <时,求证(,)(,)F x y F y x >.解:(I )22log (24)0x x -+>,即2241x x -+> ……………………(2分)得函数()f x 的定义域是(1,3)-, ……………………(4分)(II )22322()(1,log (1))1,g x F x ax bx x ax bx =+++=+++设曲线00(41)C x x -<<-在处有斜率为-8的切线,又由题设,23)(,0)1(log 2232b ax x x g bx ax x ++='>+++∴存在实数b 使得⎪⎩⎪⎨⎧>+++-<<--=++1114823020300020bx ax x x b ax x 有解, ……………………(6分)由①得,238020ax x b ---=代入③得082020<---ax x ,200028041x ax x ⎧++>⎪∴⎨-<<-⎪⎩由有解, ……………………(8分) 方法1:0082()()a x x <-+-,因为041x -<<-,所以0082()[8,10)()x x -+∈-, 当10a <时,存在实数b ,使得曲线C 在)14(00-<<-x x 处有斜率为-8的切线………………(10分)方法2:得08)1()1(208)4()4(222>+-⨯+-⨯>+-⨯+-⨯a a 或,1010,10.a a a ∴<<∴<或 ………………(10分) 方法3:是222(4)(4)802(1)(1)80a a ⎧⨯-+⨯-+≤⎪⎨⨯-+⨯-+≤⎪⎩的补集,即10a < ………………(10分)(III )令2)1ln(1)(,1,)1ln()(x x x xx h x x x x h +-+='≥+=由 又令,0),1ln(1)(>+-+=x x x x x p 0)1(11)1(1)(22<+-=+-+='∴x x x x x p , ),0[)(+∞∴在x p 单调递减. ……………………(12)分0()(0)0,1()0,x p x p x h x '∴><=∴≥<当时有当时有),1[)(+∞∴在x h 单调递减,x y y x y x x y yy x x y x )1()1(),1ln()1ln(,)1ln()1ln(,1+>+∴+>+∴+>+<≤∴有时,).,(),(,x y F y x F y x N y x ><∈∴*时且当 ………………(14分)①②③。
导数压轴必刷母题50道2017春季目录重点类型一:恒成立问题 (2)题型1:已知恒成立,求参数范围 (2)题型2:已知参数,求证恒成立 (13)题型3:已知恒成立,求整数参数的最值 (17)重点类型二:双变量问题 (20)题型1:双逻辑连接词下的双变量问题 (20)题型2:双变量的构造问题 (24)题型3:双极值点的方程消参 (30)题型4:极值点偏移有关的函数构造 (34)重点类型三:零点交点问题 (38)重点类型四:赋值放缩证明不等式 (42)题型1:数列求和型不等式 (42)题型2:近似值估算型不等式 (49)第一天:建议训练时间20分钟重点类型一:恒成立问题题型1:已知恒成立,求参数范围1.(2012河南郑州一模理21)设函数()()R p x p x x f ∈--=,1ln . (Ⅰ)当1p =时,求函数()x f 的单调区间;(Ⅱ)设函数()()(),122--+=x x p x xf x g 对任意都1x ≥有()0≤x g 成立,求p 的取值范围.2.(2014山西太原一模文20)已知函数()()()221ln f x a x x a =--++. (Ⅰ)当1a =时,求()f x 的单调区间;(Ⅱ)若函数()f x 在区间10,2⎛⎫ ⎪⎝⎭无零点,求实数a 的最小值;第二天:建议训练时间25分钟3.(2011山西太原一模文21)已知函数()1ln xf x x+=. (Ⅰ)设0a >,若函数在区间1,2a a ⎛⎫+⎪⎝⎭上存在极值,求实数a 的取值范围; (Ⅱ)如果当1x ≥时,不等式()21k kf x x -≥+恒成立,求实数k 的取值范围.4.设函数()()()2ln 10,f x ax x b x x =+->曲()y f x =过点()2,1,e e e -+且在点()1,0处的切线方程为0.y = (Ⅰ)求,a b 的值;(Ⅱ)证明:当1x ≥时,()()21f x x ≥-;(Ⅲ)若当1x ≥时,()()21f x m x ≥-恒成立,求实数m 的取值范围.第三天:建议训练时间25分钟5.已知函数()()2xf x x e =-和()32g x kx x =--(Ⅰ)若函数()g x 在区间()12,不单调,求k 的取值范围; (Ⅱ)当[0+x ∈∞,)时,不等式()()f x g x ≥恒成立,求k 的最大值.6.已知函数()ln a f x x x=-(Ⅰ)若0,a >试判断()f x 在定义域内的单调性;(Ⅱ)若()2f x x <在()1+∞,上恒成立,求a 的取值范围.第四天:建议训练时间30分钟7.(2016新课标2文20)已知函数()()()1ln 1f x x x a x =+-- (Ⅰ)当4a =时,求曲线()y f x =在()()1,1f 处的切线方程; (Ⅱ)若当()1,x ∈+∞时,()0f x >,求a 的取值范围.8.(2014河南郑州一模文21)已知函数()ln f x x x =,(1)()k x g x x-=. (Ⅰ)当k e =时,求函数()()()h x f x g x =-的单调区间和极值; (Ⅱ)若()()f x g x ≥恒成立,求实数k 的值.第五天:建议训练时间35分钟9.(2015山西太原一模理21)已知函数2()(ln )f x x a x x =++,a R ∈. (Ⅰ)若当1a =-时,求()f x 的单调区间; (Ⅱ)若1()(1)2f x e a >+,求a 的取值范围.10.已知函数()()ln 1f x x ax =+-在12x =-处的切线的斜率为1. (Ⅰ)求a 的值及()f x 的最大值;(Ⅱ)设()()x g x b e x =-,若()()f x g x ≤恒成立,求实数b 的取值范围.第六天:建议训练时间40分钟11.(2011浙江理22)设函数()()2=ln f x x a x -,a R ∈ (Ⅰ)若x e -为()y f x =的极值点,求实数a ;(Ⅱ)求实数a 的取值范围,使得对任意的(]0,3x e ∈,恒有()24f x e ≤成立.注:e 为自然对数的底数。
题型2:已知参数,求证恒成立12.(2016新课标Ⅲ文21)设函数()ln 1f x x x =-+. (Ⅰ)讨论()f x 的单调性;(Ⅱ)证明当(1,)x ∈+∞时,11ln x x x-<<; (Ⅲ)设1c >,证明当(0,1)x ∈时,1(1)xc x c +->.第七天:建议训练时间30分钟13. (2016河北邯郸一模)设函数()()ln f x x a x b =++,曲线()y f x =在点(1,(1))f 处的切线方程为20x y +-= (Ⅰ)求()y f x =的解析式; (Ⅱ)证明:()11xf x x e -<-.14.(2016广州一模)已知函数()ln 1xf x me x =--.(Ⅰ)当1m =时,求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)当1m ≥时,证明:()1f x >.第八天:建议训练时间25分钟15.设函数()()ln f x x a x b =++,曲线()y f x =在点(1,(1))f 处的切线方程为20x y +-=(Ⅰ)求()y f x =的解析式; (Ⅱ)证明:()0f x >.题型3:已知恒成立,求整数参数的最值16.已知函数2()ln ()f x ax x x a R =+∈的图象在点(1,(1))f 处的切线与直线30x y +=垂直.(Ⅰ)求实数a 的值;(Ⅱ)若存在k Z ∈,使得()f x k >恒成立,求k 的最大值.第九天:建议训练时间35分钟17.已知()()2ln ,2ax f x x x g x ==,直线()32l y k x k =--+: (Ⅰ)函数()f x 在x e =处的切线与直线l 平行,求实数k 的值(Ⅱ)若至少存在一个[]01x e ∈,使()()00f x g x <成立,求实数a 的取值范围 (Ⅲ)设k Z ∈,当1x >时()f x 的图象恒在直线l 的上方,求k 的最大值.18.已知函数ln ()()xf x a R x a=∈+,曲线()y f x =在点(1,(1))f 处的切线方程为1y x =-.(Ⅰ)求实数a 的值,并求()f x 的单调区间;(Ⅱ)试比较20152014与20142015的大小,并说明理由;(Ⅲ)是否存在k Z ∈,使得()2kx f x >+对任意0x >恒成立?若存在,求出k 的最小值;若不存在,请说明理由.第十天:建议训练时间35分钟重点类型二:双变量问题题型1:双逻辑连接词下的双变量问题 19.已知函数()()2,mxf x m n R x n=∈+在1x =处取到极值2. (Ⅰ)求()f x 的解析式; (Ⅱ)设函数()ln ag x x x=+,若对任意的[]11,1x ∈-,总存在[]21,x e ∈,使得()()2172g x f x ≤+,求实数a 的取值范围.20.(2013山西太原一模理21)已知函数()(2)(1)2ln f x a x x =---,1()xg x xe -=(R a ∈,e 为自然对数的底数).(Ⅰ)若不等式()0f x >对于一切1(0,)2x ∈恒成立,求a 的最小值; (Ⅱ)若对任意的0(0,]x e ∈,在(0,]e 上总存在两个不同的(1,2)i x i =,使0()()i f x g x =成立,求a 的取值范围.第十一天:建议训练时间35分钟21.已知函数()ln f x a x x =-,其中0a ≠. (Ⅰ)求()f x 的单调区间; (Ⅱ)若对任意1[1,]x e ,存在2[1,]x e ,使1()f x 与2()f x 互为相反数,求a 的值.22.(2014河北石家庄一模理21)已知函数2()(2)ln(1)f x x x ax x =++--()a R ∈,()ln(1)g x x =+.(Ⅰ)若0a =,()()()F x f x g x =-,求函数()F x 的极值点及相应的极值;(Ⅱ)若对于任意20x >,存在1x 满足12x x <且12()()g x f x =成立,求a 的取值范围.第十二天:建议训练时间25分钟题型2:双变量的构造问题 23.已知函数()()212ln 2,2f x x a x a x a R =-+-∈. (Ⅰ)当1a =时,求函数()f x 图象在点()()1,1f 处的切线方程; (Ⅱ)当0a <时,讨论函数()f x 的单调性;(Ⅲ)是否存在实数a ,对任意的()12,0,x x ∈+∞且12x x ≠有()()2121f x f x a x x ->-恒成立?若存在,求出a 的取值范围;若不存在,说明理由.24.(2012河南郑州二模理21)已知函数()ln f x ax x x =+,且图象在点11,f e e ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线斜率为自然对数的底数. (Ⅰ)求实数a 的值; (Ⅱ)设()()1f x xg x x -=-,求()g x 的单调区间;(Ⅲ)当()1,m n m n Z >>∈m nn n m m >.第十三天:建议训练时间35分钟25.(2015河北石家庄一模文21)已知函数()2(1)ln f x a x ax =+-,21()2g x x x =-. (Ⅰ)若函数()f x 在定义域内为单调函数,求实数a 的取值范围; (Ⅱ)证明:若7a a -<<,则对于任意()12,1,x x ∈+∞,12x x ≠,有1212()()1()()f x f xg x g x ->--.26.(2011广州二模)已知函数()ln f x ax x x =+的图象在点x e =(e 为自然对数的底数)处的切线斜率为3. (Ⅰ)求实数a 的值; (Ⅱ)若k Z ∈,且()1f x k x <-对任意1x >恒成立,求k 的最大值; (Ⅲ)当4n m >≥时,证明()()mnnm mn nm >.第十四天:建议训练时间35分钟27.已知函数()ln f x x =. (Ⅰ)若曲线()()1ag x f x x=+-在点()()2,2g 处的切线与直线210x y +-=平行,求实数a 的值;(Ⅱ)若0m n >>,求证ln ln 2m n m nm n --<+.28.已知函数()ln ,f x x mx m m R =-+∈.(Ⅰ)已知函数()f x 在点()()1,1f 处与x 轴相切,求实数m 的值; (Ⅱ)求函数()f x 的单调区间;(Ⅲ)在(Ⅰ)的结论下,对于任意的0a b <<,证明:()()11f b f a b a a-<--.第十五天:建议训练时间35分钟题型3:双极值点的方程消参29.(2012河北唐山期末理21)已知函数21()ln (0)f x ax x a x=-+>. (Ⅰ)若()f x 是单调函数,求a 的取值范围;(Ⅱ)若()f x 有两个极值点12,x x ,证明:12()()32ln 2f x f x +>-.30.(2013河北石家庄一模理21)设函数2()ln(1)f x x a x =++.(Ⅰ)若函数()y f x =在区间[1,)+∞上是单调递增函数,求实数a 的取值范围; (Ⅱ)若函数()y f x =有两个极值点12,x x 且12x x <,求证: 2ln 21)(012+-<<x x f .第十六天:建议训练时间40分钟31.已知函数2()2ln ()f x x x a x a R =-+∈.(Ⅰ)当2a =时,求函数()f x 在(1,(1))f 处的切线方程; (Ⅱ)当0a >时,求函数()f x 的单调区间;(Ⅲ)若函数()f x 有两个极值点1x ,212()x x x <,不等式12()f x mx ≥恒成立,求实数m 的取值范围.32.(2014河南郑州一模理21)已知函数()ln f x x x =,()(1)g x k x =-. (Ⅰ)若()()f x g x ≥恒成立,求实数k 的值;(Ⅱ)若方程()()f x g x =有一根为1x 1(1)x >,方程'()'()f x g x =的根为0x ,是否存在实数k ,使1x k x =?若存在,求出所有满足条件的k 值;若不存在,说明理由.第十七天:建议训练时间30分钟题型4:极值点偏移有关的函数构造33.(2014河北石家庄期末理22)已知a 为实常数,函数()ln 1f x x ax =-+. (Ⅰ)讨论函数()f x 的单调性;(Ⅱ)若函数()f x 有两个不同的零点1x ,2x 12()x x <. (ⅰ)求实数a 的取值范围; (ⅱ)求证:111x e<<,且122x x +>.(注:e 为自然对数的底数)34.(2016商丘二模)已知直线y x b =+与函数()ln f x x =的图象交于两个不同的点,A B ,其横坐标分别为12,x x ,且12x x <(Ⅰ)求b 的取值范围;(Ⅱ)当22x ≥时,证明2122x x <.第十八天:建议训练时间30分钟35.(2016太原一模文21)已知函数)(ln 2)(2R a ax x x x f ∈+-=.(1)若函数)(x f 的图象在2=x 处切线的斜率为1-,且不等式m x x f +≥2)(在],1[e e上有解,求实数m 的取值范围;(2)若函数)(x f 的图象与x 轴有两个不同的交点)0,(),0,(21x B x A ,且210x x <<,求证:0)2(21<+'x x f (其中)(x f '是)(x f 的导函数).36.已知函数()ln ()f x x ax a R =+∈ (I )讨论函数()f x 的单调性;(Ⅱ)若函数()f x 的两个零点为12,x x ,且221x e x ≥,求证:'12126()()5x x f x x -+>.第十九天:建议训练时间25分钟重点类型三:零点交点问题37.(2008四川22)已知3x =是函数()()2ln 110f x a x x x =++-的一个极值点。