中考数学专题复习课件 --- 第九讲不等式与不等式组
- 格式:ppt
- 大小:2.14 MB
- 文档页数:2
第九章 不等式与不等式组[三维目标知识与技能1. 会运用不等式的基本性质解一元一次不等式(组);2. 会借助数轴确定不等式(组)的解集;3. 会根据题中的不等关系建立不等式(组),解决实际应用问题。
过程与方法1. 学会分析现实问题的不等关系,提炼有关不等式(组)来解决问题; 2. 允许学生暴露在解不等式时易犯或常犯的错误,以便有针对性地解决问题。
情感与态度1.本单元主要让学生领会数形结合的解题思想。
2.提高运用不等式有关知识解决实际问题的能力。
教学重点:构建不等式的知识体系,解决有关问题教学难点:灵活运用所学知识分析解决现实生活的实际问题. 教学方法与手段:类比、探究、讨论教学过程: 一、知识梳理 1.不等式的性质有哪些?2.一元一次不等式的概念及解法是什么? 3.一元一次不等式组的概念及解法是什么? 4.举例说明数轴在解不等式(组)中的作用. 5.用一元一次不等式解决实际问题的步骤是什么?修订、增减解不等式(组)设未知数 列不等式(组)实际问题 (包含不等关系)数学问题 (一元一次不等式或一元一次不等式数学问题的解(不等式(组)的解实际问题的解答检验二、典型例题例1 如果b a >,那么下列不等式中不成立的是( ) (A )33->-b a (B )b a 3232->- (C )33b a > (D )0>-b a例2 解下列不等式(组),并把它们的解集在数轴上表示出来。
(1)23)72(3>+x (2)135253--<+x x(3)⎪⎩⎪⎨⎧-<-++≥+x x x x 213521132(4)⎩⎨⎧-<+--->+-x x x x x 63)12(5)5(2513)1(3例3 小明上午8时20分出发去郊游.10时20分时,小亮乘车出发.已知小明每小时走4 km ,那么小亮要在11时前追上小明,速度至少应是多少? 分析:这是一个追赶问题,从路程下手找不等关系.小明出发时,小亮行了10:20-8:20=2小时.小明要在11点前追上小华 小亮行了2+32小时,而小明行了32小时. 解:设小明的速度至少要每小时行x 千米.4)322(32⨯+≥x 16≥x答:小亮的速度至少为16千米三、综合应用1、 知不等式组的解集为x>2,则a 的取值范围是2、 x 取哪些整数值时,代数式729+x 与2143-x 的差大于6且小于8?3、(1)m x <有3个正整数解,那么m 的取值范围是? (2)m x ≤有3个正整数解,那么m 的取值范围是?(3)m x 3<有3个正整数解,那么m 的取值范围是? (4)m x <3有3个正整数解,那么m 的取值范围是?4、某商场为了促销,开展对顾客赠送礼品活动,准备了若干件礼品送给顾客,•在一次活动中,如果每人送5件,则还余8件,如果每人送7件,则最后一人还不足3件.•设该商场准备了m 件礼品,有x 名顾客获赠,请回答下列问题: (1)用含x 的代数式表示m.(2)求出该次活动中获赠顾客人数及所准备的礼品数.四、课堂小结学完本章,你肯定有很多收获,在小组里和你的同学说说,让大家分享你的成功.以上题目及知识点你是否顺利完成,本章所涉及的数学方法你是否掌握,回顾一下,自我进行完善五、布置作业5.1.1 相交线一、选择题:(每小题3分,共15分)1.如图所示,∠1和∠2是对顶角的图形有( )12121221A.1个B.2个C.3个D.4个2.如图1所示,三条直线AB,CD,EF 相交于一点O,则∠AOE+∠DOB+∠COF 等于( • )A.150°B.180°C.210°D.120°OFE D CB A O DCBA 60︒30︒34l 3l 2l 112(1) (2) (3) 3.下列说法正确的有( )①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等. A.1个 B.2个 C.3个 D.4个4.如图2所示,直线AB 和CD 相交于点O,若∠AOD 与∠BOC 的和为236°,则∠AOC•的度数为( ) A.62° B.118° C.72° D.59°5.如图3所示,直线L 1,L 2,L 3相交于一点,则下列答案中,全对的一组是( ) A.∠1=90°,∠2=30°,∠3=∠4=60°; B.∠1=∠3=90°,∠2=∠4=30C.∠1=∠3=90°,∠2=∠4=60°;D.∠1=∠3=90°,∠2=60°,∠4=30° 二、填空题:(每小题2分,共16分)1. 如图4所示,AB 与CD 相交所成的四个角中,∠1的邻补角是______,∠1的对顶角___.34D CBA 12OFED CB A OE D CBA(4) (5) (6) 2.如图4所示,若∠1=25°,则∠2=_______,∠3=______,∠4=_______.3.如图5所示,直线AB,CD,EF 相交于点O,则∠AOD 的对顶角是_____,∠AOC 的邻补角是_______;若∠AOC=50°,则∠BOD=______,∠COB=_______.4.如图6所示,已知直线AB,CD 相交于O,OA 平分∠EOC,∠EOC=70°,则∠BOD =•______.5.对顶角的性质是______________________.6.如图7所示,直线AB,CD 相交于点O,若∠1-∠2=70,则∠BOD=_____,∠2=____.ODC BA 12OE D CBA OE DCBA(7) (8) (9)7.如图8所示,直线AB,CD 相交于点O,OE 平分∠AOC,若∠AOD-∠DOB=50°,•则∠EOB=______________.8.如图9所示,直线AB,CD 相交于点O,已知∠AOC=70°,OE 把∠BOD 分成两部分,• 且∠BOE:∠EOD=2:3,则∠EOD=________. 三、训练平台:(每小题10分,共20分)1. 如图所示,AB,CD,EF 交于点O,∠1=20°,∠BOC=80°,求∠2的度数.OF EDCBA 122. 如图所示,L 1,L 2,L 3交于点O,∠1=∠2,∠3:∠1=8:1,求∠4的度数.34l 3l 2l 112四、提高训练:(每小题6分,共18分)1. 如图所示,AB,CD 相交于点O,OE 平分∠AOD ,∠AOC=120°,求∠BOD,∠AOE•的 度数.OE DCBA2. 如图所示,直线AB 与CD 相交于点O,∠AOC:∠AOD=2:3,求∠BOD 的度数.ODCBA3. 如图所示,直线a,b,c 两两相交,∠1=2∠3,∠2=65°,求∠4的度数.cba3412五、探索发现:(每小题8分,共16分)1. 若4条不同的直线相交于一点,则图中共有几对对顶角?若n 条不同的直线相交 于一点呢?2.在一个平面内任意画出6条直线,最多可以把平面分成几个部分?n条直线呢?•六、能力提高:(共10分)已知点O是直线AB上一点,OC,OD是两条射线,且∠AOC=∠BOD,则∠AOC与∠BOD是对顶角吗?为什么?答案:一、1.A 2.B 3.B 4.A 5.D二、1.∠2和∠4 ∠3 2.155°25° 155° 4.35° 5.对顶角相等 •6 .125°55° 7.147.5° 8.42°三、1.∠2=60° 2.∠4=36°四、1.∠BO D=120°,∠AOE=30° 2.∠BOD=72° 3.∠4=32.5°五、1.4条不同的直线相交于一点,图中共有12对对顶角(平角除外),n条不同的直线相交于一点,图中共有(n2-n)对对顶角(平角除外).2.6条直线最多可以把平面分成22个部分,n 条直线最多可以把平面分成(1)12n n +⎡⎤+⎢⎥⎣⎦个部分.六、∠AOC 与∠BOD 不一定是对顶角.如图1所示,当射线OC,OD 位于直线AB 的一侧 时,不是对顶角;如图2所示,当射线OC,OD 位于直线AB 的两侧时,是对顶角.(1)O D C BA21(2)O DCBA5.1.1 相交线一、选择题:(每小题3分,共15分)1.如图所示,∠1和∠2是对顶角的图形有( )12121221A.1个B.2个C.3个D.4个2.如图1所示,三条直线AB,CD,EF 相交于一点O,则∠AOE+∠DOB+∠COF 等于( • )A.150°B.180°C.210°D.120°OFE D CB A O DCBA 60︒30︒34l 3l 2l 112(1) (2) (3) 3.下列说法正确的有( )①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等. A.1个 B.2个 C.3个 D.4个4.如图2所示,直线AB 和CD 相交于点O,若∠AOD 与∠BOC 的和为236°,则∠AOC•的度数为( ) A.62° B.118° C.72° D.59°5.如图3所示,直线L 1,L 2,L 3相交于一点,则下列答案中,全对的一组是( ) A.∠1=90°,∠2=30°,∠3=∠4=60°; B.∠1=∠3=90°,∠2=∠4=30C.∠1=∠3=90°,∠2=∠4=60°;D.∠1=∠3=90°,∠2=60°,∠4=30°二、填空题:(每小题2分,共16分)1. 如图4所示,AB 与CD 相交所成的四个角中,∠1的邻补角是______,∠1的对顶角___.34D CBA 12OFED CB A OE D CBA(4) (5) (6) 2.如图4所示,若∠1=25°,则∠2=_______,∠3=______,∠4=_______.3.如图5所示,直线AB,CD,EF 相交于点O,则∠AOD 的对顶角是_____,∠AOC 的邻补角是_______;若∠AOC=50°,则∠BOD=______,∠COB=_______.4.如图6所示,已知直线AB,CD 相交于O,OA 平分∠EOC,∠EOC=70°,则∠BOD =•______.5.对顶角的性质是______________________.6.如图7所示,直线AB,CD 相交于点O,若∠1-∠2=70,则∠BOD=_____,∠2=____.ODC BA 12OE D CBA OE DCBA(7) (8) (9)7.如图8所示,直线AB,CD 相交于点O,OE 平分∠AOC,若∠AOD-∠DOB=50°,•则∠EOB=______________.8.如图9所示,直线AB,CD 相交于点O,已知∠AOC=70°,OE 把∠BOD 分成两部分,• 且∠BOE:∠EOD=2:3,则∠EOD=________. 三、训练平台:(每小题10分,共20分)3. 如图所示,AB,CD,EF 交于点O,∠1=20°,∠BOC=80°,求∠2的度数.OF EDCBA 124. 如图所示,L 1,L 2,L 3交于点O,∠1=∠2,∠3:∠1=8:1,求∠4的度数.34l 3l 2l 112四、提高训练:(每小题6分,共18分)4. 如图所示,AB,CD 相交于点O,OE 平分∠AOD ,∠AOC=120°,求∠BOD,∠AOE•的 度数.OE DCBA5. 如图所示,直线AB 与CD 相交于点O,∠AOC:∠AOD=2:3,求∠BOD 的度数.ODCBA6. 如图所示,直线a,b,c 两两相交,∠1=2∠3,∠2=65°,求∠4的度数.cba3412五、探索发现:(每小题8分,共16分)3. 若4条不同的直线相交于一点,则图中共有几对对顶角?若n 条不同的直线相交 于一点呢?4. 在一个平面内任意画出6条直线,最多可以把平面分成几个部分?n 条直线呢?•六、能力提高:(共10分)已知点O是直线AB上一点,OC,OD是两条射线,且∠AOC=∠BOD,则∠AOC与∠BOD是对顶角吗?为什么?答案:一、1.A 2.B 3.B 4.A 5.D二、1.∠2和∠4 ∠3 2.155°25° 155° 4.35° 5.对顶角相等 •6 .125°55° 7.147.5° 8.42°三、1.∠2=60° 2.∠4=36°四、1.∠BO D=120°,∠AOE=30° 2.∠BOD=72° 3.∠4=32.5°五、1.4条不同的直线相交于一点,图中共有12对对顶角(平角除外),n条不同的直线相交于一点,图中共有(n2-n)对对顶角(平角除外).2.6条直线最多可以把平面分成22个部分,n条直线最多可以把平面分成(1)12n n+⎡⎤+⎢⎥⎣⎦个部分.六、∠AOC 与∠BOD 不一定是对顶角.如图1所示,当射线OC,OD 位于直线AB 的一侧 时,不是对顶角;如图2所示,当射线OC,OD 位于直线AB 的两侧时,是对顶角.(1)O DC B A 21 (2)OD CB A。