数学思想篇:一、整体思想
- 格式:doc
- 大小:313.50 KB
- 文档页数:2
数学思想-- 整体思想知识梳理整体思想就是在解决数学问题时,将要解决的问题看作一个整体,通过对问题的整体形式、整体结构、已知条件和所求综合考虑后.得出结论.整体思想的应用,要做到观察全局、整体代入、整体换元、整体构造.整体思想作为重要的数学思想之一,我们在解题过程中经常使用.整体思想使用得恰当,能提高解题效率和能力,减少不必要的计算和走弯路,直奔主题.因而在处理数与式的运算、方程、几何计算等方面有着广泛应用.是初中数学学习中的重要思想方法.典型例题一、在数与式的运算中的应用1. 已知代数式3x 2-4x+6的值为9,则2463x x -+的值为 ( ) A .18 B .12 C .9 D .7 2.先化简,再求值222142442a a a a a a a a +--⎛⎫-÷ ⎪--+-⎝⎭,其中a 满足a 2-2a -1=0. 3.计算:11111111123420082342007⎛⎫⎛⎫+++++++++- ⎪⎪⎝⎭⎝⎭ (111111111234)20082342007⎛⎫⎛⎫+++++++ ⎪⎪⎝⎭⎝⎭…+?+ 二、在方程中的应用1.(08绍兴)若买2支圆珠笔、1本日记本需4元;买1支圆珠笔、2本日记本需5元,则买4支圆珠笔、4本日记本需__________元.2.(08苏州)解方程:()2221160x x x x +++-=. 三、在几何计算中的应用【例5】如图⊙A ,⊙B ,⊙C两两不相交,且半径都是0.5 cm ,则图中的阴影部分的面积是( )A .12πcm 2B .8πcm 2C .4πcm 2D .6πcm 2综合训练1.当代数式a +b 的值为3时,代数式2a +2b+1的值是 ( )A .5B .6C .7D .82.用换元法解方程(x 2+x) 2+2(x 2+x)-1=0,若设y=x 2+x ,则原方程可变形为 ( )A .y 2+2y+1=0B .y 2-2y+1=0C .y 2+2y -1=0D .y 2-2y -1=03.当x=1时,代数式a x 3+bx+7的值为4,则当x=-l 时,代数式a x 3+bx+7的值为A .7B .10C .11D .12 ( )4.若方程组36133x y k x y +=+⎧⎨+=⎩的解x ,y 满足0<x+y<1,则k 的取值范围是 ( ) A .-4<k<0 B .-1<k<0 C .0<k<8 D .k>-45.(08芜湖)已知113x y -=,则代数式21422x xy y x xy y----的值为_________. 6.已知x 2-2x -1=0,且x<0,则1x x -=__________. 7.如果(a 2+b 2) 2-2(a 2+b 2)-3=0,那么a 2+b 2=_________.8.如图,在高2米,坡角为30°的楼梯表面铺地毯,则地毯长度至少需________米.9.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7 cm ,则正方形A ,B ,C ,D 的面积之和为__________cm 2.10.如图,ABCD 是各边长都大于2的四边形,分别以它的顶点为圆心、1为半径画弧(弧的端点分别在四边形的相邻两边上),则这4条弧长的和是__________.11.如图,半圆A 和半圆B 均与y 轴相切于点O ,其直径CD 、EF 均和x 轴垂直,以O 为顶点的两条抛物线分别经过点C 、E 和点D 、F ,则图中阴影部分的面积是________.12.若买铅笔4支,日记本3本,圆珠笔2支共需10元,若买铅笔9支,日记本7本,圆珠笔5支共需25元,则购买铅笔、日记本、圆珠笔各一样共需_________元.13.(08烟台)已知x(x -1)-(x 2-y)=-3,求x 2+y 2-2xy 的值.14.(07泰州)先化简,再求值:2224124422a a a a a a⎛⎫--÷ ⎪-+--⎝⎭,其中a 是方程x 2+3x+1=0的根.15.解方程(1)(x 2-1) 2-5(x 2-1)+4=0 (2)x 4-x 2-6=0 (3)228011x x x x ⎛⎫⎛⎫--= ⎪ ⎪++⎝⎭⎝⎭为了解方程(x 2-1) 2-5(x 2-1)+4=0.我们可以将x 2-1视为一个整体,然后设x 2-1=y ,则原方程可化为y 2-5y+4=0①.解得y 1=1,y 2=4.当y=1时,x 2-1=1,∴x 2=2,∴x =y=4时,x 2-1=4,∴x 2=5,∴x =.∴1x2x =3x =4x =.解答问题:(1)填空:在由原方程得到方程①的过程中,利用_______法达到了降次的目的,体现了________的数学思想;(2)用上述方法解方程:x 4-x 2-6=0.参考答案1.C 2.C 3.B 4.A 5.4 6.2 7.3 8.2+2+ 9.4910.2π 11.2π12.513.原题化简得x -y=3,∴x 2+y 2-2xy=(x -y) 2=32=9.14.解:原式=()()()()()22222121222222a a a a a a a a a a a ⎡⎤+---+⎛⎫+⨯=+⨯⎢⎥ ⎪---⎝⎭-⎢⎥⎣⎦ ()()231322a a a a +==+a 是方程x 2+3x+1=0的根,∴a 2+3a +1=0,∴a 2+3a =-1,∴原式=-12.15.(1)换元 整体(2)设x 2=y 则原方程可化为y 2-y -6=0,解得y 1=3,y 2=-2<0(舍去)∴当y=3时,x 2=3,∴x =x =。
数学解题中的思想方法——整体思维和发散思维知识技能梳理:1、整体思维:整体思维方法在解题中,不是着限于问题的各个组成部分,而是将要解决的问题看作为一个整体。
具体方法:(1)整体代入,直奔终点;(2)整体把握,各个击破;(3)整体补形,变换角度。
2、发散思维:发散思维具有多向性、变异性、独特性的特点。
在内容上具有变通性和开放性,形式多样。
解题中涉及的主要发散思维模式,其涵义概括如下:题型发散——保持原命题发散的特点,变换题型和命题形式;解法发散——从不同角度、不同侧面解答问题;综合发散——将分析、归纳、综合等多种思维方法进行综合应用,解决较复杂的问题,使知识系统化,强调灵活应用。
发散思维还有逆向思维、迁移思维、分解思维、构造思维等等。
典型例题剖析:例1、设{ EMBED Equation.KSEE3 \* MERGEFORMAT |{}n a 是由正数组成的等比数列,是其前项和,证明:答案:略例2、如图,是直三棱柱,过点的平面和平面的交线记作。
(1)判定直线和的位置关系,并证明;(2)若,求顶点到直线的距离。
答案:(1);(2)例3、过抛物线顶点,任作互相垂直的两条弦交此抛物线于两点,求证:此两点连线的中点轨迹仍为一抛物线。
答案:略例4、已知复数,若是常数,,求满足的点的轨迹方程。
答案:当时,轨迹为椭圆,方程为;当时,轨迹为线段,方程是例5、如果正实数满足,求的最大值。
答案:A 1B 1C 1 A BC例6、对于函数,若存在,使成立,则称为的不动点。
已知函数(1)当时,求函数的不动点;(2)若对任意实数,函数恒有两个相异的不动点,求的取值范围。
答案:(1);(2)例7、如图,且有一般地,求:(1)向量对应的复数,;(2)向量对应的复数;(3) 答案:(1)(2)(3)自我测试作业:1、设复数满足等式,且,又已知复数使得为实数,问复数在复平面上的对应的点的集合是什么图形?并说明理由。
答案:以为圆心,1为半径的圆,除两点。
数学思想方法一整体思想整体思想,就是在研究和解决有关数学问题时,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题方法.从整体上去认识问题、思考问题,常常能化繁为简、变难为易,同时又能培养学生思维的灵活性、敏捷性.整体思想的主要表现形式有:整体代入、整体加减、整体代换、整体联想、整体补形、整体改造等等.在初中数学中的数与式、方程与不等式、函数与图象、几何与图形等方面,整体思想都有很好的应用,因此,每年的中考中涌现了许多别具创意、独特新颖的涉及整体思想的问题,尤其在考查高层次思维能力和创新意识方面具有独特的作用.一.数与式中的整体思想例1.已知114a b -=,则2227a ab b a b ab---+的值等于 ( ) A.6 B.6- C.125 D.27- 分析:根据条件显然无法计算出a ,b 的值,只能考虑在所求代数式中构造出11a b-的形式,再整体代入求解. 解:112242b 6112272(4)72()7a ab b a a b ab b a------===-+⨯-+-+ 说明:本题也可以将条件变形为4b a ab -=,即4a b ab -=-,再整体代入求解.例2.已知代数式25342()2x ax bx cx x dx ++++,当1x =时,值为3,则当1x =-时,代数式的值为解:因为当1x =时,值为3,所以231a b c d +++=+,即11a b c d ++=+,从而,当1x =-时,原式()21211a b c d-++=+=-+=+ 例3.已知2002007a x =+,2002008b x =+,2002009c x =+,求多项式222a b c ab bc ac ++---的值.分析:要求多项式的值,直接代入计算肯定不是最佳方案,注意到222a b c ab bc ac ++---2221()()()2a b b c c a ⎡⎤=-+-+-⎣⎦,只要求得a b -,b c -,c a -这三个整体的值,本题的计算就显得很简单了.解:由已知得,1a b b c -=-=-,2c a -=,所以, 原式2221(1)(1)232⎡⎤=-+-+=⎣⎦ 说明:在进行条件求值时,我们可以根据条件的结构特征,合理变形,构造出条件中含有的模型,然后整体代入,从整体上把握解的方向和策略,从而使复杂问题简单化.二.方程(组)与不等式(组)中的整体思想例4.已知24122x y k x y k +=+⎧⎨+=+⎩,且03x y <+<,则k 的取值范围是分析:本题如果直接解方程求出x ,y 再代入03x y <+<肯定比较麻烦,注意到条件中x y +是一个整体,因而我们只需求得x y +,通过整体的加减即可达到目的.解:将方程组的两式相加,得:3()53x y k +=+,所以513x y k +=+,从而50133k <+<,解得3655k -<< 例5. 已知关于x ,y 的二元一次方程组3511x ay x by -=⎧⎨+=⎩的解为56x y =⎧⎨=⎩,那么关于x ,y 的二元一次方程组3()()5()11x y a x y x y b x y +--=⎧⎨++-=⎩的解为为分析:如果把56x y =⎧⎨=⎩代入3511x ay x by -=⎧⎨+=⎩,解出a ,b 的值,再代入3()()5()11x y a x y x y b x y +--=⎧⎨++-=⎩进行求解,应当是可行的,但运算量比较大,相对而言比较繁琐. 若采用整体思想,在方程组3()()5()11x y a x y x y b x y +--=⎧⎨++-=⎩中令x y m x y n +=⎧⎨-=⎩,则此方程组变形为3511m an m bn -=⎧⎨+=⎩,对照第一个方程组即知56m n =⎧⎨=⎩,从而56x y x y +=⎧⎨-=⎩,容易得到第二个方程组的解为11212x y ⎧=⎪⎪⎨⎪=-⎪⎩,这样就避免了求a ,b 的值,又简化了方程组,简便易操作.解:11212x y ⎧=⎪⎪⎨⎪=-⎪⎩ 说明:通过整体加减既避免了求复杂的未知数的值,又简化了方程组(不等式组),解答直接简便.例6.解方程 22523423x x x x+-=+ 分析:本题若采用去分母求解,过程很复杂和繁冗,根据方程特点,我们采用整体换元,将分式方程转化为整式方程来解.解:设223x x y +=,则原方程变形为54y y-=,即2450y y --=,解得15y =,21y =-,所以2235x x +=或2231x x +=-,从而解得152x =-,21x =,312x =-,41x =-,经检验1x ,2x ,3x ,4x 都是原方程的解. 说明:(1)对于某些方程,如果项中含有相同部分(或部分相同)可把它看作一个整体,用整体换元进行代换,从而简化方程及解题过程.当然本题也可以设2234y x x =+-,将方程变形为54y y =+来解. (2)利用整体换元,我们还可以解决形如22315122x x x x -+=-这样的方程,只要设21x y x =-,从而将方程变形为15322y y +=,再转化为一元二次方程来求解. 例7. 有甲、乙、丙三种货物,若购甲3件,乙7件,丙1件,共需3.15元;若购甲4件,乙10件,丙1件,共需4.20元.现在计划购甲、乙、丙各1件,共需多少元分析:要求的未知数是三个,而题设条件中只有两个等量关系,企图把甲、乙、丙各1件的钱数一一求出来是不可能的,若把甲、乙、丙各1件的钱数看成一个整体,问题就可能解决.解:设购甲、乙、丙各1件分别需x 元、y 元、z 元.依题意,得37315410420x y z x y z ++=++=⎧⎨⎩..,即2331533420()().()().x y x y z x y x y z ++++=++++=⎧⎨⎩解关于x y +3,x y z++的二元一次方程组,可得x y z ++=105.(元) 答:购甲、乙、丙各1件共需1.05元.说明:由于我们所感兴趣的不是x 、y 、z 的值,而是x y z ++这个整体的值,所以第10题654321IHGF E D C B A 目标明确,直奔主题,收到了事半功倍的效果.三.函数与图象中的整体思想例8.已知y m +和x n-成正比例(其中m 、n 是常数) (1)求证:y 是x 的一次函数;(2)如果y =-15时,x =-1;x =7时,y =1,求这个函数的解析式. 解:(1)因y m +与x n -成正比例,故可设y m k x n k +=-≠()()0 整理可得y k x k n m =-+()因k ≠0,k 、-+()k n m 为常数,所以y 是x 的一次函数.(2)由题意可得方程组-=--+=-+⎧⎨⎩1517k k n m k k n m ()() 解得k =2,k n m +=13. 故所求的函数解析式为y x =-213. 说明:在解方程组时,单独解出k 、m 、n 是不可能的,也是不必要的.故将k n m +看成一个整体求解,从而求得函数解析式,这是求函数解析式的一个常用方法.例9. 若关于x 的一元二次方程22(1)20x a x a +-+-=有一根大于1,一根小于1-,求a 的取值范围.分析:此题如果运用根的判别式和韦达定理,解答此题较为困难.整体考虑,把一元二次方程22(1)20x a x a +-+-=与二次函数22(1)2y x a x a =+-+-联系起来,利用二次函数的图象来解题,则显得很直观,也较为容易.解:由题意可知,抛物线与x 轴的交点坐标,一个交点在点(1,0)的右边,另一个交点在点(1,0)-的左边,抛物线图象开口向上,则可得:当1x =时,0y <,当1x =-时,0y <,即22200a a a a ⎧+-<⎨-<⎩,∴20a -<<. 说明:(1)由于当1x =,1x =-时,0y <,所以解答过程中不必再考虑0∆>了.(2)利用函数与图象,整体考察,是解决涉及方程(不等式)有关根的问题最有效的方法在之一,在数学教学中应当引起足够的重视.四.几何与图形中的整体思想例10.如图,第11题OP F E D C B A123456∠+∠+∠+∠+∠+∠=分析:由于本题出无任何条件,因而单个角是无法求出的.利用三角形的性质,我们将12∠+∠视为一个整体,那么应与△ABC 中BAC ∠的外角相等,同理34∠+∠,56∠+∠分别与ABC ∠,ACB ∠的外角相等,利用三角形外角和定理,本题就迎刃而解了.解:因为12DAB ∠+∠=∠,34IBA ∠+∠=∠,56GCB ∠+∠=∠,根据三角形外角定理,得360DAB IBA GCB ∠+∠+∠=°,所以123456∠+∠+∠+∠+∠+∠=360°.说明:整体联想待求式之间的关系并正确应用相关性质是解决此类问题的关键. 例11.如图,菱形ABCD 的对角线长分别为3和4, P 是对角线AC 上任一点(点P 不与A ,C 重合),且PE ∥BC 交AB 于E , PF ∥CD 交AD 于F ,则图中阴影部分的面积为 .解:不难看出,四边形AEPF 为平行四边形,从而△OAF 的面积等于△OAE 的面积,故图中阴影部分的面积等于△ABC 的面积,又因为12ABC ABCD S S ∆=Y 1134322=⨯⨯⨯=,所以图中阴影部分的面积为3. 说明:本题中,△OAF 与△OAE 虽然并不全等,但它们等底同高,面积是相等的.因而,可以将图中阴影部分的面积转化为△ABC 的面积.我们在解题过程中,应仔细分析题意,挖掘题目的题设与结论中所隐含的信息,然后通过整体构造,常能出奇制胜.例12.如图,在正方形ABCD 中,E 为BC 边的中点,AE 平分BAF ∠,试判断AF 与BC CF +的大小关系,并说明理由.解:AF 与BC CF +的大小关系为AF BC CF =+.分别延长AE ,DC 交于点G ,因为E 为BC 边的中点,因而易证△ABE ≌△GCE ,所以AB GC =,并且BAE CGE ∠=∠,AB BC =,从而BC CF GF +=.由于AE 平分BAF ∠,所以BAE FAE ∠=∠,故FAE CGE ∠=∠,即△AFG 为等腰三角形,即AF GF =,所以,AF BC CF =+.说明:证明一条线段等于另外两条线段的和差,常常用截长法或补短法把问题转化为证明两条线段相等的问题,本题中我们利用三角形全等将BC CF +转化为FG 这一整体,从而达到了解决问题的目的.用整体思想解题不仅解题过程简捷明快,而且富有创造性,有了整体思维的意识,在思考问题时,才能使复杂问题简单化,提高解题速度,优化解题过程.同时,强化整体思想观念,灵活选择恰当的整体思想方法,常常能帮助我们走出困境,走向成功.练习一、选择题1. (2011盐城,4,3分)已知a ﹣b =1,则代数式2a ﹣2b ﹣3的值是( )A.﹣1 C.﹣52. (2011,台湾省,26,5分)计算(250+++)2﹣(250﹣﹣﹣)2之值为何( )A 、B 、C 、1200D 、2400 3. 10(2011山东淄博10,4分)已知a 是方程x 2+x ﹣1=0的一个根,则22211a a a ---的值为( )C.﹣1二、填空题 1. (2011•德州,14,4分)若x 1,x 2是方程x 2+x ﹣1=0的两个根,则x12+x22= .3. (2011四川达州,15,3分)2210b b ++=,则22a b a +-= .三、解答题 1. (2011•江苏宿迁,21,8)已知实数a 、b 满足ab=1,a+b=2,求代数式a 2b+ab 2的值.2. (2010重庆,21,10分)先化简,再求值:22122121x x x x x x x x ---⎛⎫-÷ ⎪+++⎝⎭,其中x 满足x 2-x -1=0.答案:ADD ;3,(4-x+y )2,6;2,1。
数学中的整体思想整体思想是数学解题中一种重要的思想方法,在解决某些问题时,从问题的整体特性出发,统筹考虑,全面把握,构建整体结构,利用问题的各方面条件寻求简洁的解法。
有些数学问题中的某些元素虽然是非本质的,但若根据题目需要,设法将其视为对象,从整体上把握,则可化难为易,化繁为简。
一、整体代入有些题目整体与局部之间存在着等量关系,若把整体视为一个“黑箱”,则可以省去对里面繁琐细节的研究,直接利用这些等量关系解题。
例1:一船在静水中的速度是15千米/小时,要经过150千米的河,并且逆流而上(水流速度为5千米/小时),问船往返共用多少时间?分析:此题若从局部考虑,要分顺水、逆水两种情况分别计算,而从整体考虑,因为船速与水速均已知,所以两地之间距离(150千米)也是一个已知量,所以可以省去对其中繁琐细节的研究,直接利用公式解决问题。
设船往返共用x小时。
则根据题意列方程:15x-5x=150解得:x=15二、整体换元有些题目整体与局部之间存在着等量关系,若把整体视为一个“黑箱”,视“黑箱”为新元,则可以省去对里面繁琐细节的研究,直接利用这些等量关系解题。
例2:设a、b是方程2x2-7x+3=0的两根,且a>b>0,求a+b与ab的值。
分析:此题若从局部考虑,要解方程求出a、b的值再代入求值,而从整体考虑,因为a、b是方程2x2-7x+3=0的两根,所以a+b与ab满足一定的等量关系(韦达定理),因此可以省去对其中繁琐细节的研究,直接利用公式解决问题。
因为a、b是方程2x2-7x+3=0的两根,所以有:a+b=-(-7)/2=7/2;ab=3/2三、整体构造有些题目整体与局部之间存在着等量关系,若把整体视为一个“黑箱”,根据题目的需要而恰到好处地构造这个“黑箱”,则可以省去对其中繁琐细节的研究,直接利用这些等量关系解题。
例3:已知二次函数y=-x2+mx-m2-0.5m+4的最大值为-18/5,求此函数的解析式。
第 1 页 共 2 页数学思想篇:一、整体思想【思想指导】整体思想,就是从整体上去认识问题、思考问题,常常能化繁为简、变难为易.其主要表现形式有:整体代入、整体加减、整体代换、整体联想、整体补形、整体改造等等.在初中数学中的数与式、方程与不等式、函数与图象、几何与图形等方面,整体思想都有很好的应用.【范例讲析】一.数与式中的整体思想例1.已知114a b -=,则2227a ab ba b ab---+的值等于 ( )A.6B.6-C.125 D.27- 例2.已知当1x =时代数式25342()2x ax bx cx x dx ++++的值为3,则当1x =-时,代数式的值为 二.方程(组)与不等式(组)中的整体思想 例3.已知24122x y k x y k +=+⎧⎨+=+⎩,且03x y <+<,则k 的取值范围是例4. 已知关于x ,y 的二元一次方程组3511x ay x by -=⎧⎨+=⎩的解为56x y =⎧⎨=⎩,那么关于x ,y 的二元一次方程组3()()5()11x y a x y x y b x y +--=⎧⎨++-=⎩的解为为例5. 有甲、乙、丙三种货物,若购甲3件,乙7件,丙1件,共需3.15元;若购甲4件,乙10件,丙1件,共需4.20元.现在计划购甲、乙、丙各1件,共需多少元?三.函数与图象中的整体思想例6.已知y m +和x n -成正比例(其中m 、n 是常数)(1)求证:y 是x 的一次函数;(2)如果y =-15时,x =-1;x =7时,y =1,求这个函数的解析式.例7. 若关于x 的一元二次方程2(21)20x a x a +-+-=有一根大于1,一根小于1-,求a 的取值范围.四.几何与图形中的整体思想例8.如图, 123456∠+∠+∠+∠+∠+∠= 例9.如图,菱形ABCD 的对角线长分别为3和4, P 是对角线AC 上任一点(点P 不与A ,C 重合),且PE ∥BC 交AB 于E , PF ∥CD 交AD 于F ,则图中阴影部分的面积为 .例10.如图,在正方形ABCD 中,E 为BC 边的中点,AE 平分BAF ∠,试判断AF 与BC CF +的大小关系,并说明理由.第 2 页 共 2 页【优化训练】1.已知式子3y 2-2y+6的值为8,那么号23y 2-y+l 的值是 ( ) A .1 B .2 C .3 D .42.计算(250+0.9+0.8+0.7)2 -(250-0.9-0.8-0.7)2之值为( ) A. 11. 52 B.23. 04 C.1200 D.24003.已知411=+b a ,则 b ab a bab a 323434-+-++的值为 ( )A .1019-B .1019 c .-1910 D .19104.已知a 2-3a+1=0,则441a a+的值为 ( )A. 45B. 46C. 47D. 485.如图,在梯形ABCD 中,MN 是梯形的中位线,E 是AD 上一点,若S △EMN =4, 则S 梯形ABCD= ( )A .8B .12C .16D .206.已知a l ,a 2,…,a 2002均为正数,且满足M=(a l +a 2+…+a 2001)(a 2+a 3+---+a 2001-a 2002),N=(a l +a 2+- +a 200l -a 2002)(a 2 +a 3+…+a 2oo1),则M 与N 之间的关系是 ( )A .M>NB .M<NC .M-ND .无法确定.7.已知6111=+b a ,9111=+c a ,15111=+c b ,则bc ac ab abc++的值为 ( )A .18031B .31180 c .9031 D .31908.如图,在梯形ABCD 中,AD ∥BC,且AD :BC=1:3,梯形ABCD 的对角线AC,BD 交于点O,S △AOD :S △BOC :S △AOB ( )A. 1:3:1B.1:9:1C.1:9:3D. 1:3:29.若31=+xx ,则2421x x x ++的值是 ( ) A .81 B .101 c .21 D .4110.甲、乙两厂生产同一种产品,都计划把全年的产品销往济南,这样两厂的产品就能占有济南市场同类产品的43,然而实际情况并不理想,甲厂仅有21的产品,乙厂仅有31的产品销到了济南,两厂的产品仅占了济南市场同类产品的31,则甲厂该产品的年产量与乙厂该产品的年产量的比为 ( )A .3B . 31 c .21D .211.如果a+b=5,那么(a+b)2 -4(a+b )=____.12.如果210x x +-=,则3223x x ++ =____.13.当x=-3时,式子ax 5 +bx 3 +cx-5的值是7,那么当x=3时,此式子的值是 .14.方程组⎩⎨⎧=-+=-+65)(53)(2y y x y y x ,的解为 .15.已知a=83 x-20,b=83x-18,c=83x-16,则222a +b +c -ab-ac-bc= .16.已知a-b=b-c=53,222a +b +c = 1,则ab+bc+ca 的值等于 .17.已知Rt △ABC 的两边a ,b 满足等式(a 2十b 2)2-(a 2+b 2)=6,a+b=2,那么这个直角三角形的斜边c 的长和面积分别____.18.对于正数x ,规定,f(x)=xx+1,例如,f(3)=43313=+,f(31)=4131131=+,计算+++++++-+-+)3()2()1()1()21()31()21()11()1(f f f f f f n f n f n f )()1()2(n f n f n f +-+-+ =____.(n 为正整数)19.关于x 的一元二次方程2310ax x --=的两个不相等的实数根都在﹣1和0之间(不包括﹣1和0),则a 的取值范围是__________.。
数学思想方法(一)(整体思想、转化思想、分类讨论思想)考点一:整体思想整体思想是指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径。
转化的内涵非常丰富,已知与未知、数量与图形、图形与图形之间都可以通过转化来获得解决问题的转机。
例2 如图,圆柱形容器中,高为1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为m2如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P是AB上的任意一点,作PD⊥AC 于点D,PE⊥CB于点E,连结DE,则DE的最小值为.考点三:分类讨论思想。
分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行.正确的分类必须是周全的,既不重复、也不遗漏.例3 某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示:(1)填空:甲种收费的函数关系式是.乙种收费的函数关系式是.(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算?对应训练3.某农场的一个家电商场为了响应国家家电下乡的号召,准备用不超过105700元购进40台电脑,其中A型电脑每台进价2500元,B型电脑每台进价2800元,A型每台售价3000元,B型每台售价3200元,预计销售额不低于123200元.设A型电脑购进x台、商场的总利润为y(元).(1)请你设计出进货方案;(2)求出总利润y(元)与购进A型电脑x(台)的函数关系式,并利用关系式说明哪种方案的利润最大,最大利润是多少元?(3)商场准备拿出(2)中的最大利润的一部分再次购进A型和B型电脑至少各两台,另一部分为地震灾区购买单价为500元的帐篷若干顶.在钱用尽三样都购买的前提下请直接写出购买A型电脑、B型电脑和帐篷的方案.四、中考真题演练一、选择题1.若a+b=3,a-b=7,则ab=()A.-10 B.-40 C.10 D.402.已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为()A.πB.4πC.π或4πD.2π或4π3.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,点D在BC上,以AC为对角线的所有▱ADCE中,DE最小的值是()A.2 B.3 C.4 D.54.CD是⊙O的一条弦,作直径AB,使AB⊥CD,垂足为E,若AB=10,CD=8,则BE的长是()A.8 B.2 C.2或8 D.3或7 5.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A.2cm B.4C.2cm或4D.2cm或二、填空题6.若a2−b2=16,a−b=13,则a+b的值为.7如图,在Rt△AOB中,,⊙O的半径为1,点P是AB边上的动点,过12.已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值= .13.(2013•三明)如图①,AB是半圆O的直径,以OA为直径作半圆C,P是半圆C上的一个动点(P与点A,O不重合),AP的延长线交半圆O于点D,其中OA=4.(1)判断线段AP与PD的大小关系,并说明理由;(2)连接OD,当OD与半圆C相切时,求»AP的长;(3)过点D作DE⊥AB,垂足为E(如图②),设AP=x,OE=y,求y与x之间的函数关系式,并写出x的取值范围.。
初中数学思想方法数学思想方法是解决数学问题的灵魂,也是把数学知识转化为数学能力的桥梁。
初中数学中常用的思想方法有:整体思想、分类讨论思想、函数思想、方程思想、转化思想、类比思想、分类讨论思想等。
1、整体思想整体思想是从问题的整体性质出发,通过研究问题的整体形式、整体结构、整体与局部的内在等,找出解决问题的途径。
2、分类讨论思想当一个问题因为某种量或条件的改变,而引起演变结果的改变时,我们就需要对问题从各种不同的角度或分类讨论加以解决。
3、函数思想用运动变化的观点去分析和研究具体问题中的数量关系,用函数的形式,把这种数量关系用函数表示出来。
4、方程思想方程思想就是从分析问题的数量关系入手,通过设定未知数,把问题中的已知量与未知量的数量关系,转化为方程或方程组,然后利用方程的理论和方法,使问题得到解决。
5、转化思想转化思想是将要解决的问题转化成一个或几个已经解决的简单问题。
6、类比思想类比是根据两个具有相同或相似性质的事物之间进行比较,从而找到另外一些具有相同或相似性质的事物。
7、分类讨论思想分类讨论是根据所研究对象的差异,将其划分成不同的种类,分别加以研究,从而分解矛盾,化整为零,化一般为特殊,变抽象为具体,然后再一一加以解决。
分类依赖于标准的确定,不同的标准会有不同的分类方式。
总之数学思想方法是分析解决数学问题的灵魂,也是数学知识的精髓,是把数学知识转化为数学能力的桥梁。
一、引言在现今的初中数学教学中,培养学生的数学思想方法已经成为了一个重要的目标。
《初中数学思想方法导引》这本书,以其独特的视角和深入的剖析,成为了初中数学教师的重要参考书籍。
本书主要介绍了初中数学中的各类思想方法,如方程思想、函数思想、化归思想等,对于提高学生的数学素养,增强他们的解题能力,具有极大的指导意义。
二、数学思想方法的重要性数学思想方法是一种对数学规律和数学本质的深刻认识和理解,是对数学知识进行高度概括和抽象的结果。
在初中数学教学中,培养学生的数学思想方法不仅可以提高学生的数学成绩,更重要的是可以培养他们的逻辑思维能力、创新能力和解决问题的能力。
整体思想数学
整体思想数学是一种系统的数学思想,它关注数学在整体范围内生成、发展和转变的过程。
它以“整体思维”作为有效思维方式尤其适用于复杂的现实问题和数学问题的解决。
整体思想数学的研究方法和技术主要有分析、解析、描述、剖析、记录、抽象等。
整体思想数学的思想关注于解决数学问题的思路,对整体思考有较强的要求,尤其适用于数学模型的建立。
比如,在复杂现实问题的解决过程中用到的复杂数学模型,可以通过综合各种不同的元素,从而解出有价值的结果。
另外,整体思想数学注重数学水平的提升,倡导在思考每一个数学问题时,将相关问题和因素考虑入内。
在解决实际中的数学问题时,将各种因素分析和深入研究,只有把各种因素考虑在内,才能够找出最优解。
整体思想数学更重视问题的综合性处理,它特别强调哲学思维、实践思维和实践行动的整体思维。
它主张以整体思维的眼光来观察和分析问题,并且要求在解决问题时,从宏观到微观,从抽象到具体,全面深入研究。
整体思想数学对实际问题的解决具有重要意义,可以从宏观上综合分析,从而更深入地理解数学思路,更好地应用到实践中。
它可以帮助学生更好地把握数学的思维方法,拓宽数学的思路,深入理解和体会数学的精髓,增强学生的创新精神和实践能力。
因此,整体思想数学对教育非常重要,我们应该在学习数学和解
决实际问题中,把整体思想数学融入教育课程,以落实以“整体思维”为有效思维方式尤其适用于复杂的现实问题和数学问题的解决,使学生在学习数学时更深入地理解数学内容,掌握最新的数学技术和理论,获得更高的学习成果。
数学思想篇:一、整体思想
【思想指导】
整体思想,就是从整体上去认识问题、思考问题,常常能化繁为简、变难为易.其主要表现形式有:整体代入、整体加减、整体代换、整体联想、整体补形、整体改造等等.在初中数学中的数与式、方程与不等式、函数与图象、几何与图形等方面,整体思想都有很好的应用.【范例讲析】
一.数与式中的整体思想
例1.已知11
4
a b
-=,则
2
227
a a
b b
a b ab
--
-+
的值等于()
A.6
B.6
- C.12
5
D.
2
7
-
例2.已知当1
x=时代数式
253
42
()
2
x ax bx cx
x dx
++
+
+
的值为3,则当1
x=-时,代数式的值为
二.方程(组)与不等式(组)中的整体思想
例3.已知
241
22
x y k
x y k
+=+
⎧
⎨
+=+
⎩
,且03
x y
<+<,则k的取值范围是
例4.已知关于x,y的二元一次方程组
35
11
x ay
x by
-=
⎧
⎨
+=
⎩
的解为
5
6
x
y
=
⎧
⎨
=
⎩
,那么关于x,y的二元
一次方程组
3()()5
()11
x y a x y
x y b x y
+--=
⎧
⎨
++-=
⎩
的解为为
例5.有甲、乙、丙三种货物,若购甲3件,乙7件,丙1件,共需3.15元;若购甲4件,乙10件,丙1件,共需4.20元.现在计划购甲、乙、丙各1件,共需多少元?
三.函数与图象中的整体思想
例6.已知y m
+和x n
-成正比例(其中m、n是常数)
(1)求证:y是x的一次函数;
(2)如果y=-15时,x=-1;x=7时,y=1,求这个函数的解析式.
例7.若关于x的一元二次方程2(21)20
x a x a
+-+-=有一根大于1,一根小于1-,求a的取值范围.
四.几何与图形中的整体思想
例8.如图,123456
∠+∠+∠+∠+∠+∠=
例9.如图,菱形ABCD的对角线长分别为3和4,P是对角线AC上任一点(点P不与A,C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则图中阴影部分的面积为.
例10.如图,在正方形ABCD中,E为BC边的中点,AE平分BAF
∠,试判断AF与BC CF
+
的大小关系,并说明理由.
第 1 页共 2 页
第 2 页 共 2 页
【优化训练】
1.已知式子3y 2
-2y+6的值为8,那么号
2
3y 2
-y+l 的值是 ( ) A .1 B .2 C .3 D .4
2.计算(250+0.9+0.8+0.7)2 -(250-0.9-0.8-0.7)2之值为( ) A. 11. 52 B.23. 04 C.1200 D.2400
3.已知411=+b a ,则 b ab a b
ab a 323434-+-++的值为 ( )
A .1019-
B .1019 c .-1910 D .1910
4.已知a 2-3a+1=0,则441
a a
+的值为 ( )
A. 45
B. 46
C. 47
D. 48
5.如图,在梯形ABCD 中,MN 是梯形的中位线,E 是AD 上一点,若S △EMN =4, 则S 梯形ABCD= ( )
A .8
B .12
C .16
D .20
6.已知a l ,a 2,…,a 2002均为正数,且满足M=(a l +a 2+…+a 2001)(a 2+a 3+---+a 2001-a 2002),N=(a l +a 2+- +a 200l -a 2002)(a 2 +a 3+…+a 2oo1),则M 与N 之间的关系是 ( )
A .M>N
B .M<N
C .M-N
D .无法确定.
7.已知6111=+b a ,9111=+c a ,15111=+c b ,则bc ac ab abc
++的值为 ( )
A .18031
B .31180 c .9031 D .3190
8.如图,在梯形ABCD 中,AD ∥BC,且AD :BC=1:3,梯形ABCD 的对角线AC,BD 交于点O,S △AOD :S △BOC :S △AOB ( )
A. 1:3:1
B.1:9:1
C.1:9:3
D. 1:3:2
9.若31
=+x
x ,则242
1x x x ++的值是 ( ) A .81 B .101 c .21 D .4
1
10.甲、乙两厂生产同一种产品,都计划把全年的产品销往济南,这样两厂的产品就能占有
济南市场同类产品的43,然而实际情况并不理想,甲厂仅有21的产品,乙厂仅有3
1
的产品销到了
济南,两厂的产品仅占了济南市场同类产品的3
1
,则甲厂该产品的年产量与乙厂该产品的年产量
的比为 ( )
A .3
B . 31 c .2
1
D .2
11.如果a+b=5,那么(a+b)2 -4(a+b )=____.
12.如果210x x +-=,则3223x x ++ =____.
13.当x=-3时,式子ax 5 +bx 3 +cx-5的值是7,那么当x=3时,此式子的值是 .
14.方程组⎩⎨⎧=-+=-+65)(5
3)(2y y x y y x ,的解为 .
15.已知a=83 x-20,b=83x-18,c=8
3
x-16,则222a +b +c -ab-ac-bc= .
16.已知a-b=b-c=5
3
,222a +b +c = 1,则ab+bc+ca 的值等于 .
17.已知Rt △ABC 的两边a ,b 满足等式(a 2十b 2)2-(a 2+b 2)=6,a+b=2,那么这个直角三角形的斜边c 的长和面积分别____.
18.对于正数x ,规定,f(x)=x
x
+1,例如,f(3)=43313=+,f(31)=413
1131
=+,
计算+++++++-+-+)3()2()1()1()2
1
()31()21()11(
)1(f f f f f f n f n f n f )()1()2(n f n f n f +-+-+ =____.(n 为正整数)
19.关于x 的一元二次方程2310ax x --=的两个不相等的实数根都在﹣1和0之间(不包括﹣1和0),则a 的取值范围是__________.。