当前位置:文档之家› 关于〈土工试验方法标准〉中压缩模量公式的讨论

关于〈土工试验方法标准〉中压缩模量公式的讨论

关于〈土工试验方法标准〉中压缩模量公式的讨论
关于〈土工试验方法标准〉中压缩模量公式的讨论

土工试验规程

1 总则 《公路土工试验规程》(JTG E40—2007)(简称本规程)包括87个测定土的基本工程性质的试验项目和一个土的工程分类方法标准。修订本规程的目的是使公路系统的试验室在进行土工试验时有一个统一的试验准则,使所有的试验及试验结果具有一致性和可比性。 共性技术要求系指土的物理、水理、力学和化学性质试验中带共性的要求或标准,内容涉及土性指标的选择、成果整理、指标换算和试验报告等,系参考其他部门经验并结合公路工程特点制定。 1.O.1 为测定土的基本工程性质,统一试验方法,开为公路工程设计和施工提供可靠的计算指标和参数,制定本规程。 《公路土工试验规程》(JTJ 051—93)(简称《93规程》)自1993年实施以来,已有14年的时间。在此期间,公路建设所涉及的岩土工程问题发生了巨大的变化,在低等级公路建设中可以避让的岩土工程问题,在高等级公路建设中山于线形、坡度等技术要求变得无法回避。随着公路建设穿越山区以及黄土、冻土等特殊土地区,要求《公路土工试验规程》提供更多、更可靠的计算参数和判定指标,同时测试技术也有了进一步的发展,因此有必要对原规程进行重新修订,使《公路土工试验规程》能够满足现时和未来一段时期的公路建设发展需要,规范公路土工测试标准,并使土工试验及试验结果具有一致性和可比性。 1.O.2 本规程适用于各类公路I程的地基土、路基土及其他路用土的基本I程性质试验。 我国建筑、水利、铁路、冶金等系统均有相应的土工试验规程或标准,基本内容与本规程基本相同。本规程在修订的过程中,特别注意到与国家标准的统一和合理衔接。但是由于公路建设的特点,有些试验方法的条件和评判指标不同,在某些具体的参数和规定上有一定的特殊要求,因此与其他行业的规定略有不同。在实际使用中应予以注意。 1.0.3 各项工程应编制合理的试验方案,采集代表性的试样,测算准确的数据和进行正确的资料分析整理,为设计和施工提供反映实际情况的各种土性指标。 土的工程分类是土工试验规程对土进行粒组和土的工程性质划分、试验规模和仪器划分的重要依据。本规程中土的工程分类系以国家标准《土的分类标准》 第1页 (GBJ 145—90)最新修订报批稿为基础井依照公路建设特性要求进行编制。各项基本试验遵照《土工试验方法标准》(GB/T50123—1999),对《公路土工试验规程》(JTJ 051 93)进行了修订。 1.0.4 土工试验资料的分析整理按附录A进行,通过对样本(试验测得的数据)的研究,来估计总体(土体单元)的特征及其变化的规律性。 土工试验资料的分析整理,是提供真实有效、准确可靠的土性指标的重要环节。内容涉及数据记录的准确和客观性、成果整理、土性指标的选择、计算统计方法、误差分析、精度评价等。根据误差分析,对不合理的数据进行研究,分析其原因;在有条件的情况下,应进行一定的补充试验,以便决定对有疑问数据的取舍和更正。为便于使用,本 规程仍保留了《93规程》的附录A部分。 1.0.5 土I试验检测报告,对不同类型和级配特征的土,应提供土的基本颗粒级配、液限和塑限指标;对于特殊土,还应提供描述特殊土基本特征的试验测试指标。 土工试验检测报告,均应包含土的最基本特性参数的描述。对于粗粒土和巨粒土必须进行颗粒分析试验,提供土样的颗粒级配粒组数据和级配特征曲线。对于细粒土除应进行颗粒分析试验,提供土样的颗粒级配粒组数据和级配特征曲线外,还应进行界限含水率试验,提供土样的液限、塑限和塑性指数等。这是可重复再现土工试验结果的基本条 件,也是科学实验的基本要求。对于特殊土还应提供描述特殊土基本特征的试验测试指标。 1.0.6 公路土I试验除应符合本规程要求外,尚应符合国家和行业现行相关标准的规定。 在进行土工试验检测前,应对土工试验检测设备进行检查,仪器设备应符合《土工仪器的基本参数及通用技术条件》(GB/T 15406)的规定。根据国家计量法的要求,土工试验所用的仪器、设备应定期检定和校验。对通用仪器设备应按有关检定规程进行检定,对一些专用仪器设备应按相应的校验方法进行校验。 在执行本规程的过程中,对有些内容要求其符合现行国家标准《建筑地基基础设计规范》(GB 50007)、《湿陷性黄土地区建筑规范》(GnJ 25)、《膨胀土地区建筑技术规范》(GBJ 112)、《土的分类标准》(GBj 145)、《岩土工程基本术语标准》(GB/T 50279)等,以及交通行业指南《盐渍土地区公路设计与施工指南》、《公路工程抗冻设计

土工试验

单元7 土工试验 土工试验的项目较多,每个试验项目都有几个不同的试验方法,本章选择的五项试验均参照国家现行标准《土工试验方法标准》GB/T 50123-1999和《土的工程分类标准》GB/50145-2007(以下简称《标准》)编制。 7.1 土的基本物理指标测定 一、试验目的 在实验室内直接测定土的密度、土粒比重、含水率三个实测指标,这三个指标称为土的三相基本试验指标。土的其它指标可以计算求得,称为换算指标。 二、试验方法 1. 测定土的密度试验方法有环刀法、蜡封法、灌水法、灌砂法等。对于细粒土,采用环刀法;对于易破裂土和形状不规则的坚硬土,可用蜡封法;对于现场粗粒土,一般用灌水法或灌砂法。 2. 根据土粒径的不同,土粒比重试验可分别采用比重瓶法、浮称法和虹吸筒法。对于粒径小于5mm的各类土,采用比重瓶法;对于粒径等于大于5mm的各类土,且其中粒径大于20mm的土质量小于总土质量的10%时,采用浮称法;对于粒径等于大于5mm的各类土,其中粒径大于20mm的土质量等于大于总土质量的10%时,采用虹吸筒法试验。 3. 含水率试验可分别采用烘干法、酒精燃烧法、炒干法、比重法等。 三、密度试验——环刀法 1.仪器设备 环刀;天平,感量0.1g;切土刀;推土器;游标卡尺;凡士林等。 2.试验步骤 (1) 用卡尺测出环刀的高和内径,并计算出环刀的容积V(cm3)。 (2) 称环刀的质量m1,准确至0.1g。

(3) 在环刀内壁涂一层薄薄的凡士林油,刃口向下放在试样上。 (4) 用切土刀沿环刀外缘将土样削成略大于环刀直径的土柱,然后慢慢将环刀垂直下压,边压边削,到土样伸出环刀上部为止,削去环刀两端余土,使与环刀口面齐平。把削下的土样做含水率试验。 (5) 擦净环刀外壁,称量环刀加土的质量m 2,准确至0.1g 。 (6) 用推土器将试样从环刀中推出。 (7) 本试验应进行二次平行测定,两次测定的差值不得大于0.03g/ cm 3,取两次测定的算术平均值。 3.成果整理 (1) 按式(7—1)计算土的湿密度: ()021m m V ρ=- (7—1) 式中:ρ0 —— 土的湿密度(g/ cm 3),准确到0.01 g/ cm 3; m 1 —— 环刀的质量(g ); m 2 —— 环刀加土的质量(g ); V —— 环刀容积V (cm 3)。 (2) 按式(7—2)计算土的干密度: ()0010.01d w ρρ=+ (7—2) 式中:ρd —— 土的干密度(g/ cm 3); w 0 —— 土的含水率(%)。 (3) 填写试验记录。格式见表7-1。 表7-1 密度试验记录(环刀法) 试验日期 试验者 计算者 校核者 4.注意事项 (1) 操作要快,动作细心,以避免土样被扰动、破坏结构及水分蒸发。 (2) 环刀方向要正、要垂直,加力适当。 (3) 边压边削的时候,切土刀要向外倾斜,以免把环刀下面的土样削空。

土工试验方法.

……………………………………⊙……装…………………………⊙……订………………………⊙……线……………………………………17.4含水率试验 17.4.1试验目的和方法 土的含水率是土在105~110℃温度下烘干至恒量时所失去水的质量与干土质量的比值。以百分数表示。 含水率是土的基本物理指标之一。它反映了土的干、湿状态。土的含水率是计算干密度、孔隙比、饱和度、液性指数等指标的基本数据和评价土的工程性质的重要依据,是研究土的物理力学性质的重要指标。 含水率的试验方法较多,由于烘干法试验简便,结果稳定,故以此法作为测定含水率的标准方法。如果测试条件不能满足采用烘干法或需快速测定含水率时,可分别用如下方法: ● 酒精燃烧法:适用于不含有机质的砂类土、粉土和粘性土。 ● 碳化钙减量法:本方法的原理是用过量碳化钙与土中游离水混合接触产 生化学反应,生成乙炔气体。根据乙炔气体逸出失去的质量,计算求得土的含水率。此方法适用于各类土。 ● 核子射线法:适用现场原位测定填料为细粒土和砂类土的含水率。 以下仅介绍烘干法,核子射线法在土的密度试验中介绍。 17.4.2烘干法 17.4.2.1试验用仪器设备 ● 电热干燥箱:温度能保持在105~110℃。 ● 天平:称量200g ,分度值0.01g ;称量1000g ,分度值0.02g 。 ● 其它:干烘器、称量盒等。 17.4.2.2主要试验步骤: 1)选取有代表性试样(粘性土15~30g ,砂类土30~50g ,砾石类土不少于250g ,碎石类土不少于500g ),放于称量盒内称量湿土质量。 2)打开盒盖,将装有试样的盒放入烘箱内,在105~110℃温度下烘干。 各类土的烘干时间见表17.28。

土工试验方法标准(作业指导书)

1 试样制备 1.1试样制备 1.1.1本试验方法适用于颗粒粒径小于60mm的原状土和扰动土。 1.1.2根据力学性质试验项目要求,原状土样同一组试样间密度的允许差值为0.03g/cm3;扰动土样同一组试样的密度与要求的密度之差不得大于± 0.01g/cm3,一组试样的含水率与要求的含水率之差不得大于±1%。 1.1.3试样制备所需的主要仪器设备,应符合下列规定: 1细筛:孔径0.5mm、2mm。 2洗筛:孔径0.075mm。 3台秤和天平:称量10kg,最小分度值5g;称量5000g,最小分度值1g;称量1000g,最小分度值0.5g;称量500g,最小分度值0.1g;称量200g,最小分度值0.01g。 4环刀:不锈钢材料制成,内径61.8mm和79.8mm,高20mm。 5击样器。 6压样器。 7其他:包括切土刀、钢丝锯、碎土工具、烘箱、保湿缸、喷水设备等。 1.1.4原状上试样制备,应按下列步骤进行: 1将土样筒按标明的上下方向放置,剥去蜡封和胶带,开启土样筒取出土样。检查土样结构,当确定土样已受扰动或取土质量不符合规定时,

不应制备力学性质试验的试样。 2根据试验要求用环刀切取试样时,应在环刀内壁涂一薄层凡上林,刃口向下放在土样上,将环刀垂直下压,并用切主刀沿环刀外侧切削土样,边压边削至土样高出环刀,根据试样的软硬采用钢丝据或切土刀整平环刀两端土样,擦净环刀外壁,称环刀和土的总质量。 3从余土中取代表性试样测定含水率、界限含水率等项试验的取样。 4切削试样时,应对土样的层次、气味、颜色、夹杂物、裂缝和均匀性进行描述,对低塑性和高灵敏度的软土,制样时不得扰动。 1.1.5扰动土试样的备样,应按下列步骤进行: 1将土样从土样筒或包装袋中取出,对土样的颜色、气味、夹杂物和土类及均匀程度进行描述,并将土样切成碎块,拌和均匀,取代表性土样测定含水率。 2对均质和含有机质的土样,宜采用天然含水率状态下代表性土样,供颗粒分析、界限含水率试验。对非均质土应根据试验项目取足够数量的土样,置于通风处凉干至可碾散为止。对砂土和进行比重试验的土样宜在105~110°C温度下烘干,对有机质含量超过5%的土、含石膏和硫酸盐的土,应在65~70°C温度下烘干。 3将风干或烘干的土样放在橡皮板上用木碾碾散,对不含砂和砾的土样,可用碎土器碾散(碎土器不得将土粒破碎)。 4对分散后的粗粒土和细粒土,应按要求过筛。对含细粒土的砾质土,

(整理)弹性模量、压缩模量、变形模量

E--弹性模量Es--压缩模量Eo--变形模量 在工程中土的弹性模量要远大于压缩模量和变形模量,而压缩模量又大于变形模量。但在勘察报告中却只提供变形模量,在模拟计算的时侯我们要用弹性模量。 变形模量的定义在表达式上和弹性模量是一样的E=σ/ε,对于变形模量ε是指应变,包括弹性应变εe和塑性应变εp,对于弹性模量而言,ε就是指εe。压缩模量指的是侧限压缩模量,通过固结试验可以测定。如果土体是理想弹性体,那么E=Es(1-2μ^2/(1-μ))=E0。 在土体模拟分析时,如果时一维压缩问题,选用Es;如果是变形问题,一般用E0;如果是瞬时变形,或弹性变形用E。 土的变形模量与压缩模量的关系 土的变形模量和压缩模量,是判断土的压缩性和计算地基压缩变形量的重要指标。 为了建立变形模量和压缩模量的关系,在地基设计中,常需测量土的側压力系数ξ和側膨胀系数μ。 側压力系数ξ:是指側向压力δx与竖向压力δz之比值,即: ξ=δx/δz 土的側膨胀系数μ(泊松比):是指在側向自由膨胀条件下受压时,测向膨胀的应变εx与竖向压缩的应变εz之比值,即 μ=εx/εz 根据材料力学广义胡克定律推导求得ξ和μ的相互关系, ξ=μ/(1-μ)或μ=ε/(1+ε) 土的側压力系数可由专门仪器测得,但側膨胀系数不易直接测定,可根据土的側压力系数,按上式求得。 在土的压密变形阶段,假定土为弹性材料,则可根据材料力学理论,推导出变形模量E0和压缩模量Es之间的关系。 ,令β= 则Eo=βEs 当μ=0~0.5时,β=1~0,即Eo/Es的比值在0~1之间变化,即一般Eo小

于Es。但很多情况下Eo/Es 都大于1。其原因为:一方面是土不是真正的弹性体,并具有结构 性;另一方面就是土的结构影响;三是两种试验的要求不同; μ、β的理论换算值 土的种类μβ 碎石土0.15~0.20 0.95~0.90 砂土0.20~0.25 0.90~0.83 粉土0.23~0.31 0.86~0.72 粉质粘土0.25~0.35 0.83~0.62 粘土0.25~0.40 0.83~0.47 注:E0与Es之间的关系是理论关系,实际上,由于各种因素的影响,E0值可能是βEs值的几倍,一般来说,土愈坚硬则倍数愈大,而软土的E0值与βEs 值比较 弹性模量的数值随材料而异,是通过实验测定的,其值表征材料抵抗弹性变形的能力。 压缩模量是土的压缩性指标:土体在完全侧限条件下,竖向附加应力与相应的应变增量之比称为压缩模量。 变形模量是在现场测试获得,土体压缩过程中无侧限;而压缩模量是通过室内压缩试验换算求得,土体在完全侧限条件下的压缩。它们都与其他建筑材料的弹性模量不同,具有相当部分不可恢复的残余变形。但理论上变形模量与压缩模量两者是完全可以互相换算的。具体可参见:土力学的教科书。

土工试验方法标准上传

目录 1.总则--------------------------------------------------------- 3 2.术语、符号-------------------------------------------------3 3. 试样制备----------------------------------------------------5 4. 含水率试验-------------------------------------------------7 5. 密度试验----------------------------------------------------8 6. 颗粒分析试验----------------------------------------------8 6.2 粘粒分析移液管法试验----------------------------------10 7. 液塑限含水率试验----------------------------------------12 8 固结/黄土湿陷试验---------------------------------------13 9. 直接剪切试验---------------------------------------------17

土工试验方法 1.总则 1.0.1 为了测定土的基本工程性质,统一试验方法,为本工程设计和施工提供了可靠的参数,特制定本标准。 1.0.2 本标准适用于工业与民用建筑、水利、交通等各类工程的地基与填筑土料的基本工程性质试验。 1.0.3 土工试验资料的整理,应通过对样本(试验测得的数据)的研究来估计土体单元特征及其变化的规律,使土工试验的成果为工程设计和施工提供准确可靠的土性指标,试验结果的分析整理应附录A进行。 1.0.4 土工试验所用的仪器、设备应按现行国家标准《土工仪器的基本参数及通用技术条件》GB/T15406采用,并定期按现行有关规程进行检定和校准。 1.0.5土工试验方法除应遵守本标准外,商应符合有关现行强制性国家标准。 2.术语、符号 2.1 术语 2.1.1 校准 在规定条件下,为确定计量仪器和测量系统的示值或实物量具有所代表的值与相对应的被测量的已知值之间关系的一组操作。 2.1.2 测力计 强度试验时所用的钢环或负荷传感器。 2.1.3 平行测定 在相同条件下,采用两个以上的试样同时进行试验。 2.1.4 抗剪强度参数 表征土体抗剪切性能的指标,包括粘聚力和内摩擦角。 2.1.5 土试样 用于试验的具有代表性的土样。 2.2 符号 2.2.1 尺寸和时间

压缩模量、变形模量、弹性模量

压缩模量与变形模量的区别(一)、第一种 压缩模量:在完全侧限条件下,土的竖向附加应力增量与相应的应变增量之比值,它 可以通过室内压缩试验获得。 变形模量:是通过现场载荷试验求得的压缩性指标,即在部分侧限条件下,其应力增 量与相应的应变增量的比值。 结论:从上述定义来看,由于压缩模量附带了完全侧限条件,与实际地基的部分侧限 条件不一致,故沉降计算必须进行大误差修正(通常修正系数可达0.25~2.0);而变形模量是现场原位测试指标(载荷试验计算指标),较好的模拟了实际地层侧限条件,故理论上由 变形模量计算沉降更准确、基本不需修正,承载板的尺寸越接近基础尺寸,计算的精度越高,如果由实体基础沉降资料反算变形模量,来指导相邻场地沉降计算会有很高的准确性,故由变形模量计算沉降在理论上应该比由压缩模量计算更准确、更符合实际。 2、试验方法的差异: 压缩模量:由室内压缩(固结)试验测定,有试验成本低、可操作性强、便于分层大 量取样试验的特点。 变形模量:由现场载荷试验来测定,有成本高、周期长、试验点数有限、特别是深层 载荷试验费用极高、深度有限、载荷板尺寸通常难以达到实体基础尺寸相当的宽度级别,因而变形模量的测定属于高成本的测试。 结论:从上述两试验测定方法的不同可见,压缩模量的测定通常更容易、成本低廉、 易于试验,是勘察报告必须完成的工作,故设计用压缩模量计算沉降依据和数据更充分,这或许就是采用压缩模量计算沉降的公式和经验更多的原因;而变形模量的测定由于其高成本 和高精度,更适合于大型、高荷载、大基础的重要工程,对于中小工程项目(一般基础荷载 较小、基础尺寸较小),采用高成本的载荷试验确定变形模量再计算沉降反而不适用(老板 愿意花钱另当别论)。 3、试验土类差异: 压缩模量:由于采用土样压缩(固结)试验测定,对于不能采取原状土的地层(如碎石 土)和不能切环刀的岩土(如大部分岩石),显然我们难以获得压缩模量。变形模量:由于 我们基本可以在任何基坑底面岩土层进行载荷试验,故变形模量的测定几乎适合任何岩土类别,对于不能获取原状土的地层他就有显著的优越性。 结论:如果不计较成本因素,变形模量法与压缩模量法相比,可适用于任何岩土类别, 而压缩模量法一般仅适用于可以获取原状土的地层。 4、试验条件差异:

实验室土工试验原始记录表

土工试验、水质分析原始记录表式 编制 审核 批准 江苏常州地质工程勘察院检测中心

土工试验记录表式目录

CKCS-JL-TG-01-2015 开样记录、密度试验记录(环刀法) □1.《土工试验方法标准》GB/T50123-1999 □2.《土工试验规程》SL237-1999 □3.《公路土工试验规程》JTG E40-2007 □4.《铁路工程土工试验规程》TB 10102-2010 注:1、使用仪器设备:电子天平;2、检定/校准合格,检查正常方参与试验。

CKCS-JL-TG-02-2013 含水率试验记录(烘干法) □1.《土工试验方法标准》GB/T50123-1999 □2.《土工试验规程》SL237-1999 □3.《公路土工试验规程》JTG E40-2007 □4.《铁路工程土工试验规程》TB 10102-2010 工程名称:工程编号:

CKCS-JL-TG-03-2013 液、塑限联合测定记录 □1.《土工试验方法标准》GB/T50123-1999 □2.《土工试验规程》SL237-1999 □3.《公路土工试验规程》JTG E40-2007 □4.《铁路工程土工试验规程》TB 10102-2010 工程名称:工程编号: 注:1、使用仪器设备:电子天平、烘箱、液塑限联合测定仪;2、检定/校准合格,检查正常方参与试验。 试验:检查:

固结试验记录(快速法) □1.《土工试验方法标准》GB/T50123-1999 □2.《土工试验规程》SL237-1999 □3.《公路土工试验规程》JTG E40-2007 □4.《铁路工程土工试验规程》TB 10102-2010 注:仪器编号指固结仪各联的实验室编号,仪器状态栏正常打√,不正常打×。 试验: 检查:

变形模量、弹性模量、压缩模量的关系

岩土地弹性模量要远大于压缩模量和变形模量,而压缩模量又大于变形模量.弹性模量>压缩模量>变形模量. 弹性模量也叫杨氏模量(岩土体在弹性限度内应力与应变地比值)压缩模量是有侧限地,杨氏模量是无侧限地.同样地土体,同样地荷载,有侧限地土体应变小,所以压缩模量更大才对.这只是弹性理论上地关系,对土体这种自然物不一定适用.土体计算中所用地称为“弹性模量”不一定是在弹性限度内.——弹性模量;——压缩模量;——变形模量.文档收集自网络,仅用于个人学习 弹性模量=应力弹性应变,它主要用于计算瞬时沉降. 压缩模量和变形模量均=应力总应变.压缩模量是通过现场取原状土进行实验室有侧限压缩实验得出地,而变形模量则是通过现场地原位载荷试验得出地,它是无侧限地.弹性模量要远大于压缩模量和变形模量,而压缩模量又大于变形模量.地堪报告中,一般给出地是土地压缩模量与变形模量,而一般不会给出弹性模量.文档收集自网络,仅用于个人学习数值模拟中一般用,(),达到峰值应力(应变)%时地割线模量. (勘查报告中提供),有侧限,=~(看别人这么弄地).具体请查阅资料. 应该是变形模量是弹性模量是压缩模量,弹性模量与压缩模量应该有上百倍地关系吧,不应该只有五倍,一般;根据结果调整参数;问题是地质报告上只会提供压缩模量;文档收集自网络,仅用于个人学习 工程上,土地弹性模量就是指变形模量,因为土发生弹性变形地时间非常短,变形模量与压缩模量是一个量级,但是由于土体地泊松比小于,所以土地变形模量(弹性模量)总是小于压缩模量地.在钱家欢主编地《土力学》中有公式:(^()) 为变形模量,为变形模量(弹性模量).文档收集自网络,仅用于个人学习 上边地说法有点问题呀.变形模量与压缩模量之间有换算关系.=〔*()〕,而不是弹性模量与压缩模量之间有换算关系,弹性模量一般比,要大很多地.一般要大一个数量级地.再者土体进行弹性地数值模拟时要取地是那一个参数.一般工程地质报告中只提供一个. 可见,数值计算中,有两种取法: )一种是按弹性理论推出地弹性模量与压缩模量地关系(^()),可以计算出所需要地弹性模量; )就是根据经验取=~,反复试算确定弹模;两种方法各有优点:第一种可以很方便地算出弹模,但与实际情况地弹模有一定地差别;第二种需要试算多次才能找到所需要地弹模,但比较符合实际情况; =~,有那么大么?应该是(~)* (^()). 土地弹性模量是土抵抗弹性变形地能力,压缩模量是土在侧限条件下地,竖向附加应力与竖向应变地比值,土工试验得到和勘察报告提地是压缩模量.变形模量是无侧限条件下地应力与应变地比值.=〔*()〕公式是变形模量和压缩模量地理论公式,实际工程并不符合这个公式.至于弹性模量和变形模量地关系,土在弹性阶段地变形模量等于弹性模量.一般情况下比压缩模量要大,大多少,视具体工程而论.三轴试验得到弹性模量取得是轴向应力与轴向应变曲线中开始直线段(即弹性阶段)地斜率. 看看高大钊编地《土质力学与土力学》(正文页),该书是提到压缩模量、变形模量、弹性模量三者关系及使用方法为数不多地教材.这本书超星上有,朋友们想弄清楚就找这本书看看,我也是刚弄明白地,讲压缩模量、变形模量地书是多,但讲到土地弹性模量地书就少了先由压缩模量转化为变形模量,再转化为体积模量 岩石取弹性模量打折成岩体模量,土体取压缩模量. 弹性模量一般可取为压缩模量地~倍 上海地区经验一般为~倍(见同济大学杨敏教授相关论文),数值分析时可以适当加大一些. 在土力学中变形模量就是杨氏模量.压缩模量变形模量*()()() 高大钊编地《土质力学与土力学》(正文页),该书是提到压缩模量、变形模量、弹性模量三者关系及使用方法为数不多地教材. 土地变形模量和压缩模量,是判断土地压缩性和计算地基压缩变形量地重要指标. 为了建立变形模量和压缩模量地关系,在地基设计中,常需测量土地側压力系数ξ和側膨胀系数μ.側压力系数ξ:是指側向压力δ与竖向压力δ之比值,即: ξ=δδ 土地側膨胀系数μ(泊松比):是指在側向自由膨胀条件下受压时,测向膨胀地应变ε与竖向压缩地应变ε之比值,即μ=εε 根据材料力学广义胡克定律推导求得ξ和μ地相互关系,ξ=μ(-μ)或μ=ε(+ε),土地側压力系数可由专门仪器测得,但側膨胀系数不易直接测定,可根据土地側压力系数,按上式求得.在土地压密变形阶段,假定土为弹性材料,

压缩模量与变形模量的区别

一、压缩模量与变形模量的区别 (一)、第一种 压缩模量:在完全侧限条件下,土的竖向附加应力增量与相应的应变增量之比值,它可以通过室内压缩试验获得。 变形模量:是通过现场载荷试验求得的压缩性指标,即在部分侧限条件下,其应力增量与相应的应变增量的比值。 结论:从上述定义来看,由于压缩模量附带了完全侧限条件,与实际地基的部分侧限条件不一致,故沉降计算必须进行大误差修正(通常修正系数可达0.25~2.0);而变形模量是现场原位测试指标(载荷试验计算指标),较好的模拟了实际地层侧限条件,故理论上由变形模量计算沉降更准确、基本不需修正,承载板的尺寸越接近基础尺寸,计算的精度越高,如果由实体基础沉降资料反算变形模量,来指导相邻场地沉降计算会有很高的准确性,故由变形模量计算沉降在理论上应该比由压缩模量计算更准确、更符合实际。 2、试验方法的差异: 压缩模量:由室内压缩(固结)试验测定,有试验成本低、可操作性强、便于分层大量取样试验的特点。 变形模量:由现场载荷试验来测定,有成本高、周期长、试验点数有限、特别是深层载荷试验费用极高、深度有限、载荷板尺寸通常难以达到实体基础尺寸相当的宽度级别,因而变形模量的测定属于高成本的测试。 结论:从上述两试验测定方法的不同可见,压缩模量的测定通常更容易、成本低廉、易于试验,是勘察报告必须完成的工作,故设计用压缩模量计算沉降依据和数据更充分,这或许就是采用压缩模量计算沉降的公式和经验更多的原因;而变形模量的测定由于其高成本和高精度,更适合于大型、高荷载、大基础的重要工程,对于中小工程项目(一般基础荷载较小、基础尺寸较小),采用高成本的载荷试验确定变形模量再计算沉降反而不适用(老板愿意花钱另当别论)。 3、试验土类差异: 压缩模量:由于采用土样压缩(固结)试验测定,对于不能采取原状土的地层(如碎石土)和不能切环刀的岩土(如大部分岩石),显然我们难以获得压缩模量。 变形模量:由于我们基本可以在任何基坑底面岩土层进行载荷试验,故变形模量的测定几乎适合任何岩土类别,对于不能获取原状土的地层他就有显著的优越性。 结论:如果不计较成本因素,变形模量法与压缩模量法相比,可适用于任何岩土类别,而压缩模量法一般仅适用于可以获取原状土的地层。 4、试验条件差异: 压缩模量:在勘察阶段通过大量取样来获得,勘察报告在用压缩模量来计算沉降时通常有充分的数据支持。 变形模量:现场载荷试验通常难以在勘察阶段完成,载荷试验一般依据设计需要由设计人员提出在基坑开挖后在基底进行,且数量有限(当然对于重要工程和地层条件许可,也可在勘察阶段进行大量深层螺旋板载荷试验等来获取),目前用其他非载荷试验间接(经验)估算变形模量的方法仍显经验不足。 结论:上述差异决定了,大量工程(特殊工程除外)在勘察阶段,甚至在建筑基坑开挖前我们不得不采用压缩模量来计算沉降,当基坑开挖后,对于重要工程,并进行了一定数量载荷试验之后,我们才真正基本具备用实测变形模量来计算沉降的条件,故本人认为,在现阶段我们要真正意义上实现用实测变形模量来准确计算沉降,通常是难以实现的理论期望。总结:采用压缩模量还是变形模量来计算沉降哪种更合适?主要受三方面的因素制约:

土工试验规程

《公路土工试验规程》(JTG E40—2007)(简称本规程)包括87个测定土的基本工程性质的试验项目和一个土的工程分类方法标准。修订本规程的目的是使公路系统的试验室在进行土工试验时有一个统一的试验准则,使所有的试验及试验结果具有一致性和可比性。 共性技术要求系指土的物理、水理、力学和化学性质试验中带共性的要求或标准,内容涉及土性指标的选择、成果整理、指标换算和试验报告等,系参考其他部门经验并结合公路工程特点制定。 1.O.1 为测定土的基本工程性质,统一试验方法,开为公路工程设计和施工提供可靠的计算指标和参数,制定本规程。 《公路土工试验规程》(JTJ 051—93)(简称《93规程》)自1993年实施以来,已有14年的时间。在此期间,公路建设所涉及的岩土工程问题发生了巨大的变化,在低等级公路建设中可以避让的岩土工程问题,在高等级公路建设中山于线形、坡度等技术要求变得无法回避。随着公路建设穿越山区以及黄土、冻土等特殊土地区,要求《公路土工试验规程》提供更多、更可靠的计算参数和判定指标,同时测试技术也有了进一步的发展,因此有必要对原规程进行重新修订,使《公路土工试验规程》能够满足现时和未来一段时期的公路建设发展需要,规范公路土工测试标准,并使土工试验及试验结果具有一致性和可比性。 1.O.2 本规程适用于各类公路I程的地基土、路基土及其他路用土的基本I程性质试验。 我国建筑、水利、铁路、冶金等系统均有相应的土工试验规程或标准,基本内容与本规程基本相同。本规程在修订的过程中,特别注意到与国家标准的统一和合理衔接。但是由于公路建设的特点,有些试验方法的条件和评判指标不同,在某些具体的参数和规定上有一定的特殊要求,因此与其他行业的规定略有不同。在实际使用中应予以注意。 1.0.3 各项工程应编制合理的试验方案,采集代表性的试样,测算准确的数据和进行正确的资料分析整理,为设计和施工提供反映实际情况的各种土性指标。 土的工程分类是土工试验规程对土进行粒组和土的工程性质划分、试验规模和仪器划分的重要依据。本规程中土的工程分类系以国家标准《土的分类标准》 第1页 (GBJ 145—90)最新修订报批稿为基础井依照公路建设特性要求进行编制。各项基本试验遵照《土工试验方法标准》(GB/T50123—1999),对《公路土工试验规程》(JTJ 051 93)进行了修订。 1.0.4 土工试验资料的分析整理按附录A进行,通过对样本(试验测得的数据)的研究,来估计总体(土体单元)的特征及其变化的规律性。 土工试验资料的分析整理,是提供真实有效、准确可靠的土性指标的重要环节。内容涉及数据记录的准确和客观性、成果整理、土性指标的选择、计算统计方法、误差分析、精度评价等。根据误差分析,对不合理的数据进行研究,分析其原因;在有条件的情况下,应进行一定的补充试验,以便决定对有疑问数据的取舍和更正。为便于使用,本规程仍保留了《93规程》的附录A部分。 1.0.5 土I试验检测报告,对不同类型和级配特征的土,应提供土的基本颗粒级配、液限和塑限指标;对于特殊土,还应提供描述特殊土基本特征的试验测试指标。 土工试验检测报告,均应包含土的最基本特性参数的描述。对于粗粒土和巨粒土必须进行颗粒分析试验,提供土样的颗粒级配粒组数据和级配特征曲线。对于细粒土除应进行颗粒分析试验,提供土样的颗粒级配粒组数据和级配特征曲线外,还应进行界限含水率试验,提供土样的液限、塑限和塑性指数等。这是可重复再现土工试验结果的基本条件,也是科学实验的基本要求。对于特殊土还应提供描述特殊土基本特征的试验测试指标。 1.0.6 公路土I试验除应符合本规程要求外,尚应符合国家和行业现行相关标准的规定。 在进行土工试验检测前,应对土工试验检测设备进行检查,仪器设备应符合《土工仪器的基本参数及通用技术条件》(GB/T 15406)的规定。根据国家计量法的要求,土工试验所用的仪器、设备应定期检定和校验。对通用仪器设备应按有关检定规程进行检定,对一些专用仪器设备应按相应的校验方法进行校验。 在执行本规程的过程中,对有些内容要求其符合现行国家标准《建筑地基基础设计规范》(GB 50007)、《湿陷性黄土地区建筑规范》(GnJ 25)、《膨胀土地区建筑技术规范》(GBJ 112)、《土的分类标准》(GBj 145)、《岩土工程基本术语标准》(GB/T 50279)等,以及交通行业指南《盐渍土地区公路设计与施工指南》、《公路工程抗冻设计与施工技术指南》等的规定。 对于《公路土工试验规程》,应主要从试验目的和适用范围、使用的主要仪器设备、主要试验步骤和试验控制标准、试验成果整理方法、试验中应注意的问题,这五个方面进行总结、实践和认识。 第2页2 术语、符号 本章内容为新增内容。术语解释参考了《岩土工程基本术语标准》(GB/T50279—1998)和《公路工程名词术语》(JTJ 002—1987)进行编写。 2.1 术语 2.1.1 含水率watercontent 土中水的质量与土颗粒质量的比值,以百分率表示。 在《93规程》中该名词称为“含水量”。近年来国内各行业和高等院校的教科书均将“含水量”改称为“含水率”。因此,修订后的规程也称“含水率”。该指标是土的物理性质试

试验员-土工试验

试验员-土工试验 (总分:95.99,做题时间:90分钟) 一、判断题(总题数:26,分数:26.00) 1.土样的含水率为土样烘干后所失去的水质量与烘干前土样质量的比值。( ) (分数:1.00) A.正确 B.错误√ 解析: 2.土的含水量是指土中水与干土质量之比。( ) (分数:1.00) A.正确√ B.错误 解析: 3.回填土必须分层夯压密实,并分层、分段取样做干密度试验。( ) (分数:1.00) A.正确√ B.错误 解析: 4.灰土地基宜用灌砂法取样。( ) (分数:1.00) A.正确 B.错误√ 解析: 5.砂石地基可在地基中设置纯砂检查点,在同样的施工条件下,应用容积不小于100cm3的环刀取样,或用灌砂法取样检查。( ) (分数:1.00) A.正确 B.错误√ 解析: 6.土工密度试验采用环刀法取样时,应在环刀内壁涂一层凡士林。( ) (分数:1.00) A.正确√ B.错误 解析:

7.土工密度试验用的土样在试验前应妥善保管,并应采取防止水分蒸发的措施。( ) (分数:1.00) A.正确√ B.错误 解析: 8.采用蜡封法测定土的密度时,当浸水后试样质量增加时,应另取试样重做试验。( ) (分数:1.00) A.正确√ B.错误 解析: 9.采用灌水法测定土的密度时,当试样最大粒径为20~30mm时,试坑的直径应为150mm,试坑的深度应为150mm。( ) (分数:1.00) A.正确 B.错误√ 解析: 10.采用灌水法测定土的密度时,试坑挖好后,应将大于试坑容积的塑料薄膜袋张开,且口朝上,袋底平铺于坑内。( ) (分数:1.00) A.正确√ B.错误 解析: 11.采用灌水法测定土的密度时,当袋内出现水平面升高时,应另取塑料薄膜袋重做试验。( ) (分数:1.00) A.正确 B.错误√ 解析: 12.采用灌砂法测定土的密度时,应按《土工试验方法标准》(GB/T 50123—1999)的方法测定标准砂的密度ρs。( ) (分数:1.00) A.正确√ B.错误 解析: 13.砂土分为砾砂、租砂、中砂、细砂和粉砂。( ) (分数:1.00)

土工试验步骤及重点

土工试验 土的含水率试验 土中水:影响土的物理,力学性能的主要是自由水、弱结合水。 一、烘干法 适用范围:标准方法,适用于黏质土、粉质土、砂类土、砂砾土、有机土和冻土。 1、试验步骤 (1)取代表性土样,细粒土15g~30g;砂类土、有机土为50g;放入称量盒中,盖好盖,称取质量; (2)揭开盒盖,将试样放入烘箱中,在温度105℃~110℃下烘干,烘干时间对细粒土不得少于8h~10h;对于砂类土不得少于6h~8h;对于有机质含量超过5%的土或含石膏的土,将温度控制在60℃~70℃以下烘干,以12h~15h为好。 (3)将烘干后的试样和盒子取出,放入干燥器中冷却,冷却后盖好盒盖,称取质量 2、,计算 W=(m-m s )/m s 3、精度及允许差 本试验必须平行试验两次 含水率% 允许平行差% 含水率% 允许平行差% 5以下0.3 40以上<=2 40以下<=1 层状和网状结构的冻土<3 二、酒精燃烧法 适用于快速测定细粒土的含水率 1、取样数量:黏质土5~10g;砂类土20~30g。 2、注意事项:酒精纯度95%;对于黏性土测得的含水率通常小于烘干法。 密度试验 一、环刀法 1、使用范围及目的:适用于测定不含砾石颗粒的细粒土的密度、干密度。 2、环刀规格:环刀(直径6mm~8mm、高2mm~5.4mm、壁厚1.5mm~2.2mm)。径高比一般为1~1.5。 3、精度及允许差:进行两次平行测定,取算术平均值,平行差不得大于0.03g/cm3。 二、蜡封法 适用范围:适用于测定易碎裂的土和形状不规则的坚硬土的密度。 1、试验步骤: (1)取体积大于30cm3的试件,出去表面松、浮土及尖锐棱角,称其质量m,并取代表性土样进行含水率测定; (2)将石蜡加热至刚过熔点,用细线系好试件浸入石蜡中,使试件表面覆盖一层石蜡,取出试件,待冷却后称其质量m 1 ; (3)用细线将蜡封试件置于天平一端,时其浸浮在盛有蒸馏水的烧杯中,称蜡封试件水中质量

压缩模量、变形模量、弹性模量

压缩模量、变形模量、弹性模量 压缩模量与变形模量的区别 (一)、第一种 压缩模量:在完全侧限条件下,土的竖向附加应力增量与相应的应变增量之比值,它可以通过室内压缩试验获得。 变形模量:是通过现场载荷试验求得的压缩性指标,即在部分侧限条件下,其应力增量与相应的应变增量的比值。 结论:从上述定义来看,由于压缩模量附带了完全侧限条件,与实际地基的部分侧限条件不一致,故沉降计算必须进行大误差修正(通常修正系数可达 0.25,2.0);而变形模量是现场原位测试指标(载荷试验计算指标),较好的模拟了实际地层侧限条件,故理论上由变形模量计算沉降更准确、基本不需修正,承载板的尺寸越接近基础尺寸,计算的精度越高,如果由实体基础沉降资料反算变形模量,来指导相邻场地沉降计算会有很高的准确性,故由变形模量计算沉降在理论上应该比由压缩模量计算更准确、更符合实际。 2、试验方法的差异: 压缩模量:由室内压缩(固结)试验测定,有试验成本低、可操作性强、便于分层大量取样试验的特点。 变形模量:由现场载荷试验来测定,有成本高、周期长、试验点数有限、特别是深层载荷试验费用极高、深度有限、载荷板尺寸通常难以达到实体基础尺寸相当的宽度级别,因而变形模量的测定属于高成本的测试。 结论:从上述两试验测定方法的不同可见,压缩模量的测定通常更容易、成本低廉、易于试验,是勘察报告必须完成的工作,故设计用压缩模量计算沉降依据和数据更充分,这或许就是采用压缩模量计算沉降的公式和经验更多的原因;而变形

模量的测定由于其高成本和高精度,更适合于大型、高荷载、大基础的重要工程,对于中小工程项目(一般基础荷载较小、基础尺寸较小),采用高成本的载荷试验确定变形模量再计算沉降反而不适用(老板愿意花钱另当别论)。 3、试验土类差异: 压缩模量:由于采用土样压缩(固结)试验测定,对于不能采取原状土的地层(如碎石土)和不能切环刀的岩土(如大部分岩石),显然我们难以获得压缩模量。 变形模量:由于我们基本可以在任何基坑底面岩土层进行载荷试验,故变形模量的测定几乎适合任何岩土类别,对于不能获取原状土的地层他就有显著的优越性。 结论:如果不计较成本因素,变形模量法与压缩模量法相比,可适用于任何岩土类别,而压缩模量法一般仅适用于可以获取原状土的地层。 4、试验条件差异: 压缩模量:在勘察阶段通过大量取样来获得,勘察报告在用压缩模量来计算沉降时通常有充分的数据支持。 变形模量:现场载荷试验通常难以在勘察阶段完成,载荷试验一般依据设计需要由设计人员提出在基坑开挖后在基底进行,且数量有限(当然对于重要工程和地层条件许可,也可在勘察阶段进行大量深层螺旋板载荷试验等来获取),目前用其他非载荷试验间接(经验)估算变形模量的方法仍显经验不足。 结论:上述差异决定了,大量工程(特殊工程除外)在勘察阶段,甚至在建筑基坑开挖前我们不得不采用压缩模量来计算沉降,当基坑开挖后,对于重要工程,并进行了一定数量载荷试验之后,我们才真正基本具备用实测变形模量来计算沉降的条件,故本人认为,在现阶段我们要真正意义上实现用实测变形模量来准确计算沉降,通常是难以实现的理论期望。

压缩模量与变形模量的换算

压缩模量与变形模量 土的压缩模量:在完全侧限条件下,土的竖向附加应力增量与相应的应变增量之比值,它可以通过室内压缩试验获得。 土的弹性模量:土的弹性模量根据测定方法不同,可分为“静弹模”和“动弹模”。静弹模采用静三轴仪测定。弹性模量为加卸载该曲线上应力与应变的比值。动弹模,可用室内动三轴仪测得,当土样固结后,分级施加动应力,进行不排水的振动试验,一般保持动应力幅值不变,振动次数视工程实际条件而定可用双曲线方程来描述,也称切线弹模。 土的变形模量和压缩模量,是判断土的压缩性和计算地基压缩变形量的重要指标。由于两者在压缩时所受的侧限条件不同,对同一种土在相同压应力作用下两种模量的数值显然相差很大。三种模量的试验方法不同,反映在应力条件、变形条件上也不同。压缩模量是在室内有侧限条件下的一维变形问题,变形模量则是在现场的三维空间问题;另外土体变形包括了可恢复的(弹性)变形和不可恢复的(塑性)变形两部分。压缩模量和变形模量是包括了残余变形在内的,与弹性模量有根本区别,而压缩模量与变形模量的区别又在于是否有侧限。在工程应用上,我们应根据具体问题采用不同的模量。 公式 为了建立变形模量和压缩模量的关系,在地基设计中,常需测量土的侧压力系数ξ和侧膨胀系数μ。 侧压力系数ξ:是指侧向压力δx与竖向压力δz之比值,即: ξ=δx/δz 土的侧膨胀系数μ(泊松比):是指在侧向自由膨胀条件下受压时,测向膨胀的应变εx与竖向压缩的应变εz之比值,即 μ=εx/εz 根据材料力学广义胡克定律推导求得ξ和μ的相互关系, ξ=μ/(1-μ)或μ=ε/(1+ε) 土的侧压力系数可由专门仪器测得,但侧膨胀系数不易直接测定,可根据土的侧压力系数,按上式求得。 在土的压密变形阶段,假定土为弹性材料,则可根据材料力学理论,推导出变形模量E0和压缩模量Es之间的关系。 令β=1-2μ^2/(1-μ)则Eo=βEs

相关主题
文本预览
相关文档 最新文档