逐次逼近型AD原理及应用
- 格式:pdf
- 大小:323.96 KB
- 文档页数:4
逐次逼近型AD————————————————————————————————作者:————————————————————————————————日期:逐次逼近型ADC其工作原理可用天平秤重过程作比喻来说明。
若有四个砝码共重15克,每个重量分别为8、4、2、1克。
设待秤重量Wx = 13克,可以用下表步骤来秤量:首先把待称重的重物放在托盘上,在另外一边的托盘上首先放上8克的砝码,8克砝码小于待测物体总重13克,所以保留该砝码;第二步将4克砝码放在托盘上,砝码总重为8+4=12克,小于待测物体总重,所以也保留;第三步将2克砝码放在托盘上,砝码总重为8+4+2=14克,大于待测物体总重,所以将2克砝码撤除;第四步将1克砝码放在托盘上,砝码总重为13克,等于待测物体总重,所以保留;最后得到待测物体为13克。
AD的转换过程与上述过程类似,每次加载砝码的过程受到一个时钟脉冲CP的控制,在AD中不存在砝码,而是采用DA转换器的输出做为上面例子中砝码的重量,而比较器就是天平。
其工作流程框图如下图所示:今以四位逐次逼近型ADC为例(设输入电压Ux=5.52 V,D/A转换器的参考电压UR=-8 V),分析其转换过程。
第一个脉冲CP到来时,使逐次逼近寄存器的最高位d3置1,其余位为0,即寄存器状态d3d2d1d0=1000,由式(9.4.1)得D/A转换器的输出电压为因Uo<Ux,故比较器输出低电平,d3位置的1被保留。
第二个脉冲CP到来时,使逐次逼近寄存器的次高位d2置1,后两位为0,即寄存器状态d3d2d1d0=1100,此时D/A转换器的输出电压Uo=8/16×12=6 V,因Uo>Ux,故比较器输出高电平,d2位置的1被取消变为0。
第三个脉冲CP到来时,d1置1,此时寄存器状态d3d2d1d0=1010,D/A转换器的输出电压Uo=8/16×10=5 V,因Uo<Ux,故比较器输出低电平,d1位置的1被保留。
常用的几种类型的ADC基本原理及特点AD转换器的分类下面简要介绍常用的几种类型的基本原理及特点:积分型、逐次逼近型、并行比较型/串并行型、Σ-Δ调制型、电容阵列逐次比较型及压频变换型。
1)积分型(如TLC7135)积分型AD工作原理是将输入电压转换成时间(脉冲宽度信号)或频率(脉冲频率),然后由定时器/计数器获得数字值。
其优点是用简单电路就能获得高分辨率,但缺点是由于转换精度依赖于积分时间,因此转换速率极低。
初期的单片AD转换器大多采用积分型,现在逐次比较型已逐步成为主流。
2)逐次比较型(如TLC0831)逐次比较型AD由一个比较器和DA转换器通过逐次比较逻辑构成,从MSB开始,顺序地对每一位将输入电压与内置DA转换器输出进行比较,经n次比较而输出数字值。
其电路规模属于中等。
其优点是速度较高、功耗低,在低分辩率(<12位)时价格便宜,但高精度(>12位)时价格很高。
3)并行比较型/串并行比较型(如TLC5510)并行比较型AD采用多个比较器,仅作一次比较而实行转换,又称FLash(快速)型。
由于转换速率极高,n位的转换需要2n-1个比较器,因此电路规模也极大,价格也高,只适用于视频AD转换器等速度特别高的领域。
串并行比较型AD结构上介于并行型和逐次比较型之间,最典型的是由2个n/2位的并行型AD转换器配合DA转换器组成,用两次比较实行转换,所以称为Half flash(半快速)型。
还有分成三步或多步实现AD转换的叫做分级(Multistep/Subrangling)型AD,而从转换时序角度又可称为流水线(Pipelined)型AD,现代的分级型AD中还加入了对多次转换结果作数字运算而修正特性等功能。
这类AD速度比逐次比较型高,电路规模比并行型小。
4)Σ-Δ(Sigma?/FONT>delta)调制型(如AD7705)Σ-Δ型AD由积分器、比较器、1位DA转换器和数字滤波器等组成。
A/D转换器A/D转换器是用来通过一定的电路将模拟量转变为数字量。
模拟量可以是电压、电流等电信号,也可以是压力、温度、湿度、位移、声音等非电信号。
但在A/D转换前,输入到A/D 转换器的输入信号必须经各种传感器把各种物理量转换成电压信号。
A/D转换后,输出数字信号可以有8位、10位、12位和16位等。
AD转换器的工作原理主要介绍3种:逐次逼近法双积分法电压频率转化法1 逐次逼近法:逐次逼近式A/D是比较常见的一种A/D转换电路,转换的时间为微秒级。
采用逐次逼近法的A/D转换器是由一个比较器、D/A转换器、缓冲寄存器及控制逻辑电路组成,如图4.21所示。
基本原理是从高位到低位逐位试探比较,好像用天平称物体,从重到轻逐级增减砝码进行试探。
图4.21 逐次逼近式A/D转换器原理框图逐次逼近式A/D转换器原理框图逐次逼近法转换过程是:初始化时将逐次逼近寄存器各位清零;转换开始时,先将逐次逼近寄存器最高位置1,送入D/A转换器,经D/A转换后生成的模拟量送入比较器,称为Vo,与送入比较器的待转换的模拟量Vi进行比较,若V,该位1被保留,否则被清除。
然后再置逐次逼近寄存器次高位为1,将寄存器中新的数字量送D/A转换器,输出的Vo再与Vi比较,若VoVi,该位1被保留,否则被清除。
重复此过程,直至逼近寄存器最低位。
转换结束后,将逐次逼近寄存器中的数字量送入缓冲寄存器,得到数字量的输出。
逐次逼近的操作过程是在一个控制电路的控制下进行的。
2双积分法:采用双积分法的A/D转换器由电子开关、积分器、比较器和控制逻辑等部件组成。
如图4.22所示。
基本原理是将输入电压变换成与其平均值成正比的时间间隔,再把此时间间隔转换成数字量,属于间接转换。
图4.22 双积分式A/D转换的原理框图双积分法A/D转换的过程是:先将开关接通待转换的模拟量Vi,Vi采样输入到积分器,积分器从零开始进行固定时间T的正向积分,时间T到后,开关再接通与Vi极性相反的基准电压VREF,将VREF输入到积分器,进行反向积分,直到输出为0V时停止积分。
常用的几种类型的ADC基本原理及特点AD转换器的分类下面简要介绍常用的几种类型的基本原理及特点:积分型、逐次逼近型、并行比较型/串并行型、Σ-Δ调制型、电容阵列逐次比较型及压频变换型。
1)积分型(如TLC7135)积分型AD工作原理是将输入电压转换成时间(脉冲宽度信号)或频率(脉冲频率),然后由定时器/计数器获得数字值。
其优点是用简单电路就能获得高分辨率,但缺点是由于转换精度依赖于积分时间,因此转换速率极低。
初期的单片AD转换器大多采用积分型,现在逐次比较型已逐步成为主流。
2)逐次比较型(如TLC0831)逐次比较型AD由一个比较器和DA转换器通过逐次比较逻辑构成,从MSB开始,顺序地对每一位将输入电压与内置DA转换器输出进行比较,经n次比较而输出数字值。
其电路规模属于中等。
其优点是速度较高、功耗低,在低分辩率(<12位)时价格便宜,但高精度(>12位)时价格很高。
3)并行比较型/串并行比较型(如TLC5510)并行比较型AD采用多个比较器,仅作一次比较而实行转换,又称FLash(快速)型。
由于转换速率极高,n位的转换需要2n-1个比较器,因此电路规模也极大,价格也高,只适用于视频AD转换器等速度特别高的领域。
串并行比较型AD结构上介于并行型和逐次比较型之间,最典型的是由2个n/2位的并行型AD转换器配合DA转换器组成,用两次比较实行转换,所以称为Half flash(半快速)型。
还有分成三步或多步实现AD转换的叫做分级(Multistep/Subrangling)型AD,而从转换时序角度又可称为流水线(Pipelined)型AD,现代的分级型AD中还加入了对多次转换结果作数字运算而修正特性等功能。
这类AD速度比逐次比较型高,电路规模比并行型小。
4)Σ-Δ(Sigma/FONT>del ta)调制型(如AD7705)Σ-Δ型AD由积分器、比较器、1位DA转换器和数字滤波器等组成。
逐次逼近型AD原理及应用AD转换的基本原理和技术(逐次逼近型)1、转换方式直接转换ADC2.电路结构逐次逼近ADC包括n位逐次比较型A/D转换器如图1所示。
它由控制逻辑电路、时序产生器、移位寄存器、D/A转换器及电压比较器组成。
图1逐次比较型A/D转换器框图3、工作原理逐次逼近转换过程和用天平称物重非常相似。
天平称重物过程是,从最重的砝码开始试放,与被称物体行进比较,若物体重于砝码,则该砝码保留,否则移去。
再加上第二个次重砝码,由物体的重量是否大于砝码的重量决定第二个砝码是留下还是移去。
照此一直加到最小一个砝码为止。
将所有留下的砝码重量相加,就得此物体的重量。
仿照这一思路,逐次比较型A/D转换器,就是将输入模拟信号与不同的参考电压作多次比较,使转换所得的数字量在数值上逐次逼近输入模拟量对应值。
对11.10.1的电路,它由启动脉冲启动后,在第一个时钟脉冲作用下,控制电路使时序产生器的最高位置1,其他位置0,其输出经数据寄存器将1000……0,送入D/A转换器。
输入电压首先与D/A器输出电压(VREF/2)相比较,如v1≥VREF/2,比较器输出为1,若vI 设图11.10.1电路为8位A/D转换器,输入模拟量vA=6.84V,D/A转换器基准电压VREF=10V。
根据逐次比较D/A转换器的工作原理,可画出在转换过程中CP、启动脉冲、D7~D0及D/A转换器输出电压vO的波形,如图11.10.2所示。
由图11.10.2可见,当启动脉冲低电平到来后转换开始,在第一个CP作用下,数据寄存器将D7~D0=10000000送入D/A转换器,其输出电压v0=5V,vA与v0比较,vA>v0存1;第二个CP到来时,寄存器输出D7~D0=11000000,v0为7.5V,vA再与7.5V比较,因vA<7.5V,所以D6存0;输入第三个CP时,D7~D0=10100000,v0=6.25V;vA再与v0比较,……如此重复比较下去,经8个时钟周期,转换结束。
模数转换器其本质就是一个编码的过程,由于传输到数模转换器的自然信号随着时间的变化而变化。
为了实现对模拟信号的处理和储存,我们必须对信号进行编码,为此,我们选择了最基本,也是最实用的编码——2进制编码。
首先,模拟信号通过滤波器,过滤掉高频信号,得到我们需要的信号。
然后经过采样和保持电路采集模拟信号当中某一段时间的信号值,这一段时间一方面决定了采样频率的大小,另外一方面也是后面的电路结构所消耗掉的总的时间。
这段时间内得到的采样值传输到比较器当中,比较器的另外一个输入信号由数模转换器和寄存器共同作用来给出。
比如我们这次的电源电压是2V,比较器的输入电压范围是0~2V,因此采样与保持电路的电压输入范围也是0~2V。
我们的比较精度是10位,也就是比较器要在一个采样周期内进行10次比较。
最开始的时候,寄存器将这10位的2进制数字信号都置0。
然后进行第一位,也就是最高位的比较,这时数模转换器将输入电压范围的中值,也就是1V,传输给比较器的一个输入端口,比较器的另外一个输入端口来自采样与保持电路。
当采样电压高于中值1V时,寄存器的最高位由0变为1,同时逻辑控制单元控制数模转换器的下一个输入到比较器端口的电压为1V到2V的中值处,也就是1.5V,将1.5V传入到比较器的输入端口,和采样信号进行比较,输出第二位的数字信号。
以此类推,可以得到10位的数字信号。
当采样电压低于中值电压1V时,寄存器的最高位仍然为0,同时逻辑控制单元控制数模转换器的下一个输入到比较器端口的电压为0~1V的中值处,也就是0.5V,将0.5V穿入到比较器的输入端口,和采样信号进行比较,输出第二位的数字信号。
以此类推,进行10次这样的比较便可以得到10位编译模拟信号的数字信号。
逐次逼近式ad转换器工作原理
逐次逼近式AD转换器是一种常用的模拟信号数字化方法。
其基本原理是将模拟信号分成若干个量化等级,逐步逼近实际值,最终得到数字信号。
具体来说,AD转换器将待转换的模拟信号与一个内部参考电压进行比较,并将其转换为一个二进制数。
为了提高转换精度,逐次逼近式AD转换器采用了逐步逼近的方法,即首先将待转换的信号与参考电压的一半进行比较,然后根据比较结果确定信号在参考电压的哪一半范围内,再将区间一分为二,重复上述过程,直到达到所需的精度为止。
该方法具有转换速度快、精度高、易于实现等优点,被广泛应用于各种电子设备中。
- 1 -。
理解逐次逼近寄存器型ADC:与其它类型ADC 的架构对比Jul 02, 2009摘要:逐次逼近寄存器型(SAR)模数转换器(ADC)占据着大部分的中等至高分辨率ADC市场。
SAR ADC的采样速率最高可达5Msps,分辨率为8位至18位。
SAR架构允许高性能、低功耗ADC采用小尺寸封装,适合对尺寸要求严格的系统。
本文说明了SAR ADC的工作原理,采用二进制搜索算法,对输入信号进行转换。
本文还给出了SAR ADC的核心架构,即电容式DAC和高速比较器。
最后,对SAR架构与流水线、闪速型以及Σ-Δ ADC进行了对比。
引言SAR ADC的架构尽管实现SAR ADC的方式千差万别,但其基本结构非常简单(见图1)。
模拟输入电压(V IN)由采样/保持电路保持。
为实现二进制搜索算法,N位寄存器首先设置在中间刻度(即:100 (00)MSB设置为1)。
这样,DAC输出(V DAC)被设为V REF/2,V REF是提供给ADC的基准电压。
然后,比较判断V IN是小于还是大于V DAC。
如果V IN大于V DAC,则比较器输出逻辑高电平或1,N位寄存器的MSB保持为1。
相反,如果V IN小于V DAC,则比较器输出逻辑低电平,N位寄存器的MSB清0。
随后,SAR控制逻辑移至下一位,并将该位设置为高电平,进行下一次比较。
这个过程一直持续到LSB。
上述操作结束后,也就完成了转换,N位转换结果储存在寄存器内。
图1. 简单的N位SAR ADC架构图2给出了一个4位转换示例,y轴(和图中的粗线)表示DAC的输出电压。
本例中,第一次比较表明V IN < V DAC。
所以,位3置为0。
然后DAC被置为01002,并执行第二次比较。
由于V IN > V DAC,位2保持为1。
DAC置为01102,执行第三次比较。
根据比较结果,位1置0,DAC又设置为01012,执行最后一次比较。
最后,由于V IN > V DAC,位0确定为1。
AD转换的基本原理和技术(逐次逼近型)
1、转换方式
直接转换ADC
2.电路结构
逐次逼近ADC包括n位逐次比较型A/D转换器如图1所示。
它由控制逻辑电路、时序产生器、移位寄存器、D/A转换器及电压比较器组成。
图1逐次比较型A/D转换器框图
3、工作原理
逐次逼近转换过程和用天平称物重非常相似。
天平称重物过程是,从最重的砝码开始试放,与被称物体行进比较,若物体重于砝码,则该砝码保留,否则移去。
再加上第二个次重砝码,由物体的重量是否大于砝码的重量决定第二个砝码是留下还是移去。
照此一直加到最小一个砝码为止。
将所有留下的砝码重量相加,就得此物体的重量。
仿照这一思路,逐次比较型
A/D转换器,就是将输入模拟信号与不同的参考电压作多次比较,使转换所得的数字量在数值上逐次逼近输入模拟量对应值。
对11.10.1的电路,它由启动脉冲启动后,在第一个时钟脉冲作用下,控制电路使时序产生器的最高位置1,其他位置0,其输出经数据寄存器将1000……0,送入D/A转换器。
输入电压首先与D/A器输出电压(VREF/2)相比较,如v1≥VREF/2,比较器输出为1,若vI<VREF/2,则为0。
比较结果存于数据寄存器的Dn-1位。
然后在第二个CP作用下,移位寄存器的次高位置1,其他低位置0。
如最高位已存1,则此时vO=(3/4)VREF。
于是v1再与(3/4)VREF相比较,如v1≥(3/4)VREF,则次高位Dn-2存1,否则Dn-2=0;如最高位为0,则vO=VREF/4,与vO比较,如v1≥VREF/4,则Dn-2位存1,否则存0……。
以此类推,逐次比较得到输出数字量。
为了进一步理解逐次比较A/D转换器的工作原理及转换过程。
下面用实例加以说明。
设图11.10.1电路为8位A/D转换器,输入模拟量vA=6.84V,D/A转换器基准电压VREF=10V。
根据逐次比较D/A转换器的工作原理,可画出在转换过程中CP、启动脉冲、D7~D0及D/A转换器输出电压vO的波形,如图11.10.2所示。
由图11.10.2可见,当启动脉冲低电平到来后转换开始,在第一个CP作用下,数据寄存器将D7~D0=10000000送入D/A转换器,其输出电压v0=5V,vA与v0比较,vA>v0存1;第二个CP到来时,寄存器输出D7~D0=11000000,v0为7.5V,vA再与7.5V比较,因vA<7.5V,所以D6存0;输入第三个CP时,D7~D0=10100000,v0=6.25V;vA再与v0比较,……如此重复比较下去,经8个时钟周期,转换结束。
由图中v0的波形可见,在逐次比较过程中,与输出数字量对应的模拟电压v0逐渐逼近vA值,最后得到A/D转换器转换结果D7~D0为10101111。
该数字量所对应的模拟电压为 6.8359375V,与实际输入的模拟电压 6.84V的相对误差仅为0.06%。
图11.10.28位逐次比较型A/D转换器波形图
4、特点
(1)转换速度:(n+1)Tcp.速度快。
(2)调整VREF,可改变其动态范围。
5、转换器电路举例
常用的集成逐次比较型A/D转换器有ADC0808/0809系列(8位)、AD575(10位)、AD574A(12位)等。
例11.10.14位逐次比较型A/D转换器的逻辑电路如图11.10.3所示。
图中5移位寄存器可进行并入/并出或串入/串出操作,其F为并行置数端,高电平有效,S为高位串行输入。
数寄存器由D边沿触发器组成,数字量从Q4~Q1输出,试分析电路的工作原理。
图11.10.34位逐次比较型A/D转换器的逻辑电路解:电路工作过程如下:
当启动脉冲上升沿到来后,FF0~FF4被清零,Q5置1,Q5的高电平开启G2门,时钟CP 脉冲进入移位寄存器。
在第一个CP脉冲作用下,由于移位寄存器的置数使能端F已有0变为1,并行输入数据ABCDE置入,QAQBQCQDQE=01111。
QA的低电平是数据寄存器的最高位置1,即Q4Q3Q2Q1=1000。
D/A转换将数字量1000转换为模拟电压vO,送入比较器C与输入模拟电压
v1比较,若输入电压vI>vO,则比较器C输出vC为1,否则为0。
比较结果送D4~D1。
第二个CP脉冲到来后,移位寄存器的串行输入端S为高电平,QA由0变1,同是最高位QA的0移至次高位QB。
于是数据寄存器的Q3由0变1,这个正跳变作为有效触发信号加到FF4的CP端使vC的电平得以在Q4保存下来。
此时,由于其他触发器无正跳变脉冲,vC的信号对它们不起作用。
Q3变为1后建立了新的D/A转换器的数据,输入电压在与其输出电压vO相比较,比较结果在第三个时钟脉冲作用下存于Q3……。
如此进行,直到QE由1变0,使Q5由1变0后将G2封锁,转换完毕。
于是电路的输出端D3D2D1D0得到与输入电压v1成正比的数字量。
由以上分析可见,逐次比较型A/D转换器完成一次转换所需的时间与其位数和时钟脉冲频率有关,位数愈少,时钟频率愈高,转换所需时间越短。
这种A/D转换器具有转换速度较快,精度高的特点。