变电设备红外线热成像诊断技术的准确性分析
- 格式:pdf
- 大小:212.25 KB
- 文档页数:3
2023-11-12CATALOGUE目录•引言•红外热成像原理及电气设备故障诊断概述•基于红外热成像的电气设备故障诊断技术•基于红外热成像的电气设备故障诊断案例分析•基于红外热成像的电气设备故障诊断的优缺点及改进方向•结论与展望01引言红外热成像技术发展历程电气设备故障诊断的必要性红外热成像在电气设备故障诊断中的应用背景介绍研究基于红外热成像原理的电气设备故障诊断方法,提高故障诊断的准确性和效率。
意义通过应用红外热成像技术,可以非接触、远距离、快速、准确地检测和诊断电气设备中的故障,降低设备损坏和事故发生的概率,提高电力系统的稳定性和可靠性。
同时,该研究对于其他领域,如机械、汽车、航空航天等,也有重要的借鉴意义和应用价值。
目的研究目的和意义VS02红外热成像原理及电气设备故障诊断概述红外热成像原理红外热成像技术是一种利用红外辐射探测目标物体的温度分布和状态变化的方法。
在电气设备故障诊断中,通过测量设备在不同状态下的红外辐射,可以判断设备是否正常运行以及故障类型。
红外热成像原理红外热成像系统的组成红外热成像系统主要由红外探测器、光学系统、信号处理和显示等部分组成。
其中,红外探测器负责接收目标物体的红外辐射,光学系统用于聚焦和传输辐射,信号处理和显示部分则对辐射进行数据处理和可视化呈现。
红外热成像的应用范围红外热成像技术广泛应用于电气设备故障诊断、工业设备检测、建筑结构检测等领域,具有非接触、实时、高效等特点。
电气设备故障诊断概述电气设备故障类型电气设备故障主要包括短路、断路、接触不良、过载等类型。
这些故障会导致设备温度升高、功率损耗增加,严重时甚至可能导致设备损坏或火灾。
电气设备故障诊断方法传统的电气设备故障诊断方法主要包括直接观察法、耳听法、触摸法等,这些方法虽然简单直观,但对于某些复杂故障类型往往难以准确判断。
因此,基于红外热成像的故障诊断方法得到了广泛应用。
基于红外热成像的故障诊断优势基于红外热成像的故障诊断方法可以非接触地检测设备表面温度分布,通过比较设备正常运行和故障状态下的温度分布差异,判断故障类型和位置。
红外热成像技术对高压电气设备的诊断与分析作者:肖远文来源:《山东工业技术》2018年第14期摘要:红外热成像诊断技术是在专家系统为核心基础上发展起来的,并按照相关的诊断结果规范了热故障处理措施与等级,之后达到红外热成像处理高压电气设备的目的,实现自动识别和处理故障的目的。
文章以高压电气设备诊断与分析中红外热成像技术应用的相关内容进行了探究。
关键词:红外热成像;高压电气;设备诊断DOI:10.16640/ki.37-1222/t.2018.14.138随着长时间运行电力设备,发热一般是十分严重的故障。
如果在过热状态下运行电力设备,将引起设备材料的电气、物理、化学和机械等反面的恶化,进而使得设备被损坏,影响电网的可靠、稳定运行质量、所以,采用先进的红外热成像技术诊断与分析高压电气设备中存在的问题,从而确保电力系统安全、稳定的运行。
1 红外热成像诊断技术1.1 技术原理分析热传感器所采集的物体热辐射能是红外成像的核心技术,从而实现吸纳成像以及后期PC 制作的红外非接触式热成像技术,随着在电力系统中广泛的应用了热力学技术后,在状态监测以及诊断故障时,也广泛的应用了红外热成像技术。
此技术具有应用安全、测量精度高、诊断效率优越以及操作性强的优点。
该技术还可以在安全的范围内对设备的温度值进行测量,把它转变为红外热成像值,然后精确量化处理被测设备的热量值。
1.2 具体的诊断操作流程分析1.2.1 滤除噪声有较多的因素会影响到红外辐射数据,比如,所测高压设备的四周物理环境、所测物体的红外热发射率、临近高压装置的热辐射以及太阳热能。
为了将精确的符合数据获取出来,把一些带来影响的噪声降低。
首先,确保操作人员科学的应用红外热像仪,并把技术参数科学的设置出来;其次,后期处理噪声,能够在频域或者时域范围内实现图像的运算分析,例如通过中值滤波以及邻域平均等算法,然而,所谈及的滤波算法只适用于几种噪声或者一种噪声的信号。
为了将十分精确的高压设备红外特征数据信息获取出来,可以通过小波法滤除频域—时域范围内的噪声。
电力系统故障诊断中红外热成像技术的应用摘要:为满足我国经济增长的要求,电力系统在最近几年获得了跨越式的发展,电网的兴建数量与规模均呈现一定程度的增长。
其中,为了确保电力系统可以稳定且可靠的工作,在故障诊断过程中应用红外热成像技术就显得尤为重要。
鉴于此,本文首先以介绍红外热像仪的测温原理与特点为切入点,对其应用于诊断高压电气设备故障进行分析,并详细探究了影响红外热成像仪故障检测结果的影响因素。
关键词:电力系统;故障诊断;红外热成像技术引言:为了提升电力系统的输配电能力,必须在电力系统中应用性能优良的控制装置,从而确保电力系统得以稳定与安全的运行。
然而,即便电网在运行过程中得到了稳妥的维护,但是仍存在一定概率出现故障状况。
此外,在实际电力系统运行过程中发现,部分薄弱环节会在此过程中出现程度不同的故障,极大的影响电力系统的工作。
因此,随着红外热成像仪的应用,不仅可以很好的对隐藏故障隐患进行预防,而且将电力系统设备故障率降低,对电力系统中的设备的稳定性有着较大幅度的提升。
一、红外热像仪的测温原理与特点1、测温原理红外热像仪的测温原理主要指的是:电力设备表面所辐射的红外线由其物镜进行接收,并汇聚在光学系统之中,从而使得系统红外探测器的焦点位置可以接收传输过来的红外能;随后光电转换在探测器处完成,从而电力设备外表面辐射的红外能转变为电信号,最终将热成像在热像仪的取景器中显现出来。
其中,温度异常点可以直接在热像图中观察出来,并显示出确切的温度值。
红外热像仪的应用可以实现无接触温度测量并输出热像图,从而及时发现电力设备的隐藏故障隐患,提升电力系统各个电气设备运行的可靠性。
2、应用特点2.1高灵敏度、高分辨率红外热像仪具有较高的测温灵敏度,当室外温度为30℃时,热像仪的灵敏度范围为0.12℃~0.02℃,并且细微的温差也可在设备表现分辨出来,以此提升判断设备运行情况的准确性。
此外,热像仪的像素可高达76800点,所以电力设备的细节部位可以用红外热像仪探测出来,并且可以实现远距离的温度探测。
红外热成像技术在电气设备检测中的应用研究红外热成像技术是一种基于物体表面的热辐射能识别和计量物体表面热量分布的检测技术。
它能够快速、无损地检测出电气设备中的异常热源问题,该技术在电气设备检测的实践中得到了广泛应用。
一、红外热成像技术的原理和特点红外热成像技术是基于物体表面的热辐射能识别和计量的检测技术,它把物体表面辐射的红外线能量转化成电信号,再通过电子处理器处理成可视化信息。
这种技术能够快速、无损地检测出电气设备中的异常热源问题,检测非常方便,而且检测结果直观。
二、红外热成像技术在电气设备检测中的应用1、电力系统检测在电力系统中,红外热成像技术可以检测电力设备故障中的发热情况,比如高压线路、变压器、电缆头等问题。
例如变压器故障,由于变压器绕线中存在接触点问题或者乱纤维、重叠导致局部发热,可以使用红外热成像技术检测出来,避免出现故障,从而提高电力系统的可靠性和安全性。
2、工业设备检测在工业生产中,大量的机器设备中都会存在潜在的故障情况,而这些故障很大程度上存在于机器内部难以观察的地方。
这时候可以使用红外热成像技术,通过检测物体表面的热量变化来发现和诊断机器的潜在故障,及时处理问题,避免出现产生生产延误或者周期性停机的情况。
3、建筑设计检测在建筑设计中,为了保证建筑房屋的保温性和密封性,需要对建筑中的绝缘体能够进行严密的监测,但是传统的测量方法不仅费时费力,而且破坏空间结构。
而红外热成像技术检测方法在建筑绝缘材料中的热工性能和密封情况等方面,用居民透视图的方式快速测量出来,保证了建筑的安全性和图纸设计的合理性。
三、红外热成像技术在电气设备检测中的发展趋势红外热成像技术在电气设备检测中的应用是不断发展的,有着以下的趋势:1、精度更高随着热成像仪的升级,精度越来越高,能够处理更多的信息。
同时,新的可视化功能也能够提升检测精度,使得检测出来的问题更精准。
2、更广泛的应用红外热成像技术在电气设备中的应用不仅仅是局限于电力系统和工业设备的检测,还可以应用在安防、医疗等领域上,因此未来这种技术的应用范围会更广泛。
使用红外热成像仪检测中存在的问题及对策开封供电公司变电运行部运行部赵阳摘要:随着”三集五大”体系建设和变电设备“状态检修”的大力推进,传统的传统的变电设备检修和运行模式发生了根本性改变,能够实时、有效、动态地评价设备健康状况成为确保设备安全、稳定运行的前提,红外成像仪是目前变电运行人员检测运行设备健康状况的有力保证,可以有效的避免因设备发热而造成的非计划停电,为提高供电可靠率做出了贡献关键词:变电红外热成像仪检测规范存在的问题对策引言:本文针对当前变电设备红外成像检测技术的应用中存在问题及改进方法进行了思考以及对红外测温未来发展的展望。
由于这种技术无需对所测设备停电,即可准确发现安全隐患,所以更要充分利用好、发挥好红外成像检测这一高科技手段,夯实变电设备“状态检修”基础,确保运行的可控、在控、预控。
一目前在使用中所存在的问题:(1)重设备,轻人员,培训工作不到位。
目前,红外成像设备已基本覆盖到重要的生产班组,极大提高了生产一线的技术装备水平,然而,好的检测设备必须得到正确和规范的应用,才可能发挥其最好的性能,不能只重视检测设备的配置,而忽略了对人员进行必要的培训,目前对红外成像仪方面培训的主要方式还是以产品说明书为主,没有专业的培训教材和权威的培训师资,虽然厂家的技术人员会不定期到各基层单位组织测温培训,但由于运行人员倒班的原因,造成了一线人员缺乏热像仪的操作技能培训,同时,昂贵的机器也需要专业的使用和维护技巧,没有经过专业培训,在使用红外线成像器材时就不可避免要出现:保养不当、充电电池报废、昂贵的红外线镜头被划损等等现象,既造成了经济损失,也影响了测温工作的正常开展。
对策:(1)建立完善的红外成像检测制度,对红外检测工作的准备、风险预控、规范、安全注意事项等进行详细的规定。
同时根据各站所管辖的一、二次设备详细列表并建立测温表单,以表单的形式使测温制度和规范落到实处;(2)加强红外热成像仪使用技术的培训,考虑到运行人员工作的特殊性,可以首先由相关厂家的技术人员对各个部门的技术专责进行培训并考核,然后由各个部门的专责负责对各个集控站,变电站站长进行培训,最后由各个集控站,变电站站长在现场向各自站运行人员进行现场培训,由各个部门专责不定期到各站检查培训效果并加以考核,同时将培训和考核结果与每个月的绩效工资挂钩。
基于目前变电站设备红外测温方法的探讨[摘要]在电力系统中,变电站是电力系统的枢纽,其设备运行状态直接决定了电力系统的安全和效益。
由于电力设备多数因发热缺陷而引起,所以应用红外测温诊断技术可以及时发现电力设备缺陷,使设备故障得到及时的消除避免电力系统事故的发生。
虽然目前变电站或巡维中心等都配备了红外测温设备,但由于仪器配置数量有限,运行人员其它工作量较大等,如何更有效地进行红外测温,成为值得探讨的问题。
[关键词]变电站红外测温方法中图分类号:tm73 文献标识码:a 文章编号:1009-914x(2013)17-549-01一、红外测温技术介绍红外测温技术是一种先进的在线检测技术,可在设备不停电的情况下,检测设备的运行状况。
通过对电气设备表面温度及其分布的测试、分析和判断,可以准确地发现电气设备运行中的异常和缺陷,从而使部分事故检修转为预见性检修。
应用红外测温仪和热成像仪等诊断技术可实现设备运行状态时远距离、不停电、不接触、不取样、不解体的情况下,检测出设备故障引起的异常红外辐射和温度,有效的判断设备存在的外部缺陷和内部缺陷,从而实现故障隐患的提早发现并及时进行处理,给电气设备状态监测提供了一种先进手段。
红外测温技术的功能及优势:(1)通过对设备表面温度分布的测量,可以分析设备内部热损耗部位和性质,从而判断该设备的健康状态。
热点温度直观显示,热图像清晰,能储存和打印。
(2)具有定性成像与定量测量的双重功能,并有较高空间分辨率和温度分辨率,能够辨别很小的温差。
实时热图像能够清晰显示在屏幕上,为建立热图像数据库提供了条件,实现了图像采集、储存、分析于一体的功能。
(3)用红外热成像仪检测设备,属于远距离非接触式的扫描巡检,可以保证人身和设备的安全。
(4)红外热成像仪检测设备,如同用摄像机录像,能够快速的对大面积的设备进行检测,能够准确、直观的发现与运行电压、电流有关的设备缺陷,还可对缺陷的性质、位置、程度做出定性、定量的判断。
使用红外热成像仪检测中存在的问题及对策红外热成像技术是一种非接触式的测温方法,它通过红外线接收器扫描物体表面放射的红外线,并将其转化为图像,以显示目标表面的温度分布情况。
由于其高精度、高灵敏度、非接触等特点,红外热成像技术已广泛应用于汽车、建筑、航空航天、医疗和电力等领域,成为现代工业领域中最为重要的检测方法之一。
但是,在使用红外热成像仪进行检测时,还存在一些问题需要注意和解决。
本文将介绍使用红外热成像仪检测中存在的问题及对策。
问题1:测量误差在使用红外热成像仪进行检测时,由于物体表面的温度分布不均匀,温度场复杂多变,外界环境等因素的影响,容易出现测量误差。
为了减小测量误差,通常需要采取以下措施:环境控制由于周围环境的影响可能对目标表面的温度分布产生影响,因此应将检测区域尽量置于稳定的环境中。
例如,在使用红外热成像仪检测建筑物外墙温度时,应选择较为平稳的天气,并尽量避免温差较大的天气。
处理图像在处理图像时,需要对图像中出现的伪影进行修正。
伪影是指由于温度场分布不均匀等因素导致的红外热成像图像上出现的假象,这些假象可能会干扰检测结果。
因此,在处理图像时应尽可能去除伪影。
校准仪器在使用红外热成像仪检测时,还需要对仪器进行校准。
校准可以帮助我们了解仪器的测量误差,并且可以根据校准结果进行修正。
一般来说,校准需要进行定期进行。
问题2:目标检测在使用红外热成像仪进行检测时,还存在一个重要的问题就是难以确定目标的位置和轮廓。
这个问题一般可以通过以下措施解决:明确目标检测的范围在进行红外热成像检测时,人们通常会规定检测区域。
例如,在检测建筑物的外墙温度时,可以明确将检测区域限制在墙面的某一特定区域内。
这可以有效降低目标检测的难度。
采用合适的颜色和对比度在高对比度的颜色模式或黑白模式下进行检测,可以突出目标的轮廓和边缘特征,从而有效地帮助定位目标。
问题3:数据处理在使用红外热成像仪进行检测时,最终得到的图像可能需要进行进一步的数据处理。
红外热成像技术在机电设备故障诊断中的应用研究随着科技的快速发展,红外热成像技术已经成为机电设备故障诊断领域常用的无损检测技术。
红外热成像技术可以通过获取被测物体的热图像,分析出物体内部的热分布情况,从而快速发现并定位设备故障,为设备的维修和保养提供依据。
本文将对红外热成像技术在机电设备故障诊断中的应用进行深入研究。
一、红外热成像技术原理及特点红外热成像技术是一种利用红外线辐射来探测物体表面温度分布的技术。
红外线是指由分子、原子、电子等基本粒子在能级变化或运动过程中发出的电磁波。
红外线波长长于可见光,但短于微波,因此可以穿过一些不透明物体,当红外线射入物体时,被测物体表面的温度会对红外线的波长、强度和方向产生影响,再经过红外热成像仪等检测设备的接收、扫描、转换和处理,就可以得到物体表面的红外热图像。
红外热成像技术具有以下特点:1. 容易获取难以观测的物体信息,如密闭物体内部温度分布、表面温度分布等;2. 非接触式检测,无需对被测物体进行破坏性操作和接触性取样;3. 检测结果量化、图像直观,有助于快速分析设备故障;4. 操作简便、成本较低,适用于大规模设备故障诊断。
二、红外热成像技术在机电设备故障诊断中的应用1. 电机故障诊断电机因为长期运转过程中,容易导致磨损、接触不良、绝缘老化等问题,从而引起故障。
而红外热成像技术可以通过监测电机的温升情况,发现可能存在的故障情况。
比如,电机有可能因为轴承水泥老化、轴承破损、摩擦力过大等原因导致温度升高,红外热成像技术可以准确地显示这种异常温升情况,从而及时发现电机故障。
此外,在电机绕组的损伤情况诊断过程中,红外热成像技术也可以大大提高检测的效率、准确性和精度。
2. 输电线路故障诊断红外热成像技术在输电线路故障诊断中也有广泛应用。
输电线路因为长期的暴露在恶劣的自然环境下,极容易受到外部因素的干扰,如雷电、风吹雨打、鸟类触碰等,从而造成线路的老化、开路、短路等故障。
红外热成像技术在电力设备故障检测中的应用研究第一章引言随着电力设备的广泛应用,故障检测和预防变得越来越重要。
传统的检测方法,如物理检查和电气测试,需要耗费大量人力和物力,并且存在很多局限性。
因此,需要寻找一种更加有效、更加可靠的方法来检测电力设备故障。
在这种情况下,红外热成像技术成为了一种被广泛应用的检测技术。
第二章红外热成像技术的原理和特点红外热成像技术是一种通过测量物体表面的热辐射来确定物体表面温度的技术。
它基于物体表面与环境的热交换,利用红外热像仪将物体表面的热辐射转换为一个热图像,并将其显示在显示器上。
通过分析热图像,可以确定物体表面的温度分布,并根据温度分布来判断物体是否存在异常。
红外热成像技术有以下几个特点:1. 非接触性。
红外热成像技术不需要物理接触待测试的物体,因此可以避免物理接触可能带来的风险和损害。
2. 高精度、高灵敏度。
红外热成像技术能够在比较低的温度差下,精准地检测物体表面的温度变化。
3. 高效性。
红外热成像技术可以快速、准确地捕捉和显示物体表面的热图像,并且具有实时性。
4. 热安全性。
红外热成像技术不会对物体造成任何影响,也不会对人体产生辐射伤害。
第三章红外热成像技术在电力设备故障检测中的应用红外热成像技术已被广泛应用于电力设备故障检测。
主要应用于以下方面:1. 检测电路板和电缆故障。
电子元器件和电缆在使用过程中可能会出现过热、短路等故障,这些故障会导致电器设备无法正常工作。
通过红外热成像技术,可以快速诊断出故障点,避免设备损坏和生产中断。
2. 检测变压器故障。
变压器是电力传输中的核心设备,一旦出现故障会导致电力传输出现问题。
红外热成像技术可以用于检测变压器内部绕组、油箱和铁芯等部位的温度分布情况,及早发现异常现象。
3. 检测电力设备老化。
电力设备在长时间运行后会出现老化现象,表现为温度差异较大、绝缘性能下降等。
通过使用红外热成像技术,可以检测设备的表面温度分布状况,分析设备的老化程度。
电力设备状态检修及故障诊断中红外技术的应用分析摘要:红外测温技术在当前科学技术的发展下得到了广泛的应用,效果显著,大大提高了电力设备的可靠性性能。
本文首先介绍了红外检测技术的原理和特点,重点介绍了红外诊断技术的内容和判断方法。
利用红外测温技术实现变电站设备故障诊断,可以有效地保证我国电力系统的稳定发展和运行。
关键词:电力设备;状态检修;故障诊断;红外技术1红外成像的原理及红外成像测温仪的系统组成所有红外成像设备主要有以下几个部分组成。
首先是光学系统,作用是接收物体发射的红外线,并且通过调制器转变为利于解析的辐射信号。
其次,通过光电探测器的配合,将获取到的光信号转化为电信号。
接着是信号放大器及信号处理。
它的作用是通过解析电信号传达的信息,转化为可以让人们理解的数据,这样最后通过显示输出的部分表达出测试结果。
总之,通过使用红外成像测温仪,可以更加方便的监测物体实际温度的变化。
2红外诊断技术检测故障类型2.1外部热故障所谓的外部热故障指的是,在现实的环境中暴露出电力设备发热的部分,这样通过红外热像仪就能够对设备表面的热状态分布情况进行直接的观测,并快速的确定发热位置。
其中出现热故障的主要原因是由于设备部件中的接触电阻突然异常加大,而导致其电阻出现异常加大的原因主要有两个方面:一方面是在加工或者是安装设备连接件的时候存在不规范操作,零件出现了松动或者是老化现象;另一方面是由于电力设备部件长期暴露在现实环境中,受到各种因素的严重破坏,或者是其接触表面过于粗糙、不平整或者是出现氧化问题。
2.2内部热故障对于电力设备自身来说,一直都是处于封闭的状态中,如果设备的内部出现发热现象的话,红外热像仪是很难检测出来,因此就难以准确的对故障位置进行判断。
如果想获取相关信息的话,则只能够通过观察设备表面热分布图来获取。
一是电力设备内部出现接触不良等问题;二是设备的内部产生了较大介质损耗;三是设备内部的电压分布不良;四是设备使用时间过长,而且受潮、老化现象严重等各个方面的原因,都会导致设备的内部出现发热现象。
电力设备红外热像检测技术(2篇)电力设备红外热像检测技术(第一篇)引言电力设备是现代电力系统的重要组成部分,其安全稳定运行对整个电力系统的可靠性和经济性至关重要。
随着电力需求的不断增长和电力设备的日益复杂,传统的检测方法已难以满足现代电力设备维护的需求。
红外热像检测技术作为一种非接触、快速、高效的检测手段,逐渐在电力设备状态监测中得到广泛应用。
一、红外热像检测技术原理1. 红外辐射基本原理任何物体只要温度高于绝对零度(273.15℃),都会发射红外辐射。
物体的温度越高,发射的红外辐射强度也越大。
红外热像仪通过探测物体表面发射的红外辐射,将其转换为可视化的热像图,从而实现对物体表面温度分布的实时监测。
2. 红外热像仪工作原理红外热像仪主要由光学系统、探测器、信号处理系统和显示系统组成。
光学系统将物体发射的红外辐射聚焦到探测器上,探测器将红外辐射转换为电信号,信号处理系统对电信号进行处理,最终通过显示系统呈现为热像图。
3. 温度与红外辐射的关系根据斯蒂芬玻尔兹曼定律,物体的辐射功率与其温度的四次方成正比。
因此,通过测量物体发射的红外辐射功率,可以精确计算出物体的表面温度。
二、红外热像检测技术在电力设备中的应用1. 变电站设备检测变电站是电力系统中的重要节点,其设备包括变压器、断路器、隔离开关等。
红外热像检测技术可以用于检测这些设备的局部过热现象,及时发现潜在的故障隐患。
变压器检测:变压器在运行过程中,由于绕组短路、接触不良等原因,可能导致局部过热。
通过红外热像检测,可以及时发现这些异常温度点,避免变压器损坏。
断路器检测:断路器在分合闸过程中,触头接触不良会导致局部过热。
红外热像检测可以实时监测断路器触头的温度分布,确保其正常运行。
2. 输电线路检测输电线路长距离、跨区域分布,传统的人工巡检效率低、成本高。
红外热像检测技术可以实现对输电线路的快速、全面检测。
导线接头检测:导线接头是输电线路的薄弱环节,容易因接触不良导致局部过热。
红外热成像技术在变电站设备故障诊断中的应用研究发布时间:2022-05-08T02:15:04.404Z 来源:《福光技术》2022年9期作者:韩斌[导读] 实践证明,这是变电站设备故障诊断的一种有效手段。
随着红外热成像技术的不断发展和成熟,它的优点随之显现出来,它可以在检测中不接触变电站设备,不使设备停电且不使设备停机的情况下就可以实现故障诊断,因此近年来该技术使用也越来越普遍。
为了发挥红外热成像技术的优势韩斌国网高平市供电公司山西高平 048400摘要:实践证明,这是变电站设备故障诊断的一种有效手段。
随着红外热成像技术的不断发展和成熟,它的优点随之显现出来,它可以在检测中不接触变电站设备,不使设备停电且不使设备停机的情况下就可以实现故障诊断,因此近年来该技术使用也越来越普遍。
为了发挥红外热成像技术的优势和提高设备故障诊断效率,对红外热成像技术在变电站设备故障诊断中的应用进行研究意义重大。
关键词:红外热成像技术;变电站;设备故障诊断;应用1基于ASIFT算法的电力设备红外图像识别方法热图像处理的目的就是使图像的各方面的质量都得到提高,即输出的依然是一幅完整的图像。
怎么样在变电站电力设备热图像中提取特征并判断分出类别是我们要解决的问题,即热图像的识别。
SIFT算法是一种基于尺度空间的图像特征描述算子,并以现在就有的特征检测方法为基石。
因为SIFT算法的优良的仿射不变性,所以成为一种在热图像识别中的传统算法,但是此方法有一个缺点那就是若视角发生变化或者是变化很大的情况下,其就会失去尺度不变性。
这时ASIFT算法的优点就显现出来。
它是以SIFT算法为基石,进行相机模拟的视角变化完成了全仿射不变性,应用范围更加广泛。
因为SIFT算法是ASIFT算法的基础,先介绍SIFT算法。
其算法的主要步骤如下:(1)检测尺度空间局部的极值点。
建立尺度高斯金字塔,在高斯差分金字塔里检测局部极值,并使全部的极值点当作关键点的备选对象。
红外线热像仪在变电站设备运行和故障分析方面的应用作者:潘彦儒黄丽莹来源:《城市建设理论研究》2012年第29期摘要:红外线热像仪在变电站设备运行和故障分析方面具有很大的作用,电力系统的正常运行离不开良好的变电站设备,对变电站设备运行情况的检测和故障的分析显得尤为重要,使用红外线热像仪能够提高设备监控和检测的科学性与精确性。
本文主要论述了红外线热像仪在变电站设备运行和故障方面的应用实践,以期能够为相关的工作提供些许理论基础,关键词:变电站设备红外线热像仪运行故障应用分析中图分类号:G267 文献标识码:A 文章编号:现阶段,变电站设备的使用越来越广泛,这与城市电网的广泛铺设有着密不可分的联系。
过去的变电站由于资金和经济水平的制约,都采用的是人工化的检测方式和修正措施,工作的效率明显不高。
现如今很多地方实行了自动化的管理方式,变电站设备的整个工作流程就更加地科学化与合理化,也为国家电网的建设做出了应有的贡献。
因此,变电站安全稳定运行是各个供电局所要努力实现的目标,而及早发现设备存在的问题,避免发生设备事故,对变电站安全稳定运行尤为重要。
一、红外线热像仪的基本概况和主要特点红外线热像仪是一种检测设备,在实际应用的范围也比较广阔,尤其在针对变电站的故障检测和处理上显得很重要。
它最基本的工作原理就是利用设备的温度差异判断该设备究竟处于正常运行状态还是处于异常运行状态。
每一样物体都带有温度,温度会以电磁波的形式传播出去,形成一定的能量场,该能量的值与物体热力学温度的四次幂成正比,热像仪就是通过这个原理制作而成的,是一种非接触式的测量仪器。
红外线热像仪是利用了红外线探测技术,通过进行系统的搜集、整理设备的红外线辐射程度来对设备进行检测的。
红外线成像技术的应用环境比较的广阔,而且约束条件比较少,当变电站的设备处于工作的状态下的时候,也依然可以使用红外线热像仪来进行故障的检测与分析,不会对设备有任何的影响,这就大大提高了对变电站设备运行问题以及故障的预知与排查能力,有利于及时发现问题解决问题。
关于变电站巡视检查中红外热成像仪的应用分析摘要:变电站在电网工作中起着承上启下的作用,对于电网的安全运行有着重要的价值。
工作人员在巡视变电站设备的过程中一般通过表面的听和看等动作,但是肉眼是无法清楚观察到细节问题;除此之外,对一些产生过高热量的设备可以用手去触摸,但是由于部分设备有导电作用,所以不能用手去触摸;对于部门发出噪音的设备工作人员可以用耳朵去听,但是单纯用耳朵去听也不会发现一些特殊的问题。
上述种种情况均说明仅仅靠人力去检测变电站设备的故障问题是不可取的,必须要使用一些技术(如红外热成像仪技术)才能够观察出具体问题。
关键词:变电站;巡视检查;红外热成像仪;应用分析1红外热成像仪的工作原理以及功能特点1.1工作原理红外热成像仪主要利用的是红外热成像技术,将探测的目标物体进行红外辐射,再公国信号处理手段,将目标物的温度分布图转变成视频图。
利用红外热成像仪能够清楚检测目标物本身,再得出不同的红外图像。
工作人员可以通过观察图像的温度分布点再从中发现异常,从而起到预防和维护的作用。
1.2功能特点红外热成像仪具有以下几个方面的特点:其一,分辨率高;其二,测温迅速;其三,稳定而又可靠;其四,不会受到电磁干扰;其五,存储信息和处理信息非常方便。
由于红外热成像仪具有将目标物体转换成热图像的特点,所以通过调节红外热成像仪的辐射率参数以及温标值参数等,能够快速检测出被检测物体的表面发热温蒂,从而清楚了解目标物的热损耗部位,再判断出此目标物体的健康状态。
红外热成像仪具有定量测量、定性成像的功能,与此同时还具有高空间分辨率和高温度分辨率等特点。
部分图像能够被清楚的传动到视频中,从而为建立热图像数据库提供相应条件,最终实现图像的采集和储存等功能。
红外热成像仪还能够快速检测大面积的设备物体,准确分析出运动电压的缺陷问题,再对缺陷的基本性质和基本位置等做出相应判断。
2红外测温技术的应用与效果众所周知,任何事故都不是突发的,都有一个或多或少地变化过程。
浅述变电站一次设备红外诊断技术的运用摘要针对变电站一次高压电气设备中红外技术诊断的应用做了简单的论述。
利用红外技术,能够检测与诊断一次高压电气设备过热故障,明确故障原因,提高设备检修工作效率,预防事故的发生。
红外技术应用范围较广,包括电流互感器、电压互感器、电抗器、变压器套管、避雷器、隔离刀闸、母线接头等,能够隹确检测电气设备的内部缺陷和致热故障,有着较强的应用优势;同时,提供的电气一次设备的红外诊断检测诊断判据。
关键词一次电气设备;红外诊断技术;判据现阶段,红外技术诊断的应用更加广泛,尤其是在变电站一次高压电气设备检修中。
电气设备故障以热故障为主,包括内部故障与外部故障,内部故障主要是因为设备内导电回路接触不良或者互感器、变压器套管、电压互感器内部绝缘故障、避雷器内部老化等;外部故障主要有变压器套管接头、电气各连接头、刀闸等,利用红外技术,能够有效诊断故障,提高故障检修的效率。
1 红外技术诊断内容概述目前,红外技术诊断较为成熟应用在变电站一次高压电气设备检修中能够实现全面的检测主要覆盖以下故障:电气设备内外导流回路故障、高电压设备内绝缘故障、动作开关磨损故障、变压器铁芯损耗故障等,利用红外成像技术,在电气设备维护检测中发挥着极的作用。
2 变电站一次高压电气设备中红外技术诊断的应用2.1 应用于互感器内部缺陷的检测应用于互感器内部缺陷检测电磁电压互感器由于热容量和体积较小,当相间温差增加或者内部损耗过大时会造成互感器温度增加。
电流互感器运行会载有高电压与大电流,使得设备发热,若加工工艺不良或者电场分布异常等,也会造成局部放电和过热问题。
利用红外测温技术、通过色谱分析或者热成像图片分析,能够准确诊断故障。
如图1,左侧110KV电流互感器红外图谱温度整体偏高;图2为电容式电压互感器A相上端部和BC相存在明显的温差。
2.2 应用于套管接头和母线接头的检测在变电一次设备套管接头和母线接头的带电监测中,红外热像诊断技术的应用,能够提高故障监测的水平。